Search results for: network capacity
6848 Artificial Intelligence Based Meme Generation Technology for Engaging Audience in Social Media
Authors: Andrew Kurochkin, Kostiantyn Bokhan
Abstract:
In this study, a new meme dataset of ~650K meme instances was created, a technology of meme generation based on the state of the art deep learning technique - GPT-2 model was researched, a comparative analysis of machine-generated memes and human-created was conducted. We justified that Amazon Mechanical Turk workers can be used for the approximate estimating of users' behavior in a social network, more precisely to measure engagement. It was shown that generated memes cause the same engagement as human memes that produced low engagement in the social network (historically). Thus, generated memes are less engaging than random memes created by humans.Keywords: content generation, computational social science, memes generation, Reddit, social networks, social media interaction
Procedia PDF Downloads 1386847 Efficient Video Compression Technique Using Convolutional Neural Networks and Generative Adversarial Network
Authors: P. Karthick, K. Mahesh
Abstract:
Video has become an increasingly significant component of our digital everyday contact. With the advancement of greater contents and shows of the resolution, its significant volume poses serious obstacles to the objective of receiving, distributing, compressing, and revealing video content of high quality. In this paper, we propose the primary beginning to complete a deep video compression model that jointly upgrades all video compression components. The video compression method involves splitting the video into frames, comparing the images using convolutional neural networks (CNN) to remove duplicates, repeating the single image instead of the duplicate images by recognizing and detecting minute changes using generative adversarial network (GAN) and recorded with long short-term memory (LSTM). Instead of the complete image, the small changes generated using GAN are substituted, which helps in frame level compression. Pixel wise comparison is performed using K-nearest neighbours (KNN) over the frame, clustered with K-means, and singular value decomposition (SVD) is applied for each and every frame in the video for all three color channels [Red, Green, Blue] to decrease the dimension of the utility matrix [R, G, B] by extracting its latent factors. Video frames are packed with parameters with the aid of a codec and converted to video format, and the results are compared with the original video. Repeated experiments on several videos with different sizes, duration, frames per second (FPS), and quality results demonstrate a significant resampling rate. On average, the result produced had approximately a 10% deviation in quality and more than 50% in size when compared with the original video.Keywords: video compression, K-means clustering, convolutional neural network, generative adversarial network, singular value decomposition, pixel visualization, stochastic gradient descent, frame per second extraction, RGB channel extraction, self-detection and deciding system
Procedia PDF Downloads 1876846 High Resolution Image Generation Algorithm for Archaeology Drawings
Authors: Xiaolin Zeng, Lei Cheng, Zhirong Li, Xueping Liu
Abstract:
Aiming at the problem of low accuracy and susceptibility to cultural relic diseases in the generation of high-resolution archaeology drawings by current image generation algorithms, an archaeology drawings generation algorithm based on a conditional generative adversarial network is proposed. An attention mechanism is added into the high-resolution image generation network as the backbone network, which enhances the line feature extraction capability and improves the accuracy of line drawing generation. A dual-branch parallel architecture consisting of two backbone networks is implemented, where the semantic translation branch extracts semantic features from orthophotographs of cultural relics, and the gradient screening branch extracts effective gradient features. Finally, the fusion fine-tuning module combines these two types of features to achieve the generation of high-quality and high-resolution archaeology drawings. Experimental results on the self-constructed archaeology drawings dataset of grotto temple statues show that the proposed algorithm outperforms current mainstream image generation algorithms in terms of pixel accuracy (PA), structural similarity (SSIM), and peak signal-to-noise ratio (PSNR) and can be used to assist in drawing archaeology drawings.Keywords: archaeology drawings, digital heritage, image generation, deep learning
Procedia PDF Downloads 596845 Numerical Study of Splay Anchors in CFRP-Strengthened Concrete Beams
Authors: Asal Pournaghshband, Mohammed A. Zaki
Abstract:
This paper presents a detailed numerical investigation into the structural performance of splay anchor configurations for strengthening concrete beams with Carbon Fiber Reinforced Polymer (CFRP) sheets. CFRP is widely used in retrofitting concrete structures to improve flexural strength and extend service life. However, premature debonding limits the tensile capacity of CFRP sheets, reducing the effectiveness of these applications. This study addresses this limitation by exploring the potential of splay anchors as an emerging anchorage technique that mitigates debonding issues through improved load transfer mechanisms. Building on existing experimental studies, the research uses ABAQUS software to validate different splay anchor configurations and simulate real-world performance. The parametric study examines key anchor parameters, including diameter, spacing, and embedment depth, to evaluate their effects on bond strength, load distribution, and the flexural capacity of strengthened beams. Systematic analysis of these parameters allows for identifying configurations that enhance debonding resistance and increase the load-carrying capacity of CFRP-strengthened beams. Improved debonding resistance contributes to greater structural durability, reduced maintenance costs, and extended service life for retrofitted structures, particularly relevant for aging infrastructure like bridges and buildings. This approach not only advances sustainable retrofitting practices but also provides practical solutions tailored to infrastructure demands.Keywords: CFRP strengthening, splay anchors, concrete beams, structural retrofitting, numerical analysis
Procedia PDF Downloads 76844 MAOD Is Estimated by Sum of Contributions
Authors: David W. Hill, Linda W. Glass, Jakob L. Vingren
Abstract:
Maximal accumulated oxygen deficit (MAOD), the gold standard measure of anaerobic capacity, is the difference between the oxygen cost of exhaustive severe intensity exercise and the accumulated oxygen consumption (O2; mL·kg–1). In theory, MAOD can be estimated as the sum of independent estimates of the phosphocreatine and glycolysis contributions, which we refer to as PCr+glycolysis. Purpose: The purpose was to test the hypothesis that PCr+glycolysis provides a valid measure of anaerobic capacity in cycling and running. Methods: The participants were 27 women (mean ± SD, age 22 ±1 y, height 165 ± 7 cm, weight 63.4 ± 9.7 kg) and 25 men (age 22 ± 1 y, height 179 ± 6 cm, weight 80.8 ± 14.8 kg). They performed two exhaustive cycling and running tests, at speeds and work rates that were tolerable for ~5 min. The rate of oxygen consumption (VO2; mL·kg–1·min–1) was measured in warmups, in the tests, and during 7 min of recovery. Fingerprick blood samples obtained after exercise were analysed to determine peak blood lactate concentration (PeakLac). The VO2 response in exercise was fitted to a model, with a fast ‘primary’ phase followed by a delayed ‘slow’ component, from which was calculated the accumulated O2 and the excess O2 attributable to the slow component. The VO2 response in recovery was fitted to a model with a fast phase and slow component, sharing a common time delay. Oxygen demand (in mL·kg–1·min–1) was determined by extrapolation from steady-state VO2 in warmups; the total oxygen cost (in mL·kg–1) was determined by multiplying this demand by time to exhaustion and adding the excess O2; then, MAOD was calculated as total oxygen cost minus accumulated O2. The phosphocreatine contribution (area under the fast phase of the post-exercise VO2) and the glycolytic contribution (converted from PeakLac) were summed to give PCr+glycolysis. There was not an interaction effect involving sex, so values for anaerobic capacity were examined using a two-way ANOVA, with repeated measures across method (PCr+glycolysis vs MAOD) and mode (cycling vs running). Results: There was a significant effect only for exercise mode. There was no difference between MAOD and PCr+glycolysis: values were 59 ± 6 mL·kg–1 and 61 ± 8 mL·kg–1 in cycling and 78 ± 7 mL·kg–1 and 75 ± 8 mL·kg–1 in running. Discussion: PCr+glycolysis is a valid measure of anaerobic capacity in cycling and running, and it is as valid for women as for men.Keywords: alactic, anaerobic, cycling, ergometer, glycolysis, lactic, lactate, oxygen deficit, phosphocreatine, running, treadmill
Procedia PDF Downloads 1366843 Prediction on Housing Price Based on Deep Learning
Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang
Abstract:
In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.Keywords: deep learning, convolutional neural network, LSTM, housing prediction
Procedia PDF Downloads 3066842 Transpersonal Model of an Individual's Creative Experiencef
Authors: Anatoliy Kharkhurin
Abstract:
Modifications that the prefix ‘trans-‘ refers to start within a person. This presentation focuses on the transpersonal that goes beyond the individual (trans-personal) to encompass wider aspects of humanities, specifically peak experience as a culminating stage of the creative act. It proposes a model according to which the peak experience results from a harmonious vibration of four spheres, which transcend an individual’s capacities and bring one to a qualitatively different level of experience. Each sphere represents an aspect of creative activity: superconscious, intellectual, emotive and active. Each sphere corresponds to one of four creative functions: authenticity, novelty, aesthetics, and utility, respectively. The creative act starts in the superconscious sphere: the supreme pleasure of Creation is reflected in creative pleasure, which is realized in creative will. These three instances serve as a source of force axes, which penetrate other spheres, and in place of infiltration establish restrictive, expansive, and integrative principles, respectively; the latter balances the other two and ensures a harmonious vibration within a sphere. This Hegelian-like triad is realized within each sphere in the form of creative capacities. The intellectual sphere nurtures capacities to invent and to elaborate, which are integrated by capacity to conceptualize. The emotive sphere nurtures satiation and restrictive capacities integrated by capacity to balance. The active sphere nurtures goal orientation and stabilization capacities integrated by capacity for self-expression. All four spheres vibrate within each other – the superconscious sphere being in the core of the structure followed by intellectual, emotive, and active spheres, respectively – thereby reflecting the path of creative production. If the spheres vibrate in-phase, their amplitudes amplify the creative energy; if in antiphase – the amplitudes reduce the creative energy. Thus, creative act is perceived as continuum with perfectly harmonious vibration within and between the spheres on one side and perfectly disharmonious vibration on the other.Keywords: creativity, model, transpersonal, peak experience
Procedia PDF Downloads 3546841 Experimental Investigation on Geosynthetic-Reinforced Soil Sections via California Bearing Ratio Test
Authors: S. Abdi Goudazri, R. Ziaie Moayed, A. Nazeri
Abstract:
Loose soils normally are of weak bearing capacity due to their structural nature. Being exposed to heavy traffic loads, they would fail in most cases. To tackle the aforementioned issue, geotechnical engineers have come up with different approaches; one of which is making use of geosynthetic-reinforced soil-aggregate systems. As these polymeric reinforcements have highlighted economic and environmentally-friendly features, they have become widespread in practice during the last decades. The present research investigates the efficiency of four different types of these reinforcements in increasing the bearing capacity of two-layered soil sections using a series California Bearing Ratio (CBR) test. The studied sections are comprised of a 10 cm-thick layer of no. 161 Firouzkooh sand (weak subgrade) and a 10 cm-thick layer of compacted aggregate materials (base course) classified as SP and GW according to the United Soil Classification System (USCS), respectively. The aggregate layer was compacted to the relative density (Dr) of 95% at the optimum water content (Wopt) of 6.5%. The applied reinforcements were including two kinds of geocomposites (type A and B), a geotextile, and a geogrid that were embedded at the interface of the lower and the upper layers of the soil-aggregate system. As the standard CBR mold was not appropriate in height for this study, the mold used for soaked CBR tests were utilized. To make a comparison between the results of stress-settlement behavior in the studied specimens, CBR values pertinent to the penetrations of 2.5 mm and 5 mm were considered. The obtained results demonstrated 21% and 24.5% increments in the amount of CBR value in the presence of geocomposite type A and geogrid, respectively. On the other hand, the effect of both geotextile and geocomposite type B on CBR values was generally insignificant in this research.Keywords: geosynthetics, geogrid, geotextile, CBR test, increasing bearing capacity
Procedia PDF Downloads 1106840 Protective Effect of Rosemary Extract against Toxicity Induced by Egyptian Naja haje Venom
Authors: Walaa H. Salama, Azza M. Abdel-Aty, Afaf S. Fahmy
Abstract:
Background: Egyptian Cobra; Naja haje (Elapidae) is one of most common snakes, widely distributed in Egypt and its envenomation causes multi-organ failure leading to rapid death. Thus, Different medicinal plants showed a protective effect against venom toxicity and may complement the conventional antivenom therapy. Aim: The present study was designed to assess both the antioxidant capacity of methanolic extract of rosemary leaves and evaluate the neutralizing ability of the extract against hepatotoxicity induced by Naja haje venom. Methods: The total phenolic and flavonoid contents and the antioxidant capacity of the methanolic rosemary extract were estimated by DPPH and ABTS Scavenging methods. In addition, the rosemary extract were assessed for anti-venom properties under in vitro and in vivo standard assays. Results: The rosemary extract had high total phenolic and flavonoid content as 12 ± 2 g of gallic acid equivalent per 100 gram of dry weight (g GAE/100g dw) and 5.5 ± 0.8 g of catechin equivalent per 100 grams of dry weight (g CE/100g dw), respectively. In addition, the rosemary extract showed high antioxidant capacity. Furthermore, The rosemary extract were inhibited in vitro the enzymatic activities of phospholipase A₂, L-amino acid oxidase, and hyaluronidase of the venom in a dose-dependent manner. Moreover, indirect hemolytic activity, hepatotoxicity induced by venom were completely neutralized as shown by histological studies. Conclusion: The phenolic compounds of rosemary extract with potential antioxidant activity may be considered as a promising candidate for future therapeutics in snakebite therapy.Keywords: antioxidant activity, neutralization, phospholipase A₂ enzyme, snake venom
Procedia PDF Downloads 1826839 A Genetic Algorithm Based Permutation and Non-Permutation Scheduling Heuristics for Finite Capacity Material Requirement Planning Problem
Authors: Watchara Songserm, Teeradej Wuttipornpun
Abstract:
This paper presents a genetic algorithm based permutation and non-permutation scheduling heuristics (GAPNP) to solve a multi-stage finite capacity material requirement planning (FCMRP) problem in automotive assembly flow shop with unrelated parallel machines. In the algorithm, the sequences of orders are iteratively improved by the GA characteristics, whereas the required operations are scheduled based on the presented permutation and non-permutation heuristics. Finally, a linear programming is applied to minimize the total cost. The presented GAPNP algorithm is evaluated by using real datasets from automotive companies. The required parameters for GAPNP are intently tuned to obtain a common parameter setting for all case studies. The results show that GAPNP significantly outperforms the benchmark algorithm about 30% on average.Keywords: capacitated MRP, genetic algorithm, linear programming, automotive industries, flow shop, application in industry
Procedia PDF Downloads 4906838 Using Data from Foursquare Web Service to Represent the Commercial Activity of a City
Authors: Taras Agryzkov, Almudena Nolasco-Cirugeda, Jose L. Oliver, Leticia Serrano-Estrada, Leandro Tortosa, Jose F. Vicent
Abstract:
This paper aims to represent the commercial activity of a city taking as source data the social network Foursquare. The city of Murcia is selected as case study, and the location-based social network Foursquare is the main source of information. After carrying out a reorganisation of the user-generated data extracted from Foursquare, it is possible to graphically display on a map the various city spaces and venues –especially those related to commercial, food and entertainment sector businesses. The obtained visualisation provides information about activity patterns in the city of Murcia according to the people`s interests and preferences and, moreover, interesting facts about certain characteristics of the town itself.Keywords: social networks, spatial analysis, data visualization, geocomputation, Foursquare
Procedia PDF Downloads 4266837 Power Grid Line Ampacity Forecasting Based on a Long-Short-Term Memory Neural Network
Authors: Xiang-Yao Zheng, Jen-Cheng Wang, Joe-Air Jiang
Abstract:
Improving the line ampacity while using existing power grids is an important issue that electricity dispatchers are now facing. Using the information provided by the dynamic thermal rating (DTR) of transmission lines, an overhead power grid can operate safely. However, dispatchers usually lack real-time DTR information. Thus, this study proposes a long-short-term memory (LSTM)-based method, which is one of the neural network models. The LSTM-based method predicts the DTR of lines using the weather data provided by Central Weather Bureau (CWB) of Taiwan. The possible thermal bottlenecks at different locations along the line and the margin of line ampacity can be real-time determined by the proposed LSTM-based prediction method. A case study that targets the 345 kV power grid of TaiPower in Taiwan is utilized to examine the performance of the proposed method. The simulation results show that the proposed method is useful to provide the information for the smart grid application in the future.Keywords: electricity dispatch, line ampacity prediction, dynamic thermal rating, long-short-term memory neural network, smart grid
Procedia PDF Downloads 2836836 A Methodology Based on Image Processing and Deep Learning for Automatic Characterization of Graphene Oxide
Authors: Rafael do Amaral Teodoro, Leandro Augusto da Silva
Abstract:
Originated from graphite, graphene is a two-dimensional (2D) material that promises to revolutionize technology in many different areas, such as energy, telecommunications, civil construction, aviation, textile, and medicine. This is possible because its structure, formed by carbon bonds, provides desirable optical, thermal, and mechanical characteristics that are interesting to multiple areas of the market. Thus, several research and development centers are studying different manufacturing methods and material applications of graphene, which are often compromised by the scarcity of more agile and accurate methodologies to characterize the material – that is to determine its composition, shape, size, and the number of layers and crystals. To engage in this search, this study proposes a computational methodology that applies deep learning to identify graphene oxide crystals in order to characterize samples by crystal sizes. To achieve this, a fully convolutional neural network called U-net has been trained to segment SEM graphene oxide images. The segmentation generated by the U-net is fine-tuned with a standard deviation technique by classes, which allows crystals to be distinguished with different labels through an object delimitation algorithm. As a next step, the characteristics of the position, area, perimeter, and lateral measures of each detected crystal are extracted from the images. This information generates a database with the dimensions of the crystals that compose the samples. Finally, graphs are automatically created showing the frequency distributions by area size and perimeter of the crystals. This methodological process resulted in a high capacity of segmentation of graphene oxide crystals, presenting accuracy and F-score equal to 95% and 94%, respectively, over the test set. Such performance demonstrates a high generalization capacity of the method in crystal segmentation, since its performance considers significant changes in image extraction quality. The measurement of non-overlapping crystals presented an average error of 6% for the different measurement metrics, thus suggesting that the model provides a high-performance measurement for non-overlapping segmentations. For overlapping crystals, however, a limitation of the model was identified. To overcome this limitation, it is important to ensure that the samples to be analyzed are properly prepared. This will minimize crystal overlap in the SEM image acquisition and guarantee a lower error in the measurements without greater efforts for data handling. All in all, the method developed is a time optimizer with a high measurement value, considering that it is capable of measuring hundreds of graphene oxide crystals in seconds, saving weeks of manual work.Keywords: characterization, graphene oxide, nanomaterials, U-net, deep learning
Procedia PDF Downloads 1606835 Weighted Data Replication Strategy for Data Grid Considering Economic Approach
Authors: N. Mansouri, A. Asadi
Abstract:
Data Grid is a geographically distributed environment that deals with data intensive application in scientific and enterprise computing. Data replication is a common method used to achieve efficient and fault-tolerant data access in Grids. In this paper, a dynamic data replication strategy, called Enhanced Latest Access Largest Weight (ELALW) is proposed. This strategy is an enhanced version of Latest Access Largest Weight strategy. However, replication should be used wisely because the storage capacity of each Grid site is limited. Thus, it is important to design an effective strategy for the replication replacement task. ELALW replaces replicas based on the number of requests in future, the size of the replica, and the number of copies of the file. It also improves access latency by selecting the best replica when various sites hold replicas. The proposed replica selection selects the best replica location from among the many replicas based on response time that can be determined by considering the data transfer time, the storage access latency, the replica requests that waiting in the storage queue and the distance between nodes. Simulation results utilizing the OptorSim show our replication strategy achieve better performance overall than other strategies in terms of job execution time, effective network usage and storage resource usage.Keywords: data grid, data replication, simulation, replica selection, replica placement
Procedia PDF Downloads 2606834 Development of Deep Neural Network-Based Strain Values Prediction Models for Full-Scale Reinforced Concrete Frames Using Highly Flexible Sensing Sheets
Authors: Hui Zhang, Sherif Beskhyroun
Abstract:
Structural Health monitoring systems (SHM) are commonly used to identify and assess structural damage. In terms of damage detection, SHM needs to periodically collect data from sensors placed in the structure as damage-sensitive features. This includes abnormal changes caused by the strain field and abnormal symptoms of the structure, such as damage and deterioration. Currently, deploying sensors on a large scale in a building structure is a challenge. In this study, a highly stretchable strain sensors are used in this study to collect data sets of strain generated on the surface of full-size reinforced concrete (RC) frames under extreme cyclic load application. This sensing sheet can be switched freely between the test bending strain and the axial strain to achieve two different configurations. On this basis, the deep neural network prediction model of the frame beam and frame column is established. The training results show that the method can accurately predict the strain value and has good generalization ability. The two deep neural network prediction models will also be deployed in the SHM system in the future as part of the intelligent strain sensor system.Keywords: strain sensing sheets, deep neural networks, strain measurement, SHM system, RC frames
Procedia PDF Downloads 996833 Challenges and Opportunities in Computing Logistics Cost in E-Commerce Supply Chain
Authors: Pramod Ghadge, Swadesh Srivastava
Abstract:
Revenue generation of a logistics company depends on how the logistics cost of a shipment is calculated. Logistics cost of a shipment is a function of distance & speed of the shipment travel in a particular network, its volumetric size and dead weight. Logistics billing is based mainly on the consumption of the scarce resource (space or weight carrying capacity of a carrier). Shipment’s size or deadweight is a function of product and packaging weight, dimensions and flexibility. Hence, to arrive at a standard methodology to compute accurate cost to bill the customer, the interplay among above mentioned physical attributes along with their measurement plays a key role. This becomes even more complex for an ecommerce company, like Flipkart, which caters to shipments from both warehouse and marketplace in an unorganized non-standard market like India. In this paper, we will explore various methodologies to define a standard way of billing the non-standard shipments across a wide range of size, shape and deadweight. Those will be, usage of historical volumetric/dead weight data to arrive at a factor which can be used to compute the logistics cost of a shipment, also calculating the real/contour volume of a shipment to address the problem of irregular shipment shapes which cannot be solved by conventional bounding box volume measurements. We will also discuss certain key business practices and operational quality considerations needed to bring standardization and drive appropriate ownership in the ecosystem.Keywords: contour volume, logistics, real volume, volumetric weight
Procedia PDF Downloads 2696832 Authentic Connection between the Deity and the Individual Human Being Is Vital for Psychological, Biological, and Social Health
Authors: Sukran Karatas
Abstract:
Authentic energy network interrelations between the Creator and the creations as well as from creations to creations are the most important points for the worlds of physics and metaphysic to unite together and work in harmony, both within human beings, on the other hand, have the ability to choose their own life style voluntarily. However, it includes the automated involuntary spirit, soul and body working systems together with the voluntary actions, which involve personal, cultural and universal, rational or irrational variable values. Therefore, it is necessary for human beings to know the methods of existing authentic energy network connections to be able to communicate correlate and accommodate the physical and metaphysical entities as a proper functioning unity; this is essential for complete human psychological, biological and social well-being. Authentic knowledge is necessary for human beings to verify the position of self within self and with others to regulate conscious and voluntary actions accordingly in order to prevent oppressions and frictions within self and between self and others. Unfortunately, the absence of genuine individual and universal basic knowledge about how to establish an authentic energy network connection within self, with the deity and the environment is the most problematic issue even in the twenty-first century. The second most problematic issue is how to maintain freedom, equality and justice among human beings during these strictly interwoven network connections, which naturally involve physical, metaphysical and behavioral actions of the self and the others. The third and probably the most complicated problem is the scientific identification and the authentication of the deity. This not only provides the whole power and control over the choosers to set their life orders but also to establish perfect physical and metaphysical links as fully coordinated functional energy network. This thus indicates that choosing an authentic deity is the key-point that influences automated, emotional, and behavioral actions altogether, which shapes human perception, personal actions, and life orders. Therefore, we will be considering the existing ‘four types of energy wave end boundary behaviors’, comprising, free end, fixed end boundary behaviors, as well as boundary behaviors from denser medium to less dense medium and from less dense medium to denser medium. Consequently, this article aims to demonstrate that the authentication and the choice of deity has an important effect on individual psychological, biological and social health. It is hoped that it will encourage new researches in the field of authentic energy network connections to establish the best position and the most correct interrelation connections with self and others without violating the authorized orders and the borders of one another to live happier and healthier lives together. In addition, the book ‘Deity and Freedom, Equality, Justice in History, Philosophy, Science’ has more detailed information for those interested in this subject.Keywords: deity, energy network, power, freedom, equality, justice, happiness, sadness, hope, fear, psychology, biology, sociology
Procedia PDF Downloads 3476831 Bearing Capacity Improvement in a Silty Clay Soil with Crushed Polyethylene Terephthalate
Authors: Renzo Palomino, Alessandra Trujillo, Lidia Pacheco
Abstract:
The document presents a study based on the incremental bearing capacity of silty clay soil with the incorporation of crushed PET fibers. For a better understanding of the behavior of soil, it is necessary to know its origin. The analyzed samples came from the subgrade layer of a highway that connects the cities of Muniches and Yurimaguas in Loreto, Peru. The material in this area usually has properties such as low support index, medium to high plasticity, and other characteristics that make it considered a ‘problematic’ soil due to factors such as climate, humidity, and geographical location. In addition, PET fibers are obtained from the decomposition of plastic bottles that are polluting agents with a high production rate in our country; in that sense, their use in a construction process represents a considerable reduction in environmental impact. Moreover, to perform a precise analysis of the behavior of this soil mixed with PET, tests such as the hydrometer test, Proctor and CBR with 15%, 10%, 5%, 4%, 3%, and 1% of PET with respect to the mass of the sample of natural soil were carried out. The results show that when a low percentage of PET is used, the support index increases.Keywords: environmental impact, geotechnics, PET, silty clay soil
Procedia PDF Downloads 2376830 To Ensure Maximum Voter Privacy in E-Voting Using Blockchain, Convolutional Neural Network, and Quantum Key Distribution
Authors: Bhaumik Tyagi, Mandeep Kaur, Kanika Singla
Abstract:
The advancement of blockchain has facilitated scholars to remodel e-voting systems for future generations. Server-side attacks like SQL injection attacks and DOS attacks are the most common attacks nowadays, where malicious codes are injected into the system through user input fields by illicit users, which leads to data leakage in the worst scenarios. Besides, quantum attacks are also there which manipulate the transactional data. In order to deal with all the above-mentioned attacks, integration of blockchain, convolutional neural network (CNN), and Quantum Key Distribution is done in this very research. The utilization of blockchain technology in e-voting applications is not a novel concept. But privacy and security issues are still there in a public and private blockchains. To solve this, the use of a hybrid blockchain is done in this research. This research proposed cryptographic signatures and blockchain algorithms to validate the origin and integrity of the votes. The convolutional neural network (CNN), a normalized version of the multilayer perceptron, is also applied in the system to analyze visual descriptions upon registration in a direction to enhance the privacy of voters and the e-voting system. Quantum Key Distribution is being implemented in order to secure a blockchain-based e-voting system from quantum attacks using quantum algorithms. Implementation of e-voting blockchain D-app and providing a proposed solution for the privacy of voters in e-voting using Blockchain, CNN, and Quantum Key Distribution is done.Keywords: hybrid blockchain, secure e-voting system, convolutional neural networks, quantum key distribution, one-time pad
Procedia PDF Downloads 946829 Financial Intermediation: A Transaction Two-Sided Market Model Approach
Authors: Carlo Gozzelino
Abstract:
Since the early 2000s, the phenomenon of the two-sided markets has been of growing interest in academic literature as such kind of markets differs by having cross-side network effects and same-side network effects characterizing the transactions, which make the analysis different when compared to traditional seller-buyer concept. Due to such externalities, pricing strategies can be based on subsidizing the participation of one side (i.e. considered key for the platform to attract the other side) while recovering the loss on the other side. In recent years, several players of the Italian financial intermediation industry moved from an integrated landscape (i.e. selling their own products) to an open one (i.e. intermediating third party products). According to academic literature such behavior can be interpreted as a merchant move towards a platform, operating in a two-sided market environment. While several application of two-sided market framework are available in academic literature, purpose of this paper is to use a two-sided market concept to suggest a new framework applied to financial intermediation. To this extent, a model is developed to show how competitors behave when vertically integrated and how the peculiarities of a two-sided market act as an incentive to disintegrate. Additionally, we show that when all players act as a platform, the dynamics of a two-sided markets can allow at least a Nash equilibrium to exist, in which platform of different sizes enjoy positive profit. Finally, empirical evidences from Italian market are given to sustain – and to challenge – this interpretation.Keywords: financial intermediation, network externalities, two-sided markets, vertical differentiation
Procedia PDF Downloads 1606828 Consumption and Diffusion Based Model of Tissue Organoid Development
Authors: Elena Petersen, Inna Kornienko, Svetlana Guryeva, Sergey Simakov
Abstract:
In vitro organoid cultivation requires the simultaneous provision of necessary vascularization and nutrients perfusion of cells during organoid development. However, many aspects of this problem are still unsolved. The functionality of vascular network intergrowth is limited during early stages of organoid development since a function of the vascular network initiated on final stages of in vitro organoid cultivation. Therefore, a microchannel network should be created in early stages of organoid cultivation in hydrogel matrix aimed to conduct and maintain minimally required the level of nutrients perfusion for all cells in the expanding organoid. The network configuration should be designed properly in order to exclude hypoxic and necrotic zones in expanding organoid at all stages of its cultivation. In vitro vascularization is currently the main issue within the field of tissue engineering. As perfusion and oxygen transport have direct effects on cell viability and differentiation, researchers are currently limited only to tissues of few millimeters in thickness. These limitations are imposed by mass transfer and are defined by the balance between the metabolic demand of the cellular components in the system and the size of the scaffold. Current approaches include growth factor delivery, channeled scaffolds, perfusion bioreactors, microfluidics, cell co-cultures, cell functionalization, modular assembly, and in vivo systems. These approaches may improve cell viability or generate capillary-like structures within a tissue construct. Thus, there is a fundamental disconnect between defining the metabolic needs of tissue through quantitative measurements of oxygen and nutrient diffusion and the potential ease of integration into host vasculature for future in vivo implantation. A model is proposed for growth prognosis of the organoid perfusion based on joint simulations of general nutrient diffusion, nutrient diffusion to the hydrogel matrix through the contact surfaces and microchannels walls, nutrient consumption by the cells of expanding organoid, including biomatrix contraction during tissue development, which is associated with changed consumption rate of growing organoid cells. The model allows computing effective microchannel network design giving minimally required the level of nutrients concentration in all parts of growing organoid. It can be used for preliminary planning of microchannel network design and simulations of nutrients supply rate depending on the stage of organoid development.Keywords: 3D model, consumption model, diffusion, spheroid, tissue organoid
Procedia PDF Downloads 3086827 Drying Effect on the Proximate Composition and Functional Properties of Cocoyam Flour
Authors: K. Maliki, A. Ajayi, O. M. Makanjuola, O. J. Adebowale
Abstract:
Cocoyam is herbaceous perennial plant which belongs to the family Araceae and genus xanthosoma or cococasia is mostly cultivated as food crop. It is very rich in Vitamin B6, Magnesium and also in dietary fiber. Matured cocoyam is eaten boiled, Fried or roasted in Nigeria. It can also be dried and used to make flour. Food drying is a method of food preservation in which food is dried, thus inhibit the growth of bacteria yeast and mold through the removal of water. Drying effect on the proximate composition and functional properties of cocoyam flour were investigated. Freshly harvested cocoyam cultivars at matured level were washed with portable water, peeled, sliced into 0.3mm thickness blanch in boiling water at 100°C for 15 minutes and dried using sun drying oven and cabinet dryers. The blanched slices were divided into three lots and were subjected to different drying methods. The dried cocoyam slices were milled into flour using Apex mill and packed into Low Density Polyethylene Film (LDPE) 75 Micron 4 thickness and kept for four months under ambient temperature before analysis. The results showed that the moisture content, ash, crude fiber, fat, protein and carbohydrate ranged from 7.35% to 13.89%, 1.45% to 3.3%, 1.2% to 3.41%, 2.1% to 3.1%, 6.30% to 9.1% and 66% to 82% respectively. The functional properties of the cocoyam flour ranged from 1. 65ml/g to 4.24ml/g water absorption capacity, 0.85ml/g to 2.11ml/g oil absorption capacity 0.56ml/g and 0.78ml/g bulk density and 4.91% to 6.80% swelling capacity. The result showed that there was not significant difference (P ≥ 0.5) across the various drying methods used. Cabinet drying method was found to have the best quality characteristic values than the other drying methods. In conclusion, drying of cocoyam could be used for value addition and provide extension to shelf-life.Keywords: cocoyam flour, drying, cabinet dryer, oven dryer
Procedia PDF Downloads 2456826 Effects of Camel Casein Hydrolysate Addition on Rheological Properties of Yoghurt
Authors: A. A. Al-Saleh, E. A. Ismail, A. A. Metwalli
Abstract:
Effects of camel and cow casein hydrolysates by trypsin enzyme on rheological and sensory properties and growth of starter culture of the yoghurts made from cow milk have been investigated. The hydrolysates strongly decreased the fermentation and coagulation time of the yoghurts. The rate of pH decrease was higher with camel casein hydrolysate in comparison with cow casein hydrolysate at all concentrations used (0.5; 1.0 and 1.5%). Viscosities of the yoghurt made with hydrolysates significantly (p<0.05) decreased compared to control samples. The addition of the hydrolysates significantly (p <0.05) increased the hardness and adhesiveness of the yoghurts. No significant differences in water holding capacity of control and treated samples were obsereved at 0.5 and 1.0% casein hydrolysate addition. However, increasing casein hydrolysate addition to 1.5% decreased water holding capacity of yoghurt samples. The sensory evaluation scores of the yoghurts were significantly (p<0.05) improved with the addition of casein hydrolysates.Keywords: yoghurt, camel casein hydrolysates, cow casein hydrolysate, sensory evaluation
Procedia PDF Downloads 4116825 Analysis of Storm Flood in Typical Sewer Networks in High Mountain Watersheds of Colombia Based on SWMM
Authors: J. C. Hoyos, J. Zambrano Nájera
Abstract:
Increasing urbanization has led to changes in the natural dynamics of watersheds, causing problems such as increases in volumes of runoff, peak flow rates, and flow rates so that the risk of storm flooding increases. Sewerage networks designed 30 – 40 years ago don’t account for these increases in flow volumes and velocities. Besides, Andean cities with high slopes worsen the problem because velocities are even higher not allowing sewerage network work and causing cities less resilient to landscape changes and climatic change. In Latin America, especially Colombia, this is a major problem because urban population at late XX century was more than 70% is in urban areas increasing approximately in 790% in 1940-1990 period. Thus, it becomes very important to study how changes in hydrological behavior affect hydraulic capacity of sewerage networks in Andean Urban Watersheds. This research aims to determine the impact of urbanization in high-sloped urban watersheds in its hydrology. To this end it will be used as study area experimental urban watershed named Palogrande-San Luis watershed, located in the city of Manizales, Colombia. Manizales is a city in central western Colombia, located in Colombian Central Mountain Range (part of Los Andes Mountains) with an abrupt topography (average altitude is 2.153 m). The climate in Manizales is quite uniform, but due to its high altitude it presents high precipitations (1.545 mm/year average) with high humidity (83% average). Behavior of the current sewerage network will be reviewed by the hydraulic model SWMM (Storm Water Management Model). Based on SWMM the hydrological response of urban watershed selected will be evaluated under the design storm with different frequencies in the region, such as drainage effect and water-logging, overland flow on roads, etc. Cartographic information was obtained from a Geographic Information System (GIS) thematic maps of the Institute of Environmental Studies of the Universidad Nacional de Colombia and the utility Aguas de Manizales S.A. Rainfall and streamflow data is obtained from 4 rain gages and 1 stream gages. This information will allow determining critical issues on drainage systems design in urban watershed with very high slopes, and which practices will be discarded o recommended.Keywords: land cover changes, storm sewer system, urban hydrology, urban planning
Procedia PDF Downloads 2626824 Evaluation of Natural Waste Materials for Ammonia Removal in Biofilters
Authors: R. F. Vieira, D. Lopes, I. Baptista, S. A. Figueiredo, V. F. Domingues, R. Jorge, C. Delerue-matos, O. M. Freitas
Abstract:
Odours are generated in municipal solid wastes management plants as a result of decomposition of organic matter, especially when anaerobic degradation occurs. Information was collected about the substances and respective concentration in the surrounding atmosphere of some management plants. The main components which are associated with these unpleasant odours were identified: ammonia, hydrogen sulfide and mercaptans. The first is the most common and the one that presents the highest concentrations, reaching values of 700 mg/m3. Biofiltration, which involves simultaneously biodegradation, absorption and adsorption processes, is a sustainable technology for the treatment of these odour emissions when a natural packing material is used. The packing material should ideally be cheap, durable, and allow the maximum microbiological activity and adsorption/absorption. The presence of nutrients and water is required for biodegradation processes. Adsorption and absorption are enhanced by high specific surface area, high porosity and low density. The main purpose of this work is the exploitation of natural waste materials, locally available, as packing media: heather (Erica lusitanica), chestnut bur (from Castanea sativa), peach pits (from Prunus persica) and eucalyptus bark (from Eucalyptus globulus). Preliminary batch tests of ammonia removal were performed in order to select the most interesting materials for biofiltration, which were then characterized. The following physical and chemical parameters were evaluated: density, moisture, pH, buffer and water retention capacity. The determination of equilibrium isotherms and the adjustment to Langmuir and Freundlich models was also performed. Both models can fit the experimental results. Based both in the material performance as adsorbent and in its physical and chemical characteristics, eucalyptus bark was considered the best material. It presents a maximum adsorption capacity of 0.78±0.45 mol/kg for ammonia. The results from its characterization are: 121 kg/m3 density, 9.8% moisture, pH equal to 5.7, buffer capacity of 0.370 mmol H+/kg of dry matter and water retention capacity of 1.4 g H2O/g of dry matter. The application of natural materials locally available, with little processing, in biofiltration is an economic and sustainable alternative that should be explored.Keywords: ammonia removal, biofiltration, natural materials, odour control
Procedia PDF Downloads 3696823 Studies on the Proximate Composition and Functional Properties of Extracted Cocoyam Starch Flour
Authors: Adebola Ajayi, Francis B. Aiyeleye, Olakunke M. Makanjuola, Olalekan J. Adebowale
Abstract:
Cocoyam, a generic term for both xanthoma and colocasia, is a traditional staple root crop in many developing countries in Africa, Asia and the Pacific. It is mostly cultivated as food crop which is very rich in vitamin B6, magnesium and also in dietary fiber. The cocoyam starch is easily digested and often used for baby food. Drying food is a method of food preservation that removes enough moisture from the food so bacteria, yeast and molds cannot grow. It is a one of the oldest methods of preserving food. The effect of drying methods on the proximate composition and functional properties of extracted cocoyam starch flour were studied. Freshly harvested cocoyam cultivars at matured level were washed with portable water, peeled, washed and grated. The starch in the grated cocoyam was extracted, dried using sun drying, oven and cabinet dryers. The extracted starch flour was milled into flour using Apex mill and packed and sealed in low-density polyethylene film (LDPE) 75 micron thickness with Nylon sealing machine QN5-3200HI and kept for three months under ambient temperature before analysis. The result showed that the moisture content, ash, crude fiber, fat, protein and carbohydrate ranged from 6.28% to 12.8% 2.32% to 3.2%, 0.89% to 2.24%%, 1.89% to 2.91%, 7.30% to 10.2% and 69% to 83% respectively. The functional properties of the cocoyam starch flour ranged from 2.65ml/g to 4.84ml/g water absorption capacity, 1.95ml/g to 3.12ml/g oil absorption capacity, 0.66ml/g to 7.82ml/g bulk density and 3.82% to 5.30ml/g swelling capacity. Significant difference (P≥0.5) was not obtained across the various drying methods used. The drying methods provide extension to the shelf-life of the extracted cocoyam starch flour.Keywords: cocoyam, extraction, oven dryer, cabinet dryer
Procedia PDF Downloads 2956822 Structural Behavior of Precast Foamed Concrete Sandwich Panel Subjected to Vertical In-Plane Shear Loading
Authors: Y. H. Mugahed Amran, Raizal S. M. Rashid, Farzad Hejazi, Nor Azizi Safiee, A. A. Abang Ali
Abstract:
Experimental and analytical studies were accomplished to examine the structural behavior of precast foamed concrete sandwich panel (PFCSP) under vertical in-plane shear load. PFCSP full-scale specimens with total number of six were developed with varying heights to study an important parameter slenderness ratio (H/t). The production technique of PFCSP and the procedure of test setup were described. The results obtained from the experimental tests were analysed in the context of in-plane shear strength capacity, load-deflection profile, load-strain relationship, slenderness ratio, shear cracking patterns and mode of failure. Analytical study of finite element analysis was implemented and the theoretical calculations of the ultimate in-plane shear strengths using the adopted ACI318 equation for reinforced concrete wall were determined aimed at predicting the in-plane shear strength of PFCSP. The decrease in slenderness ratio from 24 to 14 showed an increase of 26.51% and 21.91% on the ultimate in-plane shear strength capacity as obtained experimentally and in FEA models, respectively. The experimental test results, FEA models data and theoretical calculation values were compared and provided a significant agreement with high degree of accuracy. Therefore, on the basis of the results obtained, PFCSP wall has the potential use as an alternative to the conventional load-bearing wall system.Keywords: deflection curves, foamed concrete (FC), load-strain relationships, precast foamed concrete sandwich panel (PFCSP), slenderness ratio, vertical in-plane shear strength capacity
Procedia PDF Downloads 2206821 Algorithm and Software Based on Multilayer Perceptron Neural Networks for Estimating Channel Use in the Spectral Decision Stage in Cognitive Radio Networks
Authors: Danilo López, Johana Hernández, Edwin Rivas
Abstract:
The use of the Multilayer Perceptron Neural Networks (MLPNN) technique is presented to estimate the future state of use of a licensed channel by primary users (PUs); this will be useful at the spectral decision stage in cognitive radio networks (CRN) to determine approximately in which time instants of future may secondary users (SUs) opportunistically use the spectral bandwidth to send data through the primary wireless network. To validate the results, sequences of occupancy data of channel were generated by simulation. The results show that the prediction percentage is greater than 60% in some of the tests carried out.Keywords: cognitive radio, neural network, prediction, primary user
Procedia PDF Downloads 3716820 Game of Funds: Efficiency and Policy Implications of the United Kingdom Research Excellence Framework
Authors: Boon Lee
Abstract:
Research publication is an essential output of universities because it not only promotes university recognition, it also receives government funding. The history of university research culture has been one of ‘publish or perish’ and universities have consistently encouraged their academics and researchers to produce research articles in reputable journals in order to maintain a level of competitiveness. In turn, the United Kingdom (UK) government funding is determined by the number and quality of research publications. This paper aims to investigate on whether more government funding leads to more quality papers. To that end, the paper employs a Network DEA model to evaluate the UK higher education performance over a period. Sources of efficiency are also determined via second stage regression analysis.Keywords: efficiency, higher education, network data envelopment analysis, universities
Procedia PDF Downloads 1146819 Numerical Simulation of Kangimi Reservoir Sedimentation, Kaduna State, Nigeria
Authors: Abdurrasheed Sa'id, Abubakar Isma'il, Waheed Alayande
Abstract:
This study focused on carrying out numerical simulations of Kangimi reservoir sedimentation by reviewing different numerical sediment transport models, and GSTARS3 was selected. The model was developed using the 1977 data. It was calibrated by simulating the 2012 profile and sediment deposition and compared with 2012 hydrographic survey results of NWRI. The model was validated by simulating the 2016 deposition and compared the results with NWRI estimates. Also, the performance of the proposed model was tested using statistical parameters such as MSE (Mean Square Error), MAPE (Mean Average Percentage Error) and R2 (Coefficient of determination) with values of 1.32m, 0.17% and 0.914 respectively which shows strong agreement. After the calibration, validation and performance testing the model was used to simulate the 2032 and 2062 profiles and deposition. The results showed that by 2032 the reservoir will be silted by 25.34MCM or 43.3% of the design capacity and 60.7% of the capacity by the year 2062. A number of sedimentation mitigation measures were recommended.Keywords: NWRI- national water resources institute, sedimentation, GSTARS3, model
Procedia PDF Downloads 220