Search results for: high power application
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30188

Search results for: high power application

28418 Power Iteration Clustering Based on Deflation Technique on Large Scale Graphs

Authors: Taysir Soliman

Abstract:

One of the current popular clustering techniques is Spectral Clustering (SC) because of its advantages over conventional approaches such as hierarchical clustering, k-means, etc. and other techniques as well. However, one of the disadvantages of SC is the time consuming process because it requires computing the eigenvectors. In the past to overcome this disadvantage, a number of attempts have been proposed such as the Power Iteration Clustering (PIC) technique, which is one of versions from SC; some of PIC advantages are: 1) its scalability and efficiency, 2) finding one pseudo-eigenvectors instead of computing eigenvectors, and 3) linear combination of the eigenvectors in linear time. However, its worst disadvantage is an inter-class collision problem because it used only one pseudo-eigenvectors which is not enough. Previous researchers developed Deflation-based Power Iteration Clustering (DPIC) to overcome problems of PIC technique on inter-class collision with the same efficiency of PIC. In this paper, we developed Parallel DPIC (PDPIC) to improve the time and memory complexity which is run on apache spark framework using sparse matrix. To test the performance of PDPIC, we compared it to SC, ESCG, ESCALG algorithms on four small graph benchmark datasets and nine large graph benchmark datasets, where PDPIC proved higher accuracy and better time consuming than other compared algorithms.

Keywords: spectral clustering, power iteration clustering, deflation-based power iteration clustering, Apache spark, large graph

Procedia PDF Downloads 189
28417 Parametric Investigation of Aircraft Door’s Emergency Power Assist System (EPAS)

Authors: Marshal D. Kafle, Jun H. Kim, Hyun W. Been, Kyoung M. Min

Abstract:

Fluid viscous damping systems are well suited for many air vehicles subjected to shock and vibration. These damping system work with the principle of viscous fluid throttling through the orifice to create huge pressure difference between compression and rebound chamber and obtain the required damping force. One application of such systems is its use in aircraft door system to counteract the door’s velocity and safely stop it. In exigency situations like crash or emergency landing where the door doesn’t open easily, possibly due to unusually tilting of fuselage or some obstacles or intrusion of debris obstruction to move the parts of the door, such system can be combined with other systems to provide needed force to forcefully open the door and also securely stop it simultaneously within the required time i.e.less than 8seconds. In the present study, a hydraulic system called snubber along with other systems like actuator, gas bottle assembly which together known as emergency power assist system (EPAS) is designed, built and experimentally studied to check the magnitude of angular velocity, damping force and time required to effectively open the door. Whenever needed, the gas pressure from the bottle is released to actuate the actuator and at the same time pull the snubber’s piston to operate the emergency opening of the door. Such EPAS installed in the suspension arm of the aircraft door is studied explicitly changing parameters like orifice size, oil level, oil viscosity and bypass valve gap and its spring of the snubber at varying temperature to generate the optimum design case. Comparative analysis of the EPAS at several cases is done and conclusions are made. It is found that during emergency condition, the systemopening time and angular velocity, when snubber with 0.3mm piston and shaft orifice and bypass valve gap of 0.5 mm with its original spring is used,shows significant improvement over the old ones.

Keywords: aircraft door damper, bypass valve, emergency power assist system, hydraulic damper, oil viscosity

Procedia PDF Downloads 423
28416 China's Middle East Policy and the Competition with the United States

Authors: Shabnam Dadparvar, Laijin Shen

Abstract:

This paper focuses on China’s policy in the Middle East and the rivalry with the U.S. The question is that what are the main factors on China’s Middle East policy and its competition with the U.S? The hypothesis regards to three effective factors: 'China’s energy dependency' on the Middle East, 'economy' and support for 'stability' in the Middle East. What is important in China’s competition with the U.S regarding to its Middle East policy is the substantial difference in ways of treating the countries of the region; China is committed to Westphalia model based on non-interference in internal affairs of the countries and respect the sovereignty of the governments. However, after 9/11, the U.S is seeking a balance between stability and change through intervention in the international affairs and in some cases is looking for a regime change. From the other hand, China, due to its dependency on the region’s energy welcomes America’s military presence in the region for providing stability. The authors by using a descriptive analytical method try to explain the situation of rivalry between China and the United States in Middle East. China is an 'emerging power' with high economic growth and in demand of more energy supply. The problem is that a rising power in the region is often a source of concern for hegemony.

Keywords: China's foreign policy, energy, hegemony, the Middle East

Procedia PDF Downloads 352
28415 Perovskite Solar Cells Penetration on Electric Grids Based on the Power Hardware in the Loop Methodology

Authors: Alaa A. Zaky, Bandar Alfaifi, Saleh Alyahya, Alkistis Kontou, Panos Kotsampopoulos

Abstract:

In this work, we present for the first time the grid-integration of 3rd generation perovskite solar cells (PSCs) based on nanotechnology in fabrication. The effect of this penetration is analyzed in normal, fault and islanding cases of operation under different irradiation conditions using the power hardware in the loop (PHIL) methodology. The PHL method allows the PSCs connection to the electric grid which is simulated in the real-time digital simulator (RTDS), for laboratory validation of the PSCs behavior under conditions very close to real.

Keywords: perovskite solar cells, power hardware in the loop, real-time digital simulator, smart grid

Procedia PDF Downloads 26
28414 Sulfamethoxazole Degradation by Conventional Fenton and Microwave-Assisted Fenton Reaction

Authors: Derradji Chebli, Abdallah Bouguettoucha, Zoubir Manaa, Amrane Abdeltif

Abstract:

Pharmaceutical products, such as sulfamethoxazole (SMX) are rejected in the environment at trace level by human and animals (ng/L to mg/L), in their original form or as byproducts. Antibiotics are toxic contaminants for the aquatic environment, owing to their adverse effects on the aquatic life and humans. Even at low concentrations, they can negatively impact biological water treatment leading to the proliferation of antibiotics-resistant pathogens. It is therefore of major importance to develop efficient methods to limit their presence in the aquatic environment. In this aim, advanced oxidation processes (AOP) appear relevant compared to other methods, since they are based on the production of highly reactive free radicals, and especially ●OH. The objective of this work was to evaluate the degradation of SMX by microwave-assisted Fenton reaction (MW/Fe/H2O2). Hydrogen peroxide and ferrous ions concentrations, as well as the microwave power were optimized. The results showed that the SMX degradation by MW/Fe/H2O2 followed a pseudo-first order kinetic. The treatment of 20 mg/L initial SMX by the Fenton reaction in the presence of microwave showed the positive impact of this latter owing to the higher degradation yields observed in a reduced reaction time if compared to the conventional Fenton reaction, less than 5 min for a total degradation. In addition, increasing microwave power increased the degradation kinetics. Irrespective of the application of microwave, the optimal pH for the Fenton reaction remained 3. Examination of the impact of the ionic strength showed that carbonate and sulfate anions increased the rate of SMX degradation.

Keywords: antibiotic, degradation, elimination, fenton, microwave, polluant

Procedia PDF Downloads 398
28413 Reducing the Imbalance Penalty Through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey

Authors: Hayriye Anıl, Görkem Kar

Abstract:

In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations since geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning, and, time series methods, the total generation of the power plants belonging to Zorlu Natural Electricity Generation, which has a high installed capacity in terms of geothermal, was estimated for the first one and two weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.

Keywords: machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting

Procedia PDF Downloads 110
28412 Design of Cylindrical Crawler Robot Inspired by Amoeba Locomotion

Authors: Jun-ya Nagase

Abstract:

Recently, the need of colonoscopy is increasing because of the rise of colonic disorder including cancer of the colon. However, current colonoscopy depends on doctor's skill strongly. Therefore, a large intestine endoscope that does not depend on the techniques of a doctor with high safety is required. In this research, we aim at development a novel large intestine endoscope that can realize safe insertion without specific techniques. A wheel movement type robot, a snake-like robot and an earthworm-like robot are all described in the relevant literature as endoscope robots that are currently studied. Among them, the tracked crawler robot can travel by traversing uneven ground flexibly with a crawler belt attached firmly to the ground surface. Although conventional crawler robots have high efficiency and/or high ground-covering ability, they require a comparatively large space to move. In this study, a small cylindrical crawler robot inspired by amoeba locomotion, which does not need large space to move and which has high ground-covering ability, is proposed. In addition, we developed a prototype of the large intestine endoscope using the proposed crawler mechanism. Experiments have demonstrated smooth operation and a forward movement of the robot by application of voltage to the motor. This paper reports the structure, drive mechanism, prototype, and experimental evaluation.

Keywords: tracked-crawler, endoscopic robot, narrow path, amoeba locomotion.

Procedia PDF Downloads 384
28411 Laser-Dicing Modeling: Implementation of a High Accuracy Tool for Laser-Grooving and Cutting Application

Authors: Jeff Moussodji, Dominique Drouin

Abstract:

The highly complex technology requirements of today’s integrated circuits (ICs), lead to the increased use of several materials types such as metal structures, brittle and porous low-k materials which are used in both front end of line (FEOL) and back end of line (BEOL) process for wafer manufacturing. In order to singulate chip from wafer, a critical laser-grooving process, prior to blade dicing, is used to remove these layers of materials out of the dicing street. The combination of laser-grooving and blade dicing allows to reduce the potential risk of induced mechanical defects such micro-cracks, chipping, on the wafer top surface where circuitry is located. It seems, therefore, essential to have a fundamental understanding of the physics involving laser-dicing in order to maximize control of these critical process and reduce their undesirable effects on process efficiency, quality, and reliability. In this paper, the study was based on the convergence of two approaches, numerical and experimental studies which allowed us to investigate the interaction of a nanosecond pulsed laser and BEOL wafer materials. To evaluate this interaction, several laser grooved samples were compared with finite element modeling, in which three different aspects; phase change, thermo-mechanical and optic sensitive parameters were considered. The mathematical model makes it possible to highlight a groove profile (depth, width, etc.) of a single pulse or multi-pulses on BEOL wafer material. Moreover, the heat affected zone, and thermo-mechanical stress can be also predicted as a function of laser operating parameters (power, frequency, spot size, defocus, speed, etc.). After modeling validation and calibration, a satisfying correlation between experiment and modeling, results have been observed in terms of groove depth, width and heat affected zone. The study proposed in this work is a first step toward implementing a quick assessment tool for design and debug of multiple laser grooving conditions with limited experiments on hardware in industrial application. More correlations and validation tests are in progress and will be included in the full paper.

Keywords: laser-dicing, nano-second pulsed laser, wafer multi-stack, multiphysics modeling

Procedia PDF Downloads 209
28410 Variable Renewable Energy Droughts in the Power Sector – A Model-based Analysis and Implications in the European Context

Authors: Martin Kittel, Alexander Roth

Abstract:

The continuous integration of variable renewable energy sources (VRE) in the power sector is required for decarbonizing the European economy. Power sectors become increasingly exposed to weather variability, as the availability of VRE, i.e., mainly wind and solar photovoltaic, is not persistent. Extreme events, e.g., long-lasting periods of scarce VRE availability (‘VRE droughts’), challenge the reliability of supply. Properly accounting for the severity of VRE droughts is crucial for designing a resilient renewable European power sector. Energy system modeling is used to identify such a design. Our analysis reveals the sensitivity of the optimal design of the European power sector towards VRE droughts. We analyze how VRE droughts impact optimal power sector investments, especially in generation and flexibility capacity. We draw upon work that systematically identifies VRE drought patterns in Europe in terms of frequency, duration, and seasonality, as well as the cross-regional and cross-technological correlation of most extreme drought periods. Based on their analysis, the authors provide a selection of relevant historical weather years representing different grades of VRE drought severity. These weather years will serve as input for the capacity expansion model for the European power sector used in this analysis (DIETER). We additionally conduct robustness checks varying policy-relevant assumptions on capacity expansion limits, interconnections, and level of sector coupling. Preliminary results illustrate how an imprudent selection of weather years may cause underestimating the severity of VRE droughts, flawing modeling insights concerning the need for flexibility. Sub-optimal European power sector designs vulnerable to extreme weather can result. Using relevant weather years that appropriately represent extreme weather events, our analysis identifies a resilient design of the European power sector. Although the scope of this work is limited to the European power sector, we are confident that our insights apply to other regions of the world with similar weather patterns. Many energy system studies still rely on one or a limited number of sometimes arbitrarily chosen weather years. We argue that the deliberate selection of relevant weather years is imperative for robust modeling results.

Keywords: energy systems, numerical optimization, variable renewable energy sources, energy drought, flexibility

Procedia PDF Downloads 72
28409 Optimization Method of Dispersed Generation in Electrical Distribution Systems

Authors: Mahmoud Samkan

Abstract:

Dispersed Generation (DG) is a promising solution to many power system problems such as voltage regulation and power loss. This paper proposes a heuristic two-step method to optimize the location and size of DG for reducing active power losses and, therefore, improve the voltage profile in radial distribution networks. In addition to a DG placed at the system load gravity center, this method consists in assigning a DG to each lateral of the network. After having determined the central DG placement, the location and size of each lateral DG are predetermined in the first step. The results are then refined in the second step. This method is tested for 33-bus system for 100% DG penetration. The results obtained are compared with those of other methods found in the literature.

Keywords: optimal location, optimal size, dispersed generation (DG), radial distribution networks, reducing losses

Procedia PDF Downloads 443
28408 E-Commerce Implementation to Support Customize Clothes for Obese People

Authors: Hamza Al-Hazmi, Tabrej Khan

Abstract:

Obesity is today a global phenomenon that affects all countries, all types of societies regardless of age, sex, and income. The average value of the relative body mass index (BMI) has increased, which indicates an increasing obesity problem in the population. Nowadays obesity is a global problem, and mass production of clothes is standard size. People have a problem to find best-fitted clothes. The goal of the project is to develop an E-Commerce web portal as a new, innovative and customize clothing production system for obese people. This research has a long-term objective and short-term objective. The long-term objectives are (1) utilize online Web portal to improve tailors’ income, and (2) provide a free online platform to the tailors and customers in order to stitch clothes. Then, the short-term objective are (1) identify e-commerce’s requirements, (2) analyze and design the e-commerce application, and (3) build and implement the e-commerce application to Customized Clothes for Overweight people. This application can hopefully improve the tailors’ income and provide an easy way for customers to choose a fabric, apply style and provide measurement. This e-commerce application is not limited to obese or overweight people but also for other people who want to stitch cloth from tailors. MySQL and PHP we are going to use for developing the application.

Keywords: e-commerce, obesity, PHP, customize clothes

Procedia PDF Downloads 344
28407 A Study of Behavioral Phenomena Using an Artificial Neural Network

Authors: Yudhajit Datta

Abstract:

Will is a phenomenon that has puzzled humanity for a long time. It is a belief that Will Power of an individual affects the success achieved by an individual in life. It is thought that a person endowed with great will power can overcome even the most crippling setbacks of life while a person with a weak will cannot make the most of life even the greatest assets. Behavioral aspects of the human experience such as will are rarely subjected to quantitative study owing to the numerous uncontrollable parameters involved. This work is an attempt to subject the phenomena of will to the test of an artificial neural network. The claim being tested is that will power of an individual largely determines success achieved in life. In the study, an attempt is made to incorporate the behavioral phenomenon of will into a computational model using data pertaining to the success of individuals obtained from an experiment. A neural network is to be trained using data based upon part of the model, and subsequently used to make predictions regarding will corresponding to data points of success. If the prediction is in agreement with the model values, the model is to be retained as a candidate. Ultimately, the best-fit model from among the many different candidates is to be selected, and used for studying the correlation between success and will.

Keywords: will power, will, success, apathy factor, random factor, characteristic function, life story

Procedia PDF Downloads 379
28406 Thermodynamic Analysis of Zeotropic Mixture Used in Low Temperature Solar Rankine Cycle with Ejector for Power Generation

Authors: Basma Hamdi, Lakdar Kairouani, Ezzedine Nahdi

Abstract:

The objective of this work is to present a thermodynamic analysis of low temperature solar Rankine cycle with ejector for power generation using zeotropic mixtures. Based on theoretical calculation, effects of zeotropic mixtures compositions on the performance of solar Rankine cycle with ejector are discussed and compared with corresponding pure fluids. Variations of net power output, thermal efficiency were calculating with changing evaporation temperature. The ejector coefficient had analyzed as independent variable. The result show that (R245fa/R152a) has a higher thermal efficiency than using pure fluids.

Keywords: zeotropic mixture, thermodynamic analysis, ejector, low-temperature solar rankine cycle

Procedia PDF Downloads 281
28405 Light Weight Fly Ash Based Composite Material for Thermal Insulation Applications

Authors: Bharath Kenchappa, Kunigal Shivakumar

Abstract:

Lightweight, low thermal conductivity and high temperature resistant materials or the system with moderate mechanical properties and capable of taking high heating rates are needed in both commercial and military applications. A single material with these attributes is very difficult to find and one needs to come with innovative ideas to make such material system using what is available. To bring down the cost of the system, one has to be conscious about the cost of basic materials. Such a material system can be called as the thermal barrier system. This paper focuses on developing, testing and characterization of material system for thermal barrier applications. The material developed is porous, low density, low thermal conductivity of 0.1062 W/m C and glass transition temperature about 310 C. Also, the thermal properties of the developed material was measured in both longitudinal and thickness direction to highlight the fact that the material shows isotropic behavior. The material is called modified Eco-Core which uses only less than 9% weight of high-char resin in the composite. The filler (reinforcing material) is a component of fly ash called Cenosphere, they are hollow micro-bubbles made of ceramic materials. Special mixing-technique is used to surface coat the fillers with a thin layer of resin to develop a point-to-point contact of particles. One could use commercial ceramic micro-bubbles instead of Cenospheres, but it is expensive. The bulk density of Cenospheres is about 0.35 g/cc and we could accomplish the composite density of about 0.4 g/cc. One percent filler weight of 3mm length standard drywall grade fibers was used to bring the added toughness. Both thermal and mechanical characterization was performed and properties are documented. For higher temperature applications (up to 1,000 C), a hybrid system was developed using an aerogel mat. Properties of combined material was characterized and documented. Thermal tests were conducted on both the bare modified Eco-Core and hybrid materials to assess the suitability of the material to a thermal barrier application. The hybrid material system was found to meet the requirement of the application.

Keywords: aerogel, fly ash, porous material, thermal barrier

Procedia PDF Downloads 111
28404 Study of the Anaerobic Degradation Potential of High Strength Molasses Wastewater

Authors: M. Mischopoulou, P. Naidis, S. Kalamaras, T. Kotsopoulos, P. Samaras

Abstract:

The treatment of high strength wastewater by an Upflow Anaerobic Sludge Blanket (UASB) reactor has several benefits, such as high organic removal efficiency, short hydraulic retention time along with low operating costs. In addition, high volumes of biogas are released in these reactors, which can be utilized in several industrial facilities for energy production. This study aims at the examination of the application potential of anaerobic treatment of wastewater, with high molasses content derived from yeast manufacturing, by a lab-scale UASB reactor. The molasses wastewater and the sludge used in the experiments were collected from the wastewater treatment plant of a baker’s yeast manufacturing company. The experimental set-up consisted of a 15 L thermostated UASB reactor at 37 ◦C. Before the reactor start-up, the reactor was filled with sludge and molasses wastewater at a ratio 1:1 v/v. Influent was fed to the reactor at a flowrate of 12 L/d, corresponding to a hydraulic residence time of about 30 h. Effluents were collected from the system outlet and were analyzed for the determination of the following parameters: COD, pH, total solids, volatile solids, ammonium, phosphates and total nitrogen according to the standard methods of analysis. In addition, volatile fatty acid (VFA) composition of the effluent was determined by a gas chromatograph equipped with a flame ionization detector (FID), as an indicator to evaluate the process efficiency. The volume of biogas generated in the reactor was daily measured by the water displacement method, while gas composition was analyzed by a gas chromatograph equipped with a thermal conductivity detector (TCD). The effluent quality was greatly enhanced due to the use of the UASB reactor and high rate of biogas production was observed. The anaerobic treatment of the molasses wastewater by the UASB reactor improved the biodegradation potential of the influent, resulting at high methane yields and an effluent with better quality than the raw wastewater.

Keywords: anaerobic digestion, biogas production, molasses wastewater, UASB reactor

Procedia PDF Downloads 271
28403 Response of Onion to FTM and Inorganic Fertilizers Application on Growth, Yield and Nutrient Uptake in Lateritic Soil of Konkan

Authors: Rupali Thorat, S. B. Dodake, V. N. Palsande, S. D. Patil

Abstract:

A field experiment was conducted to study the “Response of onion to FYM and inorganic fertilizers application on growth, yield and nutrient uptake in lateritic soil of Konkan” at the farm of Pangari block of Irrigation of Scheme, Central Experimentation Station, Wakawali during Rabi 2009-10. There were 12 treatment combinations, comprising of 3 levels of NPK fertilizers (C1 ,C2-125 kg N, 62.5 kg P205 and 62.5 kg K20 ha-1 and C3-150 kg N, 75 kg P205 and 75 kg K20 ha-1) and 4 levels of FYM (F1-10 t FYM ha-1, F2 - 15 t FYM ha-1, F3-20 t FYM ha-1, F4-25 t FYM ha-1) replicated thrice using Factorial Randomized Block Design. The observations on plant height, number of leaves, girth of plant, polar and equatorial diameter of bulb as well as dry matter yield, onion bulb yield recorded during the course of field study were subjected to statistical analysis. Similarly nutrient content and uptake, quality parameters of bulb and soil properties were also determined and their data were also analyzed statistically. It is revealed from the study that the growth attributes, dry matter yield, onion bulb yield, nutrient content, nutrient uptake, quality parameters were improved significantly due to application of NPK @ 150:75:75 kg ha-1 along with FYM @ 20 t ha-1(C3F3). Application of NPK @ 150:75:75 kg ha-1 along with FYM @ 20 t ha-1 (C3F3) registered highest onion bulb yield (t ha-1). The quality of onion as well as availability of N, P, K, Fe, Mn, Zn and Cu in the soil was improved due to application of NPK @ 150:75:75 kg ha-1 and FYM @ 20 t ha-1.

Keywords: onion, FYM, yield, nutrient uptake and fertilizer

Procedia PDF Downloads 486
28402 Students' Perception of Virtual Learning Environment (VLE) Skills in Setting up the Simulator Welding Technology

Authors: Mohd Afif Md Nasir, Faizal Amin Nur Yunus, Jamaluddin Hashim, Abd Samad Hassan Basari, A. Halim Sahelan

Abstract:

The aim of this study is to identify the suitability of Virtual Learning Environment (VLE) in welding simulator application towards Computer-Based Training (CBT) in developing skills upon new students at the Advanced Technology Training Center (ADTEC), Batu Pahat, Johor, Malaysia and GIATMARA, Batu Pahat, Johor, Malaysia. The purpose of the study is to create a computer-based skills development approach in welding technology among new students in ADTEC and GIATMARA, as well as cultivating the elements of general skills among them. This study is also important in elevating the number of individual knowledge workers (K-workers) working in manufacturing industry in order to achieve a national vision which is to be an industrial nation in the year of 2020. The design of the study is a survey type of research which uses questionnaires as the instruments and 136 students from ADTEC and GIATMARA were interviewed. Descriptive analysis is used to identify the frequency and mean values. The findings of the study shows that the welding technology skills have developed in the students as a result of the application of VLE simulator at a high level and the respondents agreed that the skills could be embedded through the application of the VLE simulator. In summary, the VLE simulator is suitable in welding skills development training in terms of exposing new students with the relevant characteristics of welding skills and at the same time spurring the students’ interest towards learning more about the skills.

Keywords: computer-based training (CBT), knowledge workers (K-workers), virtual learning environment, welding simulator, welding technology

Procedia PDF Downloads 348
28401 Feasibility of Small Hydropower Plants Odisha

Authors: Sanoj Sahu, Ramakar Jha

Abstract:

Odisha (India) is in need of reliable, cost-effective power generation. A prolonged electricity crisis and increasing power demand have left over thousands of citizens without access to electricity, and much of the population suffers from sporadic outages. The purpose of this project is to build a methodology to evaluate small hydropower potential, which can be used to alleviate the Odisha’s energy problem among rural communities. This project has three major tasks: the design of a simple SHEP for a single location along a river in the Odisha; the development of water flow prediction equations through a linear regression analysis; and the design of an ArcGIS toolset to estimate the flow duration curves (FDCs) at locations where data do not exist. An explanation of the inputs to the tool, as well has how it produces a suitable output for SHEP evaluation will be presented. The paper also gives an explanation of hydroelectric power generation in the Odisha, SHEPs, and the technical and practical aspects of hydroelectric power. Till now, based on topographical and rainfall analysis we have located hundreds of sites. Further work on more number of site location and accuracy of location is to be done.

Keywords: small hydropower, ArcGIS, rainfall analysis, Odisha’s energy problem

Procedia PDF Downloads 448
28400 Performance of the Photovoltaic Module under Different Shading Patterns

Authors: E. T. El Shenawy, O. N. A. Esmail, Adel A. Elbaset, Hesham F. A. Hamed

Abstract:

Generation of the electrical energy based on photovoltaic (PV) technology has been increased over the world due to either the continuous reduction in the traditional energy sources in addition to the pollution problems related to their usage, or the clean nature and safe usage of the PV technology. Also, PV systems can generate clean electricity in the site of use without any transmission, which can be considered cost effective than other generation systems. The performance of the PV system is highly affected by the amount of solar radiation incident on it. Completely or partially shaded PV systems can affect its output. The PV system can be shaded by trees, buildings, dust, incorrect system configuration, or other obstacles. The present paper studies the effect of the partial shading on the performance of a thin film PV module under climatic conditions of Cairo, Egypt. This effect was measured and evaluated according to practical measurement of the characteristic curves such as current-voltage and power-voltage for two identical PV modules (with and without shading) placed at the same time on one mechanical structure for comparison. The measurements have been carried out for the following shading patterns; half cell (bottom, middle, and top of the PV module); complete cell; and two adjacent cells. The results showed that partially shading the PV module changes the shapes of the I-V and P-V curves and produces more than one maximum power point, that can disturb the traditional maximum power point trackers. Also, the output power from the module decreased according to the incomplete solar radiation reaching the PV module due to shadow patterns. The power loss due shading was 7%, 22%, and 41% for shading of half-cell, one cell, and two adjacent cells of the PV module, respectively.

Keywords: I-V measurements, PV module characteristics, PV module power loss, PV module shading

Procedia PDF Downloads 137
28399 Optimization and Energy Management of Hybrid Standalone Energy System

Authors: T. M. Tawfik, M. A. Badr, E. Y. El-Kady, O. E. Abdellatif

Abstract:

Electric power shortage is a serious problem in remote rural communities in Egypt. Over the past few years, electrification of remote communities including efficient on-site energy resources utilization has achieved high progress. Remote communities usually fed from diesel generator (DG) networks because they need reliable energy and cheap fresh water. The main objective of this paper is to design an optimal economic power supply from hybrid standalone energy system (HSES) as alternative energy source. It covers energy requirements for reverse osmosis desalination unit (DU) located in National Research Centre farm in Noubarya, Egypt. The proposed system consists of PV panels, Wind Turbines (WT), Batteries, and DG as a backup for supplying DU load of 105.6 KWh/day rated power with 6.6 kW peak load operating 16 hours a day. Optimization of HSES objective is selecting the suitable size of each of the system components and control strategy that provide reliable, efficient, and cost-effective system using net present cost (NPC) as a criterion. The harmonization of different energy sources, energy storage, and load requirements are a difficult and challenging task. Thus, the performance of various available configurations is investigated economically and technically using iHOGA software that is based on genetic algorithm (GA). The achieved optimum configuration is further modified through optimizing the energy extracted from renewable sources. Effective minimization of energy charging the battery ensures that most of the generated energy directly supplies the demand, increasing the utilization of the generated energy.

Keywords: energy management, hybrid system, renewable energy, remote area, optimization

Procedia PDF Downloads 199
28398 Computational Study of Passive Scalar Diffusion of a Counterflowing round Jet

Authors: Amani Amamou, Sabra Habli, Nejla Mahjoub Saïd, Georges Le Palec

Abstract:

Round jets have been widely studied due to their important application in industry. Many configurations of round jet were encountered in literature as free jet, co-flow jet, couterflowing jet and cross flow jet. In this paper, we are concerned with turbulent round jet in uniform counterflow stream which is known to enhance mixing and dispersion efficiency owing to flow reversal. This type of flow configuration is a typical application in environmental engineering such as the disposal of wastewater into seas or rivers. A computational study of a turbulent circular jet discharging into a uniform counterflow is conducted in order to investigate the characteristics of the diffusion field of the jet effluent. The investigation is carried out for three different cases of jet-to-current velocity ratios; low, medium and high velocity ratios. The Reynolds Stress Model (RSM) is used in the comparison with available experimental measurements. The decay of the center line velocity and the dynamic proprieties of the flow together with the centerline dilution of the passive scalar and the other characteristics of the concentration field are computationally analyzed in this paper.

Keywords: Counterflow stream, jet, velocity, concentration

Procedia PDF Downloads 384
28397 The Application of Narrative Theory in Urban Spaces in China: A Systematic Review Based on PRISMA

Authors: Yuhan Liu, Zhongde Wang

Abstract:

This paper mainly analyzes the research and application of narrative theory in the field of urban space. This study used the PRISMA systematic review method, systematically studied 3098 Chinese literature through the search and screening of relevant domestic key literature databases, and reviewed the research status of narrative theory in urban space from three aspects: "theoretical perspective", "research object" and "research application". Finally, this paper points out the future development direction of narrative theory research based on the shortcomings of existing research in order to provide new ideas for future research.

Keywords: narrative theory, urban space, PRISMA, systematic review

Procedia PDF Downloads 25
28396 Reduced Vibration in a Levitating Motor

Authors: S. Kazadi, A. An, B. Shen

Abstract:

We investigate the fitness of a male and female permanent magnetic levitation support for use as an axle on a rotor for a levitating motor. The support enables passive thrust and axial support for the axle as a result of the unique arrangement of permanent magnets. As the axial and thrust bearing aspects are derived from magnetic repulsion, it is not immediately clear that the repulsion is stiff enough to enable even low power motors. This paper describes the design and performance of two low power motors based on the magnetic levitation support. We find that our low power motors, with rotational speeds of 618 and 833 rpms, exhibit performance free from excess vibrations that might hinder performance. This means that the actuation of the motors is adequately stabilized by the axle and results in motors capable of being utilized despite the levitation support.

Keywords: levitating motor, magnetic levitation support, fitness, axle

Procedia PDF Downloads 370
28395 Application of New Sprouted Wheat Brine for Delicatessen Products From Horse Meat, Beef and Pork

Authors: Gulmira Kenenbay, Urishbay Chomanov, Aruzhan Shoman, Rabiga Kassimbek

Abstract:

The main task of the meat-processing industry is the production of meat products as the main source of animal protein, ensuring the vital activity of the human body, in the required volumes, high quality, diverse assortment. Providing the population with high-quality food products what are biologically full, balanced in composition of basic nutrients and enriched by targeted physiologically active components, is one of the highest priority scientific and technical problems to be solved. In this regard, the formulation of a new brine from sprouted wheat for meat delicacies from horse meat, beef and pork has been developed. The new brine contains flavored aromatic ingredients, juice of the germinated wheat and vegetable juice. The viscosity of meat of horse meat, beef and pork were studied during massaging. Thermodynamic indices, water activity and binding energy of horse meat, beef and pork with application of new brine are investigated. A recipe for meat products with vegetable additives has been developed. Organoleptic evaluation of meat products was carried out. Physicochemical parameters of meat products with vegetable additives are carried out. Analysis of the obtained data shows that the values of the index aw (water activity) and the binding energy of moisture in the experimental samples of meat products are higher than in the control samples. It has been established by investigations that with increasing water activity and the binding energy of moisture, the tenderness of ready meat delicacies increases with the use of a new brine.

Keywords: compounding, functional products, delicatessen products, brine, vegetable additives

Procedia PDF Downloads 178
28394 Application of MRI in Radioembolization Imaging and Dosimetry

Authors: Salehi Zahabi Saleh, Rajabi Hosaien, Rasaneh Samira

Abstract:

Yttrium-90 (90Y) radioembolisation(RE) is increasingly used for the treatment of patients with unresectable primary or metastatic liver tumours. Image-based approaches to assess microsphere distribution after RE have gained interest but are mostly hampered by the limited imaging possibilities of the Isotope 90Y. Quantitative 90Y-SPECT imaging has limited spatial resolution because it is based on 90Y Bremsstrahlung whereas 90Y-PET has better spatial resolution but low sensitivity. As a consequence, new alternative methods of visualizing the microspheres have been investigated, such as MR imaging of iron-labelled microspheres. It was also shown that MRI combines high sensitivity with high spatial and temporal resolution and with superior soft tissue contrast and thus can be used to cover a broad range of clinically interesting imaging parameters.The aim of the study in this article was to investigate the capability of MRI to measure the intrahepatic microsphere distribution in order to quantify the absorbed radiation dose in RE.

Keywords: radioembolisation, MRI, imaging, dosimetry

Procedia PDF Downloads 320
28393 High Gain Broadband Plasmonic Slot Nano-Antenna

Authors: H. S. Haroyan, V. R. Tadevosyan

Abstract:

High gain broadband plasmonic slot nano-antenna has been considered. The theory of plasmonic slot nano-antenna (PSNA) has been developed. The analytical model takes into account also the electrical field inside the metal due to imperfectness of metal in optical range, as well as numerical investigation based on FEM method has been realized. It should be mentioned that Yagi-Uda configuration improves directivity in the plane of structure. In contrast, in this paper the possibility of directivity improvement of proposed PSNA in perpendicular plane of structure by using reflection metallic surface placed under the slot in fixed distance has been demonstrated. It is well known that a directivity improvement brings to the antenna gain increasing. This method of diagram improving is also well known from RF antenna design theory. Moreover the improvement of directivity in the perpendicular plane gives more flexibility in such application as improving the light and atom, ion, molecule interactions by using such type of plasmonic slot antenna. By the analogy of dipole type optical antennas the widening of working wavelengths has been realized by using bowtie geometry of slots, which made the antenna broadband.

Keywords: broadband antenna, high gain, slot nano-antenna, plasmonics.

Procedia PDF Downloads 370
28392 Science Process Skill and Interest Preschooler in Learning Early Science through Mobile Application

Authors: Seah Siok Peh, Hashimah Mohd Yunus, Nor Hashimah Hashim, Mariam Mohamad

Abstract:

A country needs a workforce that encompasses knowledge, skilled labourers to generate innovation, productivity and being able to solve problems creatively via technology. Science education experts believe that the mastery of science skills help preschoolers to generate such knowledge on scientific concepts by providing constructive experiences. Science process skills are skills used by scientists to study or investigate a problem, issue, problem or phenomenon of science. In line with the skills used by scientists. The purpose of this study is to investigate the basic science process skill and interest in learning early science through mobile application. This study aimed to explore six spesific basic science process skills by the use of a mobile application as a learning support tool. The descriptive design also discusses on the extent of the use of mobile application in improving basic science process skill in young children. This study consists of six preschoolers and two preschool teachers from two different classes located in Perak, Malaysia. Techniques of data collection are inclusive of observations, interviews and document analysis. This study will be useful to provide information and give real phenomena to policy makers especially Ministry of education in Malaysia.

Keywords: science education, basic science process skill, interest, early science, mobile application

Procedia PDF Downloads 245
28391 Synthesis and Characterization of Doped Li₄Ti₅O₁₂/TiO2 as Potential Anode Materials for Li-Ion Batteries

Authors: S. Merazga, F. Boudeffar, A. Bouaoua, A. Cheriet, M. Berouaken, M. Mebarki, K. Ayouz, N. Gabouze

Abstract:

Several anode materials as transition metal oxides (Fe3O4, SnO2 a, SnO2, LiCoO2, and Li₄Ti₅O₁₂) has been used. Although titanium oxide has attracted great attention as a; superior electrode for Li-ion batteries due tohis excellent characteristic such as: high capacity, low cost and non-toxicity. In this work, the Synthesis and Characterization of Si Doped Li₄Ti₅O₁₂ with hydrothermal Method was electrochemically evaluated. The SEM images shows that the morphology of LTO powders sizes in the range 70nm.The electrochemical properties of synthesizer nanopowders are investigated for use as an anode active material for lithium-ion batteries by galvanostatic techniques in Li-half cells, obtaining reversible discharge capacity of 173.8 mAh/g at 0.1C even upon 100 cycles.Though the doped powders exhibit an upgrade in The electrical conductivity , This is suitable for use as a high-power cathode material for lithium-ion batteries.

Keywords: LTO, li-ion, battteries, anode

Procedia PDF Downloads 77
28390 Renewable Energy Storage Capacity Rating: A Forecast of Selected Load and Resource Scenario in Nigeria

Authors: Yakubu Adamu, Baba Alfa, Salahudeen Adamu Gene

Abstract:

As the drive towards clean, renewable and sustainable energy generation is gradually been reshaped by renewable penetration over time, energy storage has thus, become an optimal solution for utilities looking to reduce transmission and capacity cost, therefore the need for capacity resources to be adjusted accordingly such that renewable energy storage may have the opportunity to substitute for retiring conventional energy systems with higher capacity factors. Considering the Nigeria scenario, where Over 80% of the current Nigerian primary energy consumption is met by petroleum, electricity demand is set to more than double by mid-century, relative to 2025 levels. With renewable energy penetration rapidly increasing, in particular biomass, hydro power, solar and wind energy, it is expected to account for the largest share of power output in the coming decades. Despite this rapid growth, the imbalance between load and resources has created a hindrance to the development of energy storage capacity, load and resources, hence forecasting energy storage capacity will therefore play an important role in maintaining the balance between load and resources including supply and demand. Therefore, the degree to which this might occur, its timing and more importantly its sustainability, is the subject matter of the current research. Here, we forecast the future energy storage capacity rating and thus, evaluate the load and resource scenario in Nigeria. In doing so, We used the scenario-based International Energy Agency models, the projected energy demand and supply structure of the country through 2030 are presented and analysed. Overall, this shows that in high renewable (solar) penetration scenarios in Nigeria, energy storage with 4-6h duration can obtain over 86% capacity rating with storage comprising about 24% of peak load capacity. Therefore, the general takeaway from the current study is that most power systems currently used has the potential to support fairly large penetrations of 4-6 hour storage as capacity resources prior to a substantial reduction in capacity ratings. The data presented in this paper is a crucial eye-opener for relevant government agencies towards developing these energy resources in tackling the present energy crisis in Nigeria. However, if the transformation of the Nigeria. power system continues primarily through expansion of renewable generation, then longer duration energy storage will be needed to qualify as capacity resources. Hence, the analytical task from the current survey will help to determine whether and when long-duration storage becomes an integral component of the capacity mix that is expected in Nigeria by 2030.

Keywords: capacity, energy, power system, storage

Procedia PDF Downloads 34
28389 Comparison of Microstructure, Mechanical Properties and Residual Stresses in Laser and Electron Beam Welded Ti–5Al–2.5Sn Titanium Alloy

Authors: M. N. Baig, F. N. Khan, M. Junaid

Abstract:

Titanium alloys are widely employed in aerospace, medical, chemical, and marine applications. These alloys offer many advantages such as low specific weight, high strength to weight ratio, excellent corrosion resistance, high melting point and good fatigue behavior. These attractive properties make titanium alloys very unique and therefore they require special attention in all areas of processing, especially welding. In this work, 1.6 mm thick sheets of Ti-5Al-2,5Sn, an alpha titanium (α-Ti) alloy, were welded using electron beam (EBW) and laser beam (LBW) welding processes to achieve a full penetration Bead-on Plate (BoP) configuration. The weldments were studied using polarized optical microscope, SEM, EDS and XRD. Microhardness distribution across the weld zone and smooth and notch tensile strengths of the weldments were also recorded. Residual stresses using Hole-drill Strain Measurement (HDSM) method and deformation patterns of the weldments were measured for the purpose of comparison of the two welding processes. Fusion zone widths of both EBW and LBW weldments were found to be approximately equivalent owing to fairly similar high power densities of both the processes. Relatively less oxide content and consequently high joint quality were achieved in EBW weldment as compared to LBW due to vacuum environment and absence of any shielding gas. However, an increase in heat-affected zone width and partial ά-martensitic transformation infusion zone of EBW weldment were observed because of lesser cooling rates associated with EBW as compared with LBW. The microstructure infusion zone of EBW weldment comprised both acicular α and ά martensite within the prior β grains whereas complete ά martensitic transformation was observed within the fusion zone of LBW weldment. Hardness of the fusion zone in EBW weldment was found to be lower than the fusion zone of LBW weldment due to the observed microstructural differences. Notch tensile specimen of LBW exhibited higher load capacity, ductility, and absorbed energy as compared with EBW specimen due to the presence of high strength ά martensitic phase. It was observed that the sheet deformation and deformation angle in EBW weldment were more than LBW weldment due to relatively more heat retention in EBW which led to more thermal strains and hence higher deformations and deformation angle. The lowest residual stresses were found in LBW weldments which were tensile in nature. This was owing to high power density and higher cooling rates associated with LBW process. EBW weldment exhibited highest compressive residual stresses due to which the service life of EBW weldment is expected to improve.

Keywords: Laser and electron beam welding, Microstructure and mechanical properties, Residual stress and distortions, Titanium alloys

Procedia PDF Downloads 226