Search results for: heat recovery boiler
2962 Colonization of Candida Albicans on 3D Printed CAD/CAM Complete Denture Versus Conventional Complete Denture: Randomized Controlled Clinical Study
Authors: Eman Helal, Ahmed M. Esmat
Abstract:
Statement of problem: The development of computer-aided design/computer-aided manufacturing (CAD/CAM) resin dentures has simplified complete denture production. Most of the studies evaluated the mechanical properties of the material, but the hygienic performance of the CAD /CAM denture and their ability to maintain clean surfaces and minimize bacterial accumulation is still lacking. Purpose evaluation of the antibacterial characteristics of the 3D printed CAD/CAM denture and to compare it with the conventional heat polymerized acrylic denture base material. Methodology a total of thirty completely edentulous patients grouped randomly into two groups (Group I: Control group) received conventional heat polymerized acrylic resin complete dentures, (Group II: Test group) received 3D printed (CAD/CAM) dentures (stereolithographic PMMA), Samples of Candida albicans culture swabs were taken after 1 month and 3 months of dentures` insertion. A culture swab was obtained by scrubbing the fitting surface of the upper denture. At each time interval, three swab samples were collected from each patient and were inoculated in three individual culture media. Results: there was a significant difference in the colonization of Candida albicans to the fitting surface of the dentures between both groups (Group I: Conventional denture cases) exhibited more adhesion of Candida Albicans to the fitting surface than did (Group II: CAD/CAM cases) (P<0.05). Conclusion: 3D printed CAD/CAM complete denture showed minimal Candida adherence upon upper denture fitting compared to conventional heat-polymerized acrylic resin, which contributes to decreasing the incidence of denture stomatitis which is considered one of the most common problems among complete denture wearers.Keywords: CAD/CAM denture, completely edentulous, elderly patients, 3D printing, antimicrobial efficiency, conventional denture, PMMA, Candida Albicans, denture stomatitis
Procedia PDF Downloads 1422961 Evaluation of the Gasification Process for the Generation of Syngas Using Solid Waste at the Autónoma de Colombia University
Authors: Yeraldin Galindo, Soraida Mora
Abstract:
Solid urban waste represents one of the largest sources of global environmental pollution due to the large quantities of these that are produced every day; thus, the elimination of such waste is a major problem for the environmental authorities who must look for alternatives to reduce the volume of waste with the possibility of obtaining an energy recovery. At the Autónoma de Colombia University, approximately 423.27 kg/d of solid waste are generated mainly paper, cardboard, and plastic. A large amount of these solid wastes has as final disposition the sanitary landfill of the city, wasting the energy potential that these could have, this, added to the emissions generated by the collection and transport of the same, has as consequence the increase of atmospheric pollutants. One of the alternative process used in the last years to generate electrical energy from solid waste such as paper, cardboard, plastic and, mainly, organic waste or biomass to replace the use of fossil fuels is the gasification. This is a thermal conversion process of biomass. The objective of it is to generate a combustible gas as the result of a series of chemical reactions propitiated by the addition of heat and the reaction agents. This project was developed with the intention of giving an energetic use to the waste (paper, cardboard, and plastic) produced inside the university, using them to generate a synthesis gas with a gasifier prototype. The gas produced was evaluated to determine their benefits in terms of electricity generation or raw material for the chemical industry. In this process, air was used as gasifying agent. The characterization of the synthesis gas was carried out by a gas chromatography carried out by the Chemical Engineering Laboratory of the National University of Colombia. Taking into account the results obtained, it was concluded that the gas generated is of acceptable quality in terms of the concentration of its components, but it is a gas of low calorific value. For this reason, the syngas generated in this project is not viable for the production of electrical energy but for the production of methanol transformed by the Fischer-Tropsch cycle.Keywords: alternative energies, gasification, gasifying agent, solid urban waste, syngas
Procedia PDF Downloads 2632960 Kaolinite-Assisted Microencapsulation of Octodecane for Thermal Energy Storage
Authors: Ting Pan, Jiacheng Wang, Pengcheng Lin, Ying Chen, Songping Mo
Abstract:
Phase change materials (PCMs) are widely used in latent heat thermal energy storage because of their good properties such as high energy storage density and constant heat-storage/release temperature. Microencapsulation techniques can prevent PCMs from leaking during the liquid-solid phase transition and enhance thermal properties. This technique has been widely applied in architectural materials, thermo-regulated textiles, aerospace fields, etc. One of the most important processes during the synthesis of microcapsules is to form a stable emulsion of the PCM core and reactant solution for the formation of the shell of the microcapsules. The use of surfactants is usually necessary for the formation of a stable emulsion system because of the difference in hydrophilia/lipophilicity of the PCM and the solvent. Unfortunately, the use of surfactants may cause pollution to the environment. In this study, modified kaolinite was used as an emulsion stabilizer for the microencapsulation of octodecane as PCM. Microcapsules were synthesized by phase inversion emulsification method, and the shell of polymethyl methacrylate (PMMA) was formed through free radical polymerization. The morphologies, crystalloid phase, and crystallization properties of microcapsules were investigated using scanning electron microscopy (SEM), X-ray diffractometer (XRD), and Fourier transforms infrared spectrometer (FTIR). The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetric analyzer (TG). The FT-IR, XRD results showed that the octodecane was well encapsulated in the PMMA shell. The SEM results showed that the microcapsules were spheres with an average size of about 50-100nm. The DSC results indicated that the latent heat of the microcapsules was 152.64kJ/kg and 164.23kJ/kg. The TG results confirmed that the microcapsules had good thermal stability due to the PMMA shell. Based on the results, it can be concluded that the modified kaolinite can be used as an emulsifier for the synthesis of PCM microcapsules, which is valid for reducing part of the possible pollution caused by the utilization of surfactants.Keywords: kaolinite, microencapsulation, PCM, thermal energy storage
Procedia PDF Downloads 1362959 Development of a Thermodynamic Model for Ladle Metallurgy Steel Making Processes Using Factsage and Its Macro Facility
Authors: Prasenjit Singha, Ajay Kumar Shukla
Abstract:
To produce high-quality steel in larger volumes, dynamic control of composition and temperature throughout the process is essential. In this paper, we developed a mass transfer model based on thermodynamics to simulate the ladle metallurgy steel-making process using FactSage and its macro facility. The overall heat and mass transfer processes consist of one equilibrium chamber, two non-equilibrium chambers, and one adiabatic reactor. The flow of material, as well as heat transfer, occurs across four interconnected unit chambers and a reactor. We used the macro programming facility of FactSage™ software to understand the thermochemical model of the secondary steel making process. In our model, we varied the oxygen content during the process and studied their effect on the composition of the final hot metal and slag. The model has been validated with respect to the plant data for the steel composition, which is similar to the ladle metallurgy steel-making process in the industry. The resulting composition profile serves as a guiding tool to optimize the process of ladle metallurgy in steel-making industries.Keywords: desulphurization, degassing, factsage, reactor
Procedia PDF Downloads 2232958 Human Immune Response to Surgery: The Surrogate Prediction of Postoperative Outcomes
Authors: Husham Bayazed
Abstract:
Immune responses following surgical trauma play a pivotal role in predicting postoperative outcomes from healing and recovery to postoperative complications. Postoperative complications, including infections and protracted recovery, occur in a significant number of about 300 million surgeries performed annually worldwide. Complications cause personal suffering along with a significant economic burden on the healthcare system in any community. The accurate prediction of postoperative complications and patient-targeted interventions for their prevention remain major clinical provocations. Recent Findings: Recent studies are focusing on immune dysregulation mechanisms that occur in response to surgical trauma as a key determinant of postoperative complications. Antecedent studies mainly were plunging into the detection of inflammatory plasma markers, which facilitate in providing important clues regarding their pathogenesis. However, recent Single-cell technologies, such as mass cytometry or single-cell RNA sequencing, have markedly enhanced our ability to understand the immunological basis of postoperative immunological trauma complications and to identify their prognostic biological signatures. Summary: The advent of proteomic technologies has significantly advanced our ability to predict the risk of postoperative complications. Multiomic modeling of patients' immune states holds promise for the discovery of preoperative predictive biomarkers and providing patients and surgeons with information to improve surgical outcomes. However, more studies are required to accurately predict the risk of postoperative complications in individual patients.Keywords: immune dysregulation, postoperative complications, surgical trauma, flow cytometry
Procedia PDF Downloads 932957 Ultra-deformable Drug-free Sequessome™ Vesicles (TDT 064) for the Treatment of Joint Pain Following Exercise: A Case Report and Clinical Data
Authors: Joe Collins, Matthias Rother
Abstract:
Background: Oral non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for the relief of joint pain during and post-exercise. However, oral NSAIDs increase the risk of systemic side effects, even in healthy individuals, and retard recovery from muscle soreness. TDT 064 (Flexiseq®), a topical formulation containing ultra-deformable drug-free Sequessome™ vesicles, has demonstrated equivalent efficacy to oral celecoxib in reducing osteoarthritis-associated joint pain and stiffness. TDT 064 does not cause NSAID-related adverse effects. We describe clinical study data and a case report on the effectiveness of TDT 064 in reducing joint pain after exercise. Methods: Participants with a pain score ≥3 (10-point scale) 12–16 hours post-exercise were randomized to receive TDT 064 plus oral placebo, TDT 064 plus oral ketoprofen, or ketoprofen in ultra-deformable phospholipid vesicles plus oral placebo. Results: In the 168 study participants, pain scores were significantly higher with oral ketoprofen plus TDT 064 than with TDT 064 plus placebo in the 7 days post-exercise (P = 0.0240) and recovery from muscle soreness was significantly longer (P = 0.0262). There was a low incidence of adverse events. These data are supported by clinical experience. A 24-year-old male professional rugby player suffered a traumatic lisfranc fracture in March 2014 and underwent operative reconstruction. He had no relevant medical history and was not receiving concomitant medications. He had undergone anterior cruciate ligament reconstruction in 2008. The patient reported restricted training due to pain (score 7/10), stiffness (score 9/10) and poor function, as well as pain when changing direction and running on consecutive days. In July 2014 he started using TDT 064 twice daily at the recommended dose. In November 2014 he noted reduced pain on running (score 2-3/10), decreased morning stiffness (score 4/10) and improved joint mobility and was able to return to competitive rugby without restrictions. No side effects of TDT 064 were reported. Conclusions: TDT 064 shows efficacy against exercise- and injury-induced joint pain, as well as that associated with osteoarthritis. It does not retard muscle soreness recovery after exercise compared with an oral NSAID, making it an alternative approach for the treatment of joint pain during and post-exercise.Keywords: exercise, joint pain, TDT 064, phospholipid vesicles
Procedia PDF Downloads 4802956 Application of Nuclear Magnetic Resonance (1H-NMR) in the Analysis of Catalytic Aquathermolysis: Colombian Heavy Oil Case
Authors: Paola Leon, Hugo Garcia, Adan Leon, Samuel Munoz
Abstract:
The enhanced oil recovery by steam injection was considered a process that only generated physical recovery mechanisms. However, there is evidence of the occurrence of a series of chemical reactions, which are called aquathermolysis, which generates hydrogen sulfide, carbon dioxide, methane, and lower molecular weight hydrocarbons. These reactions can be favored by the addition of a catalyst during steam injection; in this way, it is possible to generate the original oil in situ upgrading through the production increase of molecules of lower molecular weight. This additional effect could increase the oil recovery factor and reduce costs in transport and refining stages. Therefore, this research has focused on the experimental evaluation of the catalytic aquathermolysis on a Colombian heavy oil with 12,8°API. The effects of three different catalysts, reaction time, and temperature were evaluated in a batch microreactor. The changes in the Colombian heavy oil were quantified through nuclear magnetic resonance 1H-NMR. The relaxation times interpretation and the absorption intensity allowed to identify the distribution of the functional groups in the base oil and upgraded oils. Additionally, the average number of aliphatic carbons in alkyl chains, the number of substituted rings, and the aromaticity factor were established as average structural parameters in order to simplify the samples' compositional analysis. The first experimental stage proved that each catalyst develops a different reaction mechanism. The aromaticity factor has an increasing order of the salts used: Mo > Fe > Ni. However, the upgraded oil obtained with iron naphthenate tends to form a higher content of mono-aromatic and lower content of poly-aromatic compounds. On the other hand, the results obtained from the second phase of experiments suggest that the upgraded oils have a smaller difference in the length of alkyl chains in the range of 240º to 270°C. This parameter has lower values at 300°C, which indicates that the alkylation or cleavage reactions of alkyl chains govern at higher reaction temperatures. The presence of condensation reactions is supported by the behavior of the aromaticity factor and the bridge carbons production between aromatic rings (RCH₂). Finally, it is observed that there is a greater dispersion in the aliphatic hydrogens, which indicates that the alkyl chains have a greater reactivity compared to the aromatic structures.Keywords: catalyst, upgrading, aquathermolysis, steam
Procedia PDF Downloads 1132955 Uniqueness and Repeatability Analysis for Slim Tube Determined Minimum Miscibility Pressure
Authors: Waqar Ahmad Butt, Gholamreza Vakili Nezhaad, Ali Soud Al Bemani, Yahya Al Wahaibi
Abstract:
Miscible gas injection processes as secondary recovery methods can be applied to a huge number of mature reservoirs to improve the trapped oil displacement. Successful miscible gas injection processes require an accurate estimation of the minimum miscibility pressure (MMP) to make injection process feasible, economical, and effective. There are several methods of MMP determination like slim tube approach, vanishing interfacial tension and rising bubble apparatus but slim tube is the deployed experimental technique in this study. Slim tube method is assumed to be non-standardized for MMP determination with respect to both operating procedure and design. Therefore, 25 slim tube runs were being conducted with three different coil lengths (12, 18 and 24 m) of constant diameter using three different injection rates (0.08, 0.1 and 0.15 cc/min) to evaluate uniqueness and repeatability of determined MMP. A trend of decrease in MMP with increase in coil length was found. No unique trend was found between MMP and injection rate. Lowest MMP and highest recovery were observed with highest coil length and lowest injection rate. It shows that slim tube measured MMP does not depend solely on interacting fluids characteristics but also affected by used coil selection and injection rate choice. Therefore, both slim tube design and procedure need to be standardized. It is recommended to use lowest possible injection rate and estimated coil length depending upon the distance between injections and producing wells for accurate and reliable MMP determination.Keywords: coil length, injection rate, minimum miscibility pressure, multiple contacts miscibility
Procedia PDF Downloads 2562954 The Effect of Shading on Cooling Tower Performance
Authors: Eitidal Albassam
Abstract:
Cooling towers (CTs) in arid zone countries, used for heat rejection in water-cooled (WC) systems, consume a large quantity of water. Universally, water conservation is an issue because of the scarcity of fresh water and natural resources. Therefore, many studies have aimed to conserve fresh water and limit the water wasted. Nonetheless, all these methods are not related to improving the weather conditions around the entering air to CT. In Kuwait and other arid-zone countries, the dry bulb temperature (DBT) during the summer season is significantly greater than the incoming hot water temperature, and the air undergoes sensible cooling. This high DBT leads to extra heat transfer from air to water, demanding high water vaporization to achieve the required cooling of water. Thus, any reduction in ambient air temperature around the CT will minimize water consumption. This paper aims to discuss theoretically the effect of reducing the DBT around the cooling tower when considering the sun-shading barrier. The theoretical simulation model results show that if the DBT reduces by 2.8 °C approximately, the percentage of water evaporation savings in gallon per minute (GPM) starts from 6.48% when DBT reaches 51.67 °C till 9.80% for 37.78 °C. Moreover, the performance of the cooling tower will be improved when considering the appropriate shading barriers, which will not affect the existing wet-bulb temperature.Keywords: dry-bulb temperature, entering air, water consumption, water vaporization
Procedia PDF Downloads 1472953 Modeling of Polyethylene Particle Size Distribution in Fluidized Bed Reactors
Authors: R. Marandi, H. Shahrir, T. Nejad Ghaffar Borhani, M. Kamaruddin
Abstract:
In the present study, a steady state population balance model was developed to predict the polymer particle size distribution (PSD) in ethylene gas phase fluidized bed olefin polymerization reactors. The multilayer polymeric flow model (MPFM) was used to calculate the growth rate of a single polymer particle under intra-heat and mass transfer resistance. The industrial plant data were used to calculate the growth rate of polymer particle and the polymer PSD. Numerical simulations carried out to describe the influence of effective monomer diffusion coefficient, polymerization rate and initial catalyst size on the catalyst particle growth and final polymer PSD. The results present that the intra-heat and mass limitation is important for the ethylene polymerization, the growth rate of particle and the polymer PSD in the fluidized bed reactor. The effect of the agglomeration on the PSD is also considered. The result presents that the polymer particle size distribution becomes broader as the agglomeration exits.Keywords: population balance, olefin polymerization, fluidized bed reactor, particle size distribution, agglomeration
Procedia PDF Downloads 3392952 Revealing the Urban Heat Island: Investigating its Spatial and Temporal Changes and Relationship with Air Quality
Authors: Aneesh Mathew, Arunab K. S., Atul Kumar Sharma
Abstract:
The uncontrolled rise in population has led to unplanned, swift, and unsustainable urban expansion, causing detrimental environmental impacts on both local and global ecosystems. This research delves into a comprehensive examination of the Urban Heat Island (UHI) phenomenon in Bengaluru and Hyderabad, India. It centers on the spatial and temporal distribution of UHI and its correlation with air pollutants. Conducted across summer and winter seasons from 2001 to 2021 in Bangalore and Hyderabad, this study discovered that UHI intensity varies seasonally, peaking in summer and decreasing in winter. The annual maximum UHI intensities range between 4.65 °C to 6.69 °C in Bengaluru and 5.74 °C to 6.82 °C in Hyderabad. Bengaluru particularly experiences notable fluctuations in average UHI intensity. Introducing the Urban Thermal Field Variance Index (UTFVI), the study indicates a consistent strong UHI effect in both cities, significantly impacting living conditions. Moreover, hotspot analysis demonstrates a rising trend in UHI-affected areas over the years in Bengaluru and Hyderabad. This research underscores the connection between air pollutant concentrations and land surface temperature (LST), highlighting the necessity of comprehending UHI dynamics for urban environmental management and public health. It contributes to a deeper understanding of UHI patterns in swiftly urbanizing areas, providing insights into the intricate relationship between urbanization, climate, and air quality. These findings serve as crucial guidance for policymakers, urban planners, and researchers, facilitating the development of innovative, sustainable strategies to mitigate the adverse impacts of uncontrolled expansion while promoting the well-being of local communities and the global environment.Keywords: urban heat island effect, land surface temperature, air pollution, urban thermal field variance index
Procedia PDF Downloads 862951 Comparing the Effects of Ondansetron and Acupressure in PC6 Point on Postoperative Nausea and Vomiting in Patients Undergone Elective Cesarean Section: A Randomized Clinical Trial
Authors: Nasrin Galehdar, Sedigheh Nadri, Elham Nazari, Isan Darvishi, Abouzar Mohammadi
Abstract:
Background and aim:Nausea and vomiting are complications of cesarean section. The pharmacological and non-pharmacological approaches were applied to decrease postoperative nausea and vomiting. The aim of the present study was to compare the effects of Ondansetron and acupressure on postoperative nausea and vomiting in patients undergone an elective cesarean section. Materials and method: The study was designed as a randomized clinical trial. A total of 120 patients were allocated to two equal groups. Four mgs of Ondansetron was administered for the Ondansetron group after clamping the umbilical cord. The acupressure bracelets were fastened in the PC6 point for acupressure group for 15 minutes. The patients were monitored in terms of incidence, severity, and episodes of nausea and vomiting. The data obtained were analyzed by SPSS software version 18 with a significance level of 0.05. Results: There was no significant statistical difference in nausea severity among the groups intra-operatively, in the recovery and surgery wards. The incidence and episodes of vomiting were significantly higher in patients undergone acupressure intra-operatively, in the recovery and surgery wards (P< 0.05). No significant effect of acupressure was reported in reducing postoperative nausea and vomiting. Conclusion: No significant effect of acupressure was reported in reducing postoperative nausea and vomiting. Thus, it is suggested to perform the studies with larger size and comparing the effects of acupressure with other antiemetic medications.Keywords: ondansetron, acupressure, nausea, vomiting
Procedia PDF Downloads 1132950 A Compact Standing-Wave Thermoacoustic Refrigerator Driven by a Rotary Drive Mechanism
Authors: Kareem Abdelwahed, Ahmed Salama, Ahmed Rabie, Ahmed Hamdy, Waleed Abdelfattah, Ahmed Abd El-Rahman
Abstract:
Conventional vapor-compression refrigeration systems rely on typical refrigerants, such as CFC, HCFC and ammonia. Despite of their suitable thermodynamic properties and their stability in the atmosphere, their corresponding global warming potential and ozone depletion potential raise concerns about their usage. Thus, the need for new refrigeration systems, which are environment-friendly, inexpensive and simple in construction, has strongly motivated the development of thermoacoustic energy conversion systems. A thermoacoustic refrigerator (TAR) is a device that is mainly consisting of a resonator, a stack and two heat exchangers. Typically, the resonator is a long circular tube, made of copper or steel and filled with Helium as a the working gas, while the stack has short and relatively low thermal conductivity ceramic parallel plates aligned with the direction of the prevailing resonant wave. Typically, the resonator of a standing-wave refrigerator has one end closed and is bounded by the acoustic driver at the other end enabling the propagation of half-wavelength acoustic excitation. The hot and cold heat exchangers are made of copper to allow for efficient heat transfer between the working gas and the external heat source and sink respectively. TARs are interesting because they have no moving parts, unlike conventional refrigerators, and almost no environmental impact exists as they rely on the conversion of acoustic and heat energies. Their fabrication process is rather simpler and sizes span wide variety of length scales. The viscous and thermal interactions between the stack plates, heat exchangers' plates and the working gas significantly affect the flow field within the plates' channels, and the energy flux density at the plates' surfaces, respectively. Here, the design, the manufacture and the testing of a compact refrigeration system that is based on the thermoacoustic energy-conversion technology is reported. A 1-D linear acoustic model is carefully and specifically developed, which is followed by building the hardware and testing procedures. The system consists of two harmonically-oscillating pistons driven by a simple 1-HP rotary drive mechanism operating at a frequency of 42Hz -hereby, replacing typical expensive linear motors and loudspeakers-, and a thermoacoustic stack within which the energy conversion of sound into heat is taken place. Air at ambient conditions is used as the working gas while the amplitude of the driver's displacement reaches 19 mm. The 30-cm-long stack is a simple porous ceramic material having 100 square channels per square inch. During operation, both oscillating-gas pressure and solid-stack temperature are recorded for further analysis. Measurements show a maximum temperature difference of about 27 degrees between the stack hot and cold ends with a Carnot coefficient of performance of 11 and estimated cooling capacity of five Watts, when operating at ambient conditions. A dynamic pressure of 7-kPa-amplitude is recorded, yielding a drive ratio of 7% approximately, and found in a good agreement with theoretical prediction. The system behavior is clearly non-linear and significant non-linear loss mechanisms are evident. This work helps understanding the operation principles of thermoacoustic refrigerators and presents a keystone towards developing commercial thermoacoustic refrigerator units.Keywords: refrigeration system, rotary drive mechanism, standing-wave, thermoacoustic refrigerator
Procedia PDF Downloads 3732949 Fault Tolerant and Testable Designs of Reversible Sequential Building Blocks
Authors: Vishal Pareek, Shubham Gupta, Sushil Chandra Jain
Abstract:
With increasing high-speed computation demand the power consumption, heat dissipation and chip size issues are posing challenges for logic design with conventional technologies. Recovery of bit loss and bit errors is other issues that require reversibility and fault tolerance in the computation. The reversible computing is emerging as an alternative to conventional technologies to overcome the above problems and helpful in a diverse area such as low-power design, nanotechnology, quantum computing. Bit loss issue can be solved through unique input-output mapping which require reversibility and bit error issue require the capability of fault tolerance in design. In order to incorporate reversibility a number of combinational reversible logic based circuits have been developed. However, very few sequential reversible circuits have been reported in the literature. To make the circuit fault tolerant, a number of fault model and test approaches have been proposed for reversible logic. In this paper, we have attempted to incorporate fault tolerance in sequential reversible building blocks such as D flip-flop, T flip-flop, JK flip-flop, R-S flip-flop, Master-Slave D flip-flop, and double edge triggered D flip-flop by making them parity preserving. The importance of this proposed work lies in the fact that it provides the design of reversible sequential circuits completely testable for any stuck-at fault and single bit fault. In our opinion our design of reversible building blocks is superior to existing designs in term of quantum cost, hardware complexity, constant input, garbage output, number of gates and design of online testable D flip-flop have been proposed for the first time. We hope our work can be extended for building complex reversible sequential circuits.Keywords: parity preserving gate, quantum computing, fault tolerance, flip-flop, sequential reversible logic
Procedia PDF Downloads 5492948 Development of a Passive Solar Tomato Dryer with Movable Heat Storage System
Authors: Jacob T. Liberty, Wilfred I. Okonkwo
Abstract:
The present study designed and constructed a post-harvest passive solar tomato dryer of dimension 176 x 152 x 54cm for drying tomato. Quality of the dried crop was evaluated and compared with the fresh ones. The solar dryer consist of solar collector (air heater), 110 x 61 x 10 x 10cm, the drying chamber, 102 x54cm, removal heat storage unit, 40 x 35 x 13cm and drying trays, 43 x 42cm. The physicochemical properties of this crop were evaluated before and after drying. Physicochemical properties evaluated includes moisture, protein, fat, fibre, ash, carbohydrate and vitamin C, contents. The fresh, open and solar dried samples were analysed for their proximate composition using the recommended method of AOAC. Also, statistical analysis of the data was conducted using analysis of variance (ANOVA) using completely Randomize Design (CRD) and means were separated by Duncan’s New Multiple Range test (DNMRT). Proximate analysis showed that solar dried tomato had significantly (P < 0.05) higher protein, fibre, ash, carbohydrate and vitamin C except for the fat content that was significantly (P < 0.05) higher for all the open sun dried samples than the solar dried and fresh product. The nutrient which is highly affected by sun drying is vitamin C. Result indicates that moisture loss in solar dried tomato was faster and lower than the open dried samples and as such makes the solar dried products of lesser tendency to mould and bacterial growth. Also, the open sun dried samples had to be carried into the sheltered place each time it rained. The solar dried produce is of high quality. Further processing of the dried crops will involve packaging for commercial purposes. This will also help in making these agricultural product available in a relatively cheap price in off season and also avert micronutrient deficiencies in diet especially among the low-income groups in Nigeria.Keywords: tomato, passive solar dryer, physicochemical properties, removal heat storage
Procedia PDF Downloads 3112947 Modelling and Simulation of Natural Gas-Fired Power Plant Integrated to a CO2 Capture Plant
Authors: Ebuwa Osagie, Chet Biliyok, Yeung Hoi
Abstract:
Regeneration energy requirement and ways to reduce it is the main aim of most CO2 capture researches currently being performed and thus, post-combustion carbon capture (PCC) option is identified to be the most suitable for the natural gas-fired power plants. From current research and development (R&D) activities worldwide, two main areas are being examined in order to reduce the regeneration energy requirement of amine-based PCC, namely: (a) development of new solvents with better overall performance than 30wt% monoethanolamine (MEA) aqueous solution, which is considered as the base-line solvent for solvent-based PCC, (b) Integration of the PCC Plant to the power plant. In scaling-up a PCC pilot plant to the size required for a commercial-scale natural gas-fired power plant, process modelling and simulation is very essential. In this work, an integrated process made up of a 482MWe natural gas-fired power plant, an MEA-based PCC plant which is developed and validated has been modelled and simulated. The PCC plant has four absorber columns and a single stripper column, the modelling and simulation was performed with Aspen Plus® V8.4. The gas turbine, the heat recovery steam generator and the steam cycle were modelled based on a 2010 US DOE report, while the MEA-based PCC plant was modelled as a rate-based process. The scaling of the amine plant was performed using a rate based calculation in preference to the equilibrium based approach for 90% CO2 capture. The power plant was integrated to the PCC plant in three ways: (i) flue gas stream from the power plant which is divided equally into four stream and each stream is fed into one of the four absorbers in the PCC plant. (ii) Steam draw-off from the IP/LP cross-over pipe in the steam cycle of the power plant used to regenerate solvent in the reboiler. (iii) Condensate returns from the reboiler to the power plant. The integration of a PCC plant to the NGCC plant resulted in a reduction of the power plant output by 73.56 MWe and the net efficiency of the integrated system is reduced by 7.3 % point efficiency. A secondary aim of this study is the parametric studies which have been performed to assess the impacts of natural gas on the overall performance of the integrated process and this is achieved through investigation of the capture efficiencies.Keywords: natural gas-fired, power plant, MEA, CO2 capture, modelling, simulation
Procedia PDF Downloads 4572946 Designing Energy Efficient Buildings for Seasonal Climates Using Machine Learning Techniques
Authors: Kishor T. Zingre, Seshadhri Srinivasan
Abstract:
Energy consumption by the building sector is increasing at an alarming rate throughout the world and leading to more building-related CO₂ emissions into the environment. In buildings, the main contributors to energy consumption are heating, ventilation, and air-conditioning (HVAC) systems, lighting, and electrical appliances. It is hypothesised that the energy efficiency in buildings can be achieved by implementing sustainable technologies such as i) enhancing the thermal resistance of fabric materials for reducing heat gain (in hotter climates) and heat loss (in colder climates), ii) enhancing daylight and lighting system, iii) HVAC system and iv) occupant localization. Energy performance of various sustainable technologies is highly dependent on climatic conditions. This paper investigated the use of machine learning techniques for accurate prediction of air-conditioning energy in seasonal climates. The data required to train the machine learning techniques is obtained using the computational simulations performed on a 3-story commercial building using EnergyPlus program plugged-in with OpenStudio and Google SketchUp. The EnergyPlus model was calibrated against experimental measurements of surface temperatures and heat flux prior to employing for the simulations. It has been observed from the simulations that the performance of sustainable fabric materials (for walls, roof, and windows) such as phase change materials, insulation, cool roof, etc. vary with the climate conditions. Various renewable technologies were also used for the building flat roofs in various climates to investigate the potential for electricity generation. It has been observed that the proposed technique overcomes the shortcomings of existing approaches, such as local linearization or over-simplifying assumptions. In addition, the proposed method can be used for real-time estimation of building air-conditioning energy.Keywords: building energy efficiency, energyplus, machine learning techniques, seasonal climates
Procedia PDF Downloads 1172945 Impact of Combined Heat and Power (CHP) Generation Technology on Distribution Network Development
Authors: Sreto Boljevic
Abstract:
In the absence of considerable investment in electricity generation, transmission and distribution network (DN) capacity, the demand for electrical energy will quickly strain the capacity of the existing electrical power network. With anticipated growth and proliferation of Electric vehicles (EVs) and Heat pump (HPs) identified the likelihood that the additional load from EV changing and the HPs operation will require capital investment in the DN. While an area-wide implementation of EVs and HPs will contribute to the decarbonization of the energy system, they represent new challenges for the existing low-voltage (LV) network. Distributed energy resources (DER), operating both as part of the DN and in the off-network mode, have been offered as a means to meet growing electricity demand while maintaining and ever-improving DN reliability, resiliency and power quality. DN planning has traditionally been done by forecasting future growth in demand and estimating peak load that the network should meet. However, new problems are arising. These problems are associated with a high degree of proliferation of EVs and HPs as load imposes on DN. In addition to that, the promotion of electricity generation from renewable energy sources (RES). High distributed generation (DG) penetration and a large increase in load proliferation at low-voltage DNs may have numerous impacts on DNs that create issues that include energy losses, voltage control, fault levels, reliability, resiliency and power quality. To mitigate negative impacts and at a same time enhance positive impacts regarding the new operational state of DN, CHP system integration can be seen as best action to postpone/reduce capital investment needed to facilitate promotion and maximize benefits of EVs, HPs and RES integration in low-voltage DN. The aim of this paper is to generate an algorithm by using an analytical approach. Algorithm implementation will provide a way for optimal placement of the CHP system in the DN in order to maximize the integration of RES and increase in proliferation of EVs and HPs.Keywords: combined heat & power (CHP), distribution networks, EVs, HPs, RES
Procedia PDF Downloads 2062944 Bioanalytical Method Development and Validation of Aminophylline in Rat Plasma Using Reverse Phase High Performance Liquid Chromatography: An Application to Preclinical Pharmacokinetics
Authors: S. G. Vasantharaju, Viswanath Guptha, Raghavendra Shetty
Abstract:
Introduction: Aminophylline is a methylxanthine derivative belonging to the class bronchodilator. From the literature survey, reported methods reveals the solid phase extraction and liquid liquid extraction which is highly variable, time consuming, costly and laborious analysis. Present work aims to develop a simple, highly sensitive, precise and accurate high-performance liquid chromatography method for the quantification of Aminophylline in rat plasma samples which can be utilized for preclinical studies. Method: Reverse Phase high-performance liquid chromatography method. Results: Selectivity: Aminophylline and the internal standard were well separated from the co-eluted components and there was no interference from the endogenous material at the retention time of analyte and the internal standard. The LLOQ measurable with acceptable accuracy and precision for the analyte was 0.5 µg/mL. Linearity: The developed and validated method is linear over the range of 0.5-40.0 µg/mL. The coefficient of determination was found to be greater than 0.9967, indicating the linearity of this method. Accuracy and precision: The accuracy and precision values for intra and inter day studies at low, medium and high quality control samples concentrations of aminophylline in the plasma were within the acceptable limits Extraction recovery: The method produced consistent extraction recovery at all 3 QC levels. The mean extraction recovery of aminophylline was 93.57 ± 1.28% while that of internal standard was 90.70 ± 1.30%. Stability: The results show that aminophylline is stable in rat plasma under the studied stability conditions and that it is also stable for about 30 days when stored at -80˚C. Pharmacokinetic studies: The method was successfully applied to the quantitative estimation of aminophylline rat plasma following its oral administration to rats. Discussion: Preclinical studies require a rapid and sensitive method for estimating the drug concentration in the rat plasma. The method described in our article includes a simple protein precipitation extraction technique with ultraviolet detection for quantification. The present method is simple and robust for fast high-throughput sample analysis with less analysis cost for analyzing aminophylline in biological samples. In this proposed method, no interfering peaks were observed at the elution times of aminophylline and the internal standard. The method also had sufficient selectivity, specificity, precision and accuracy over the concentration range of 0.5 - 40.0 µg/mL. An isocratic separation technique was used underlining the simplicity of the presented method.Keywords: Aminophyllin, preclinical pharmacokinetics, rat plasma, RPHPLC
Procedia PDF Downloads 2242943 Modelling of Exothermic Reactions during Carbon Fibre Manufacturing and Coupling to Surrounding Airflow
Authors: Musa Akdere, Gunnar Seide, Thomas Gries
Abstract:
Carbon fibres are fibrous materials with a carbon atom amount of more than 90%. They combine excellent mechanicals properties with a very low density. Thus carbon fibre reinforced plastics (CFRP) are very often used in lightweight design and construction. The precursor material is usually polyacrylonitrile (PAN) based and wet-spun. During the production of carbon fibre, the precursor has to be stabilized thermally to withstand the high temperatures of up to 1500 °C which occur during carbonization. Even though carbon fibre has been used since the late 1970s in aerospace application, there is still no general method available to find the optimal production parameters and the trial-and-error approach is most often the only resolution. To have a much better insight into the process the chemical reactions during stabilization have to be analyzed particularly. Therefore, a model of the chemical reactions (cyclization, dehydration, and oxidation) based on the research of Dunham and Edie has been developed. With the presented model, it is possible to perform a complete simulation of the fibre undergoing all zones of stabilization. The fiber bundle is modeled as several circular fibers with a layer of air in-between. Two thermal mechanisms are considered to be the most important: the exothermic reactions inside the fiber and the convective heat transfer between the fiber and the air. The exothermic reactions inside the fibers are modeled as a heat source. Differential scanning calorimetry measurements have been performed to estimate the amount of heat of the reactions. To shorten the required time of a simulation, the number of fibers is decreased by similitude theory. Experiments were conducted to validate the simulation results of the fibre temperature during stabilization. The experiments for the validation were conducted on a pilot scale stabilization oven. To measure the fibre bundle temperature, a new measuring method is developed. The comparison of the results shows that the developed simulation model gives good approximations for the temperature profile of the fibre bundle during the stabilization process.Keywords: carbon fibre, coupled simulation, exothermic reactions, fibre-air-interface
Procedia PDF Downloads 2812942 Assessment of Commercial Antimicrobials Incorporated into Gelatin Coatings and Applied to Conventional Heat-Shrinking Material for the Prevention of Blown Pack Spoilage in Vacuum Packaged Beef Cuts
Authors: Andrey A. Tyuftin, Rachael Reid, Paula Bourke, Patrick J. Cullen, Seamus Fanning, Paul Whyte, Declan Bolton , Joe P. Kerry
Abstract:
One of the primary spoilage issues associated with vacuum-packed beef products is blown pack spoilage (BPS) caused by the psychrophilic spore-forming strain of Clostridium spp. Spores derived from this organism can be activated after heat-shrinking (eg. 90°C for 3 seconds). To date, research into the control of Clostridium spp in beef packaging is limited. Active packaging in the form of antimicrobially-active coatings may be one approach to its control. Antimicrobial compounds may be incorporated into packaging films or coated onto the internal surfaces of packaging films using a carrier matrix. Three naturally-sourced, commercially-available antimicrobials, namely; Auranta FV (AFV) (bitter oranges extract) from Envirotech Innovative Products Ltd, Ireland; Inbac-MDA (IMDA) from Chemital LLC, Spain, mixture of different organic acids and sodium octanoate (SO) from Sigma-Aldrich, UK, were added into gelatin solutions at 2 concentrations: 2.5 and 3.5 times their minimum inhibition concentration (MIC) against Clostridium estertheticum (DSMZ 8809). These gelatin solutions were coated onto the internal polyethylene layer of cold plasma treated, heat-shrinkable laminates conventionally used for meat packaging applications. Atmospheric plasma was used in order to enhance adhesion between packaging films and gelatin coatings. Pouches were formed from these coated packaging materials, and beef cuts which had been inoculated with C. estertheticum were vacuum packaged. Inoculated beef was vacuum packaged without employing active films and this treatment served as the control. All pouches were heat-sealed and then heat-shrunk at 90°C for 3 seconds and incubated at 2°C for 100 days. During this storage period, packs were monitored for the indicators of blown pack spoilage as follows; gas bubbles in drip, loss of vacuum (onset of BPS), blown, the presence of sufficient gas inside the packs to produce pack distension and tightly stretched, “overblown” packs/ packs leaking. Following storage and assessment of indicator date, it was concluded that AFV- and SO-containing packaging inhibited the growth of C. estertheticum, significantly delaying the blown pack spoilage of beef primals. IMDA did not inhibit the growth of C. estertheticum. This may be attributed to differences in release rates and possible reactions with gelatin. Overall, active films were successfully produced following plasma surface treatment, and experimental data demonstrated clearly that the use of antimicrobially-active films could significantly prolong the storage stability of beef primals through the effective control of BPS.Keywords: active packaging, blown pack spoilage, Clostridium, antimicrobials, edible coatings, food packaging, gelatin films, meat science
Procedia PDF Downloads 2672941 Investigation of Distortion and Impact Strength of 304L Butt Joint Using Different Weld Groove
Authors: A. Sharma, S. S. Sandhu, A. Shahi, A. Kumar
Abstract:
The aim of present investigation was to carry out Finite element modeling of distortion in the case of butt weld. 12mm thick AISI 304L plates were butt welded using three different combinations of groove design namely Double U, Double V and Composite. A full simulation of shielded metal arc welding (SMAW) of nonlinear heat transfer is carried out. Aspects like, temperature-dependent thermal properties of AISI stainless steel above liquid phase, the effect of thermal boundary conditions, were included in the model. Since welding heat dissipation characteristics changed due to variable groove design significant changes in the microhardness tensile strength and impact toughness of the joints were observed. The cumulative distortion was found to be least in double V joint followed by the Composite and Double U-joints. All the joints have joint efficiency more than 100%. CVN value of the Double V-groove weld metal was highest. The experimental results and the FEM results were compared and reveal a very good correlation for distortion and weld groove design for a multipass joint with a standard analogy of 83%.Keywords: AISI 304 L, Butt joint, distortion, FEM, groove design, SMAW
Procedia PDF Downloads 4112940 Modeling Residual Modulus of Elasticity of Self-Compacted Concrete Using Artificial Neural Networks
Authors: Ahmed M. Ashteyat
Abstract:
Artificial Neural Network (ANN) models have been widely used in material modeling, inter-correlations, as well as behavior and trend predictions when the nonlinear relationship between system parameters cannot be quantified explicitly and mathematically. In this paper, ANN was used to predict the residual modulus of elasticity (RME) of self compacted concrete (SCC) damaged by heat. The ANN model was built, trained, tested and validated using a total of 112 experimental data sets, gathered from available literature. The data used in model development included temperature, relative humidity conditions, mix proportions, filler types, and fiber type. The result of ANN training, testing, and validation indicated that the RME of SCC, exposed to different temperature and relative humidity levels, could be predicted accurately with ANN techniques. The reliability between the predicated outputs and the actual experimental data was 99%. This show that ANN has strong potential as a feasible tool for predicting residual elastic modulus of SCC damaged by heat within the range of input parameter. The ANN model could be used to estimate the RME of SCC, as a rapid inexpensive substitute for the much more complicated and time consuming direct measurement of the RME of SCC.Keywords: residual modulus of elasticity, artificial neural networks, self compacted-concrete, material modeling
Procedia PDF Downloads 5382939 Getting to Know the Types of Concrete and its Production Methods
Authors: Mokhtar Nikgoo
Abstract:
Definition of Concrete and Concreting: Concrete (in French: Béton) in a broad sense is any substance or combination that consists of a sticky substance with the property of cementation. In general, concrete refers to concrete made by Portland cement, which is produced by mixing fine and coarse aggregates, Portland cement and water. After enough time, this mixture turns into a stone-like substance. During the hardening or processing of the concrete, cement is chemically combined with water to form strong crystals that bind the aggregates together, a process called hydration. During this process, significant heat is released called hydration heat. Additionally, concrete shrinks slightly, especially as excess water evaporates, a phenomenon known as drying shrinkage. The process of hardening and the gradual increase in concrete strength that occurs with it does not end suddenly unless it is artificially interrupted. Instead, it decreases more over long periods of time, although, in practical applications, concrete is usually set after 28 days and is considered at full design strength. Concrete may be made from different types of cement as well as pozzolans, furnace slag, additives, additives, polymers, fibers, etc. It may also be used in the way it is made, heating, water vapor, autoclave, vacuum, hydraulic pressures and various condensers.Keywords: concrete, RCC, batching, cement, Pozzolan, mixing plan
Procedia PDF Downloads 1012938 Acute Kidney Injury in Severe Trauma Patients: Clinical Presentation and Risk Factor Analysis
Authors: Inkyong Yi
Abstract:
Acute kidney injury (AKI) in trauma patients is known to be associated with multiple factors, especially shock and consequent inadequate renal perfusion, yet its clinical presentation is little known in severe trauma patients. Our aim was to investigate the clinical presentation of acute kidney injury and its outcome in severe trauma patients at a level I trauma center. A total of 93 consecutive adult trauma patients with an injury severity score (ISS) of more than 15 were analyzed retrospectively from our Level I trauma center data base. Patients with direct renal injury were excluded. Patients were dichotomized into two groups, according to the presence of AKI. Various clinical parameters were compared between two groups, with Student’s T test and Mann-Whitney’s U test. The AKI group was further dichotomized into patients who recovered within seven days, and those who required more than 7days for recovery or those who did not recover at all. Various clinical parameters associated with outcome were further analyzed. Patients with AKI (n=33, 35%) presented with significantly higher age (61.4±17.3 vs. 45.4±17.3, p < 0.0001), incidence of comorbidities (hypertension; 51.5% vs. 13.3%, OR 6.906 95%CI 2.515-18.967, diabetes; 27.3% vs. 6.7%, OR 5.250, 95%CI 1.472-18.722), odds of head and neck trauma (69.7% vs. 41.7%, OR 3.220, 95%CI 1.306-7.942) and presence of shock during emergency room care (66.7% vs 21.7% OR 7.231, 95%CI, 2.798-18.687). Among AKI patients, patients who recovered within 1 week showed lower peak lactate (4.7mmol/L, 95%CI 2.9-6.5 vs 7.3mmol/L, 95%CI 5.0-9.6, p < 0.0287), lesser units of transfusion during first 24 hours (pRBC; 20.4unit, 95%CI 12.5-28.3 vs. 58.9unit, 95%CI 39.4-78.5, p=0.0003, FFP; 16.6unit, 95%CI 6.8-26.4 vs. 56.1unit, 95%CI 26.9-85.2, p=0.0027). In severe trauma patients, patients with AKI showed different clinical presentations and worse outcomes. Initial presence of shock and higher DIC profiles may be important risk factors for AKI in severe trauma patients. In patients with AKI, peak lactate level and amounts of transfusion are related to recovery.Keywords: acute kidney injury, lactate, transfusion, trauma
Procedia PDF Downloads 2062937 Assessment of Fermentative Activity in Heavy Metal Polluted Soils in Alaverdi Region, Armenia
Authors: V. M. Varagyan, G. A. Gevorgyan, K. V. Grigoryan, A. L. Varagyan
Abstract:
Alaverdi region is situated in the northern part of the Republic of Armenia. Previous studies (1989) in Alaverdi region showed that due to soil irrigation with the highly polluted waters of the Debed and Shnogh rivers, the content of heavy metals in the brown forest steppe soils was significantly higher than the maximum permissible concentration as a result of which the fermentative activity in all the layers of the soils was stressed. Compared to the non-polluted soils, the activity of ferments in the plough layers of the highly polluted soils decreased by 44 - 68% (invertase – 60%, phosphatase – 44%, urease – 66%, catalase – 68%). In case of the soil irrigation with the polluted waters, a decrease in the intensity of fermentative reactions was conditioned by the high content of heavy metals in the soils and changes in chemical composition, physical and physicochemical properties. 20-year changes in the fermentative activity in the brown forest steppe soils in Alaverdi region were investigated. The activity of extracellular ferments in the soils was determined by the unification methods. The study has confirmed that self-recovery process occurs in soils previously polluted with heavy metals which can be revealed by fermentative activity. The investigations revealed that during 1989 – 2009, the activity of ferments in the plough layers of the medium and highly polluted soils increased by 31.2 – 52.6% (invertase – 31.2%, urease – 52.6%, phosphatase – 33.3%, catalase – 41.8%) and 24.1 – 87.0% (invertase – 40.4%, urease – 76.9%, phosphatase – 24.1%, catalase – 87.0%) respectively which indicated that the dynamic properties of the soils, which had been broken due to heavy metal pollution, were improved. In 1989, the activity of the Alaverdi copper smelting plant was temporarily stopped due to financial problems caused by the economic crisis and the absence of market, and the factory again started operation in 1997 and isn’t currently running at full capacity. As a result, the Debed river water has obtained a new chemical composition and comparatively good irrigation properties. Due to irrigation with this water, the gradually recovery of the soil dynamic properties, which had been broken due to irrigation with the waters polluted with heavy metals, was occurred. This is also explained by the fact that in case of irrigation with the partially cleaned water, the soil protective function against pollutants rose due to a content increase in humus and silt fractions. It is supposed that in case of the soil irrigation with the partially cleaned water, the intensity of fermentative reactions wasn’t directly affected by heavy metals.Keywords: alaverdi region, heavy metal pollution, self-recovery, soil fermentative activity
Procedia PDF Downloads 3022936 Preliminary Performance of a Liquid Oxygen-Liquid Methane Pintle Injector for Thrust Variations
Authors: Brunno Vasques
Abstract:
Due to the non-toxic nature and high performance in terms of vacuum specific impulse and density specific impulse, the combination of liquid oxygen and liquid methane have been identified as a promising option for future space vehicle systems. Applications requiring throttling capability include specific missions such as rendezvous, planetary landing and de-orbit as well as weapon systems. One key challenge in throttling liquid rocket engines is maintaining an adequate pressure drop across the injection elements, which is necessary to provide good propellant atomization and mixing as well as system stability. The potential scalability of pintle injectors, their great suitability to throttling and inherent combustion stability characteristics led to investigations using a variety of propellant combinations, including liquid oxygen and hydrogen and fluorine-oxygen and methane. Presented here are the preliminary performance and heat transfer information obtained during hot-fire testing of a pintle injector running on liquid oxygen and liquid methane propellants. The specific injector design selected for this purpose is a multi-configuration building block version with replaceable injection elements, providing flexibility to accommodate hardware modifications with minimum difficulty. On the basis of single point runs and the use of a copper/nickel segmented calorimetric combustion chamber and associated transient temperature measurement, the characteristic velocity efficiency, injector footprint and heat fluxes could be established for the first proposed pintle configuration as a function of injection velocity- and momentum-ratios. A description of the test-bench is presented as well as a discussion of irregularities encountered during testing, such as excessive heat flux into the pintle tip resulting from certain operating conditions.Keywords: green propellants, hot-fire performance, rocket engine throttling, pintle injector
Procedia PDF Downloads 3442935 Numerical and Experimental Analysis of Temperature Distribution and Electric Field in a Natural Rubber Glove during Microwave Heating
Authors: U. Narumitbowonkul, P. Keangin, P. Rattanadecho
Abstract:
Both numerical and experimental investigation of the temperature distribution and electric field in a natural rubber glove (NRG) during microwave heating are studied. A three-dimensional model of NRG and microwave oven are considered in this work. The influences of position, heating time and rotation angle of NRG on temperature distribution and electric field are presented in details. The coupled equations of electromagnetic wave propagation and heat transfer are solved using the finite element method (FEM). The numerical model is validated with an experimental study at a frequency of 2.45 GHz. The results show that the numerical results closely match the experimental results. Furthermore, it is found that the temperature distribution and electric field increases with increasing heating time. The hot spot zone appears in NRG at the tip of middle finger while the maximum temperature occurs in case of rotation angle of NRG = 60 degree. This investigation provides the essential aspects for a fundamental understanding of heat transport of NRG using microwave energy in industry.Keywords: electric field, finite element method, microwave energy, natural rubber glove
Procedia PDF Downloads 2672934 Conceptual Design of Experimental Helium Cooling Loop for Indian TBM R&D Experiments
Authors: B. K. Yadav, A. Gandhi, A. K. Verma, T. S. Rao, A. Saraswat, E. R. Kumar, M. Sarkar, K. N. Vyas
Abstract:
This paper deals with the conceptual design of Experimental Helium Cooling Loop (EHCL) for Indian Test Blanket Module (TBM) and its related thermal hydraulic experiments. Indian TBM team is developing Lead Lithium cooled Ceramic Breeder (IN-LLCB) TBM to be tested in ITER. The TBM box structure is cooled by high pressure (8 MPa) and high temperature (300-500C) helium gas. The first wall of TBM made of complex channel geometry having several parallel channels carrying helium gas for efficient heat extraction. Several mock-ups of these channels need to be tested before finalizing the TBM first wall design and fabrication. Besides the individual testing of such mock-ups of breeding blanket, the testing of Pb-Li to helium heat exchanger, the operational experience of helium loop and understanding of the behaviour of high pressure and high temperature system components are very essential for final development of Helium Cooling System for LLCB TBM in ITER. The main requirements and characteristics of the EHCL and its conceptual design are presented in this paper.Keywords: DEMO, EHCL, ITER, LLCB TBM
Procedia PDF Downloads 3852933 The Inverse Problem in the Process of Heat and Moisture Transfer in Multilayer Walling
Authors: Bolatbek Rysbaiuly, Nazerke Rysbayeva, Aigerim Rysbayeva
Abstract:
Relevance: Energy saving elevated to public policy in almost all developed countries. One of the areas for energy efficiency is improving and tightening design standards. In the tie with the state standards, make high demands for thermal protection of buildings. Constructive arrangement of layers should ensure normal operation in which the humidity of materials of construction should not exceed a certain level. Elevated levels of moisture in the walls can be attributed to a defective condition, as moisture significantly reduces the physical, mechanical and thermal properties of materials. Absence at the design stage of modeling the processes occurring in the construction and predict the behavior of structures during their work in the real world leads to an increase in heat loss and premature aging structures. Method: To solve this problem, widely used method of mathematical modeling of heat and mass transfer in materials. The mathematical modeling of heat and mass transfer are taken into the equation interconnected layer [1]. In winter, the thermal and hydraulic conductivity characteristics of the materials are nonlinear and depends on the temperature and moisture in the material. In this case, the experimental method of determining the coefficient of the freezing or thawing of the material becomes much more difficult. Therefore, in this paper we propose an approximate method for calculating the thermal conductivity and moisture permeability characteristics of freezing or thawing material. Questions. Following the development of methods for solving the inverse problem of mathematical modeling allows us to answer questions that are closely related to the rational design of fences: Where the zone of condensation in the body of the multi-layer fencing; How and where to apply insulation rationally his place; Any constructive activities necessary to provide for the removal of moisture from the structure; What should be the temperature and humidity conditions for the normal operation of the premises enclosing structure; What is the longevity of the structure in terms of its components frost materials. Tasks: The proposed mathematical model to solve the following problems: To assess the condition of the thermo-physical designed structures at different operating conditions and select appropriate material layers; Calculate the temperature field in a structurally complex multilayer structures; When measuring temperature and moisture in the characteristic points to determine the thermal characteristics of the materials constituting the surveyed construction; Laboratory testing to significantly reduce test time, and eliminates the climatic chamber and expensive instrumentation experiments and research; Allows you to simulate real-life situations that arise in multilayer enclosing structures associated with freezing, thawing, drying and cooling of any layer of the building material.Keywords: energy saving, inverse problem, heat transfer, multilayer walling
Procedia PDF Downloads 400