Search results for: data mining technique
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30155

Search results for: data mining technique

28385 Difficulties Posed by Disability on the Acquisition of Higher Education in Inclusive Setting by Physically Challenged Students

Authors: G. Fatima, R. Bashir, M. Saeed Akhtar, M. Malik, M. Safder, D. Nayab

Abstract:

The main purpose of this quantitative study was to investigate challenges and difficulties being encountered by physically challenged students in inclusive settings at higher education level. A self-developed and validated questionnaire (Cronbach alpha: 0.879) was employed for data collected from a sample of fifty six (56) graduate and continuing students with physical disabilities (males:46, females:10) selected through snow ball sampling technique from colleges and universities of Pakistan. The participants were required to respond on three point criteria (no, to some extent, yes). Data were analyzed by using SPSS. Independent sample t-test and One Way Analysis of Variance (ANOVA) was run to compare mean scores of responses of physically challenged students on the basis of their gender, education, types of physical disability, types of institutions, provinces, and status. Frequencies were run to have an overall picture of challenges faced by physically challenged students. Major findings reflected that physically challenged students were encountering problems in transportation, accessibility, and financial support, etc. Conclusions were drawn and recommendations were made.

Keywords: physically challenged students, inclusive setting, higher education, accessibility

Procedia PDF Downloads 412
28384 Continuous-Time Analysis And Performance Assessment For Digital Control Of High-Frequency Switching Synchronous Dc-Dc Converter

Authors: Rihab Hamdi, Amel Hadri Hamida, Ouafae Bennis, Sakina Zerouali

Abstract:

This paper features a performance analysis and robustness assessment of a digitally controlled DC-DC three-cell buck converter associated in parallel, operating in continuous conduction mode (CCM), facing feeding parameters variation and loads disturbance. The control strategy relies on the continuous-time with an averaged modeling technique for high-frequency switching converter. The methodology is to modulate the complete design procedure, in regard to the existence of an instantaneous current operating point for designing the digital closed-loop, to the same continuous-time domain. Moreover, the adopted approach is to include a digital voltage control (DVC) technique, taking an account for digital control delays and sampling effects, which aims at improving efficiency and dynamic response and preventing generally undesired phenomena. The results obtained under load change, input change, and reference change clearly demonstrates an excellent dynamic response of the proposed technique, also as provide stability in any operating conditions, the effectiveness is fast with a smooth tracking of the specified output voltage. Simulations studies in MATLAB/Simulink environment are performed to verify the concept.

Keywords: continuous conduction mode, digital control, parallel multi-cells converter, performance analysis, power electronics

Procedia PDF Downloads 152
28383 Impact of Capital Structure, Dividend Policy and Sustainability on Value of Firm: A Case Study of Spinning Textile Sector of Pakistan

Authors: Zahid Ahmad, Samia Yousaf

Abstract:

The main purpose of this study is to evaluate and assess the financial position, operating performance, and recent outlook of the companies. This study investigates the impact of capital structure, dividend policy and sustainability on the value of firms of textile spinning sector of Pakistan which is listed on Pakistan stock exchange. The panel data technique has been applied to this group of textile sector which is textile spinning. This study covers the last ten years of time period. All the data related to the variables have been collected from the annual reports and financial statements of the textile sector firms. There are differently related determinants to measure the capital structure which are fixed assets turnover ratio, debt ratio, equity ratio, debt to equity ratio, assets tangibility, and shareholder’s equity. Dividend policy is being measured by two determinants which are earning per share (EPS) and dividend payout ratio. Sustainability is being measured by three suitable factors which are sales growth, gross profit margin ratio and firm size. These are three independent variables and their determinants of this study. Value of firm is measured through the return on asset (ROA). Capital structure is at the top of the list among all the three variables. According to the results of this research work, somewhere all the three variables generates positive and significant effect on the firm’s performance and its growth.

Keywords: capital structure, dividend policy, panel data, sustainability

Procedia PDF Downloads 232
28382 A Comparative Assessment of Information Value, Fuzzy Expert System Models for Landslide Susceptibility Mapping of Dharamshala and Surrounding, Himachal Pradesh, India

Authors: Kumari Sweta, Ajanta Goswami, Abhilasha Dixit

Abstract:

Landslide is a geomorphic process that plays an essential role in the evolution of the hill-slope and long-term landscape evolution. But its abrupt nature and the associated catastrophic forces of the process can have undesirable socio-economic impacts, like substantial economic losses, fatalities, ecosystem, geomorphologic and infrastructure disturbances. The estimated fatality rate is approximately 1person /100 sq. Km and the average economic loss is more than 550 crores/year in the Himalayan belt due to landslides. This study presents a comparative performance of a statistical bivariate method and a machine learning technique for landslide susceptibility mapping in and around Dharamshala, Himachal Pradesh. The final produced landslide susceptibility maps (LSMs) with better accuracy could be used for land-use planning to prevent future losses. Dharamshala, a part of North-western Himalaya, is one of the fastest-growing tourism hubs with a total population of 30,764 according to the 2011 census and is amongst one of the hundred Indian cities to be developed as a smart city under PM’s Smart Cities Mission. A total of 209 landslide locations were identified in using high-resolution linear imaging self-scanning (LISS IV) data. The thematic maps of parameters influencing landslide occurrence were generated using remote sensing and other ancillary data in the GIS environment. The landslide causative parameters used in the study are slope angle, slope aspect, elevation, curvature, topographic wetness index, relative relief, distance from lineaments, land use land cover, and geology. LSMs were prepared using information value (Info Val), and Fuzzy Expert System (FES) models. Info Val is a statistical bivariate method, in which information values were calculated as the ratio of the landslide pixels per factor class (Si/Ni) to the total landslide pixel per parameter (S/N). Using this information values all parameters were reclassified and then summed in GIS to obtain the landslide susceptibility index (LSI) map. The FES method is a machine learning technique based on ‘mean and neighbour’ strategy for the construction of fuzzifier (input) and defuzzifier (output) membership function (MF) structure, and the FR method is used for formulating if-then rules. Two types of membership structures were utilized for membership function Bell-Gaussian (BG) and Trapezoidal-Triangular (TT). LSI for BG and TT were obtained applying membership function and if-then rules in MATLAB. The final LSMs were spatially and statistically validated. The validation results showed that in terms of accuracy, Info Val (83.4%) is better than BG (83.0%) and TT (82.6%), whereas, in terms of spatial distribution, BG is best. Hence, considering both statistical and spatial accuracy, BG is the most accurate one.

Keywords: bivariate statistical techniques, BG and TT membership structure, fuzzy expert system, information value method, machine learning technique

Procedia PDF Downloads 129
28381 Ambient Electrospray Deposition: An Efficient Technique to Immobilize Laccase on Cheap Electrodes With Unprecedented Reuse and Storage Performances

Authors: Mattea Carmen Castrovilli, Antonella Cartoni

Abstract:

Electrospray ionisation (ESI), a well-established technique widely used to produce ion beams of biomolecules in mass spectrometry (ESI-MS), can be used for ambient soft landing of enzymes on a specific substrate. In this work, we show how the ambient electrospray deposition (ESD) technique can be successfully exploited for manufacturing a promising, green-friendly electrochemical amperometric laccase-based biosensor with unprecedented reuse and storage performance. These biosensors have been manufactured by spraying a laccase solution of 2μg/μL at 20% of methanol on a commercial carbon screen printed electrode (C-SPE) using a custom ESD set-up. The laccase-based ESD biosensor has been tested against catechol compounds in the linear range 2-100 μM, with a limit of detection of 1.7 μM, without interference from cadmium, chrome, arsenic, and zinc and without any memory effects, but showing a matrix effect in lake and well water. The ESD biosensor shows enhanced performances compared to the ones fabricated with other immobilization methods, like drop-casting. Indeed, it retains 100% activity up to two months of storage at ambient conditions without any special care and working stability up to 63 measurements on the same electrode just prepared and 20 on a one-year-old electrode subjected to redeposition together with a 100% resistance to use of the same electrode in subsequent days. The ESD method is a one-step, environmentally friendly method that allows the deposition of the bio-recognition layer without using any additional chemicals. The promising results in terms of storage and working stability also obtained with the more fragile lactate oxidase enzyme suggest these improvements should be attributed to the ESD technique rather than to the bioreceptor, highlighting how the ESD could be useful in reducing pollution from disposable devices. Acknowledgment: The understanding at the molecular level of this promising biosensor by using different spectroscopies, microscopies and analytical techniques is the subject of our PRIN 2022 project ESILARANTE.

Keywords: reuse, storage performance, immobilization, electrospray deposition, biosensor, laccase, catechol detection, green chemistry

Procedia PDF Downloads 63
28380 Anti-Forensic Countermeasure: An Examination and Analysis Extended Procedure for Information Hiding of Android SMS Encryption Applications

Authors: Ariq Bani Hardi

Abstract:

Empowerment of smartphone technology is growing very rapidly in various fields of science. One of the mobile operating systems that dominate the smartphone market today is Android by Google. Unfortunately, the expansion of mobile technology is misused by criminals to hide the information that they store or exchange with each other. It makes law enforcement more difficult to prove crimes committed in the judicial process (anti-forensic). One of technique that used to hide the information is encryption, such as the usages of SMS encryption applications. A Mobile Forensic Examiner or an investigator should prepare a countermeasure technique if he finds such things during the investigation process. This paper will discuss an extension procedure if the investigator found unreadable SMS in android evidence because of encryption. To define the extended procedure, we create and analyzing a dataset of android SMS encryption application. The dataset was grouped by application characteristics related to communication permissions, as well as the availability of source code and the documentation of encryption scheme. Permissions indicate the possibility of how applications exchange the data and keys. Availability of the source code and the encryption scheme documentation can show what the cryptographic algorithm specification is used, how long the key length, how the process of key generation, key exchanges, encryption/decryption is done, and other related information. The output of this paper is an extended or alternative procedure for examination and analysis process of android digital forensic. It can be used to help the investigators while they got a confused cause of SMS encryption during examining and analyzing. What steps should the investigator take, so they still have a chance to discover the encrypted SMS in android evidence?

Keywords: anti-forensic countermeasure, SMS encryption android, examination and analysis, digital forensic

Procedia PDF Downloads 129
28379 Research on Internet Attention of Tourism and Marketing Strategy in Northeast Sichuan Economic Zone in China Based on Baidu Index

Authors: Chuanqiao Zheng, Wei Zeng, Haozhen Lin

Abstract:

As of March 2020, the number of Chinese netizens has reached 904 million. The proportion of Internet users accessing the Internet through mobile phones is as high as 99.3%. Under the background of 'Internet +', tourists have a stronger sense of independence in the choice of tourism destinations and tourism products. Tourists are more inclined to learn about the relevant information on tourism destinations and other tourists' evaluations of tourist products through the Internet. The search engine, as an integrated platform that contains a wealth of information, is highly valuable to the analysis of the characteristics of the Internet attention given to various tourism destinations, through big data mining and analysis. This article uses the Baidu Index as the data source, which is one of the products of Baidu Search. The Baidu Index is based on big data, which collects and shares the search results of a large number of Internet users on the Baidu search engine. The big data used in this article includes search index, demand map, population profile, etc. The main research methods used are: (1) based on the search index, analyzing the Internet attention given to the tourism in five cities in Northeast Sichuan at different times, so as to obtain the overall trend and individual characteristics of tourism development in the region; (2) based on the demand map and the population profile, analyzing the demographic characteristics and market positioning of the tourist groups in these cities to understand the characteristics and needs of the target groups; (3) correlating the Internet attention data with the permanent population of each province in China in the corresponding to construct the Boston matrix of the Internet attention rate of the Northeast Sichuan tourism, obtain the tourism target markets, and then propose development strategies for different markets. The study has found that: a) the Internet attention given to the tourism in the region can be categorized into tourist off-season and peak season; the Internet attention given to tourism in different cities is quite different. b) tourists look for information including tour guide information, ticket information, traffic information, weather information, and information on the competing tourism cities; with regard to the population profile, the main group of potential tourists searching for the keywords of tourism in the five prefecture-level cities in Northeast Sichuan are youth. The male to female ratio is about 6 to 4, with males being predominant. c) through the construction of the Boston matrix, it is concluded that the star market for tourism in the Northeast Sichuan Economic Zone includes Sichuan and Shaanxi; the cash cows market includes Hainan and Ningxia; the question market includes Jiangsu and Shanghai; the dog market includes Hubei and Jiangxi. The study concludes with the following planning strategies and recommendations: i) creating a diversified business format that integrates cultural and tourism; ii) creating a brand image of niche tourism; iii) focusing on the development of tourism products; iv) innovating composite three-dimensional marketing channels.

Keywords: Baidu Index, big data, internet attention, tourism

Procedia PDF Downloads 124
28378 Asia Pacific University of Technology and Innovation

Authors: Esther O. Adebitan, Florence Oyelade

Abstract:

The Millennium Development Goals (MDGs) was initiated by the UN member nations’ aspiration for the betterment of human life. It is expressed in a set of numerical ‎and time-bound targets. In more recent time, the aspiration is shifting away from just the achievement to the sustainability of achieved MDGs beyond the 2015 target. The main objective of this study was assessing how much the hotel industry within the Nigerian Federal Capital Territory (FCT) as a member of the global community is involved in the achievement of sustainable MDGs within the FCT. The study had two population groups consisting of 160 hotels and the communities where these are located. Stratified random sampling technique was adopted in selecting 60 hotels based on large, medium ‎and small hotels categorisation, while simple random sampling technique was used to elicit information from 30 residents of three of the hotels host communities. The study was guided by tree research questions and two hypotheses aimed to ascertain if hotels see the need to be involved in, and have policies in pursuit of achieving sustained MDGs, and to determine public opinion regarding hotels contribution towards the achievement of the MDGs in their communities. A 22 item questionnaire was designed ‎and administered to hotel managers while 11 item questionnaire was designed ‎and administered to hotels’ host communities. Frequency distribution and percentage as well as Chi-square were used to analyse data. Results showed no significant involvement of the hotel industry in achieving sustained MDGs in the FCT and that there was disconnect between the hotels and their immediate communities. The study recommended that hotels should, as part of their Corporate Social Responsibility pick at least one of the goals to work on in order to be involved in the attainment of enduring Millennium Development Goals.

Keywords: MDGs, hotels, FCT, host communities, corporate social responsibility

Procedia PDF Downloads 419
28377 Discussion on Big Data and One of Its Early Training Application

Authors: Fulya Gokalp Yavuz, Mark Daniel Ward

Abstract:

This study focuses on a contemporary and inevitable topic of Data Science and its exemplary application for early career building: Big Data and Leaving Learning Community (LLC). ‘Academia’ and ‘Industry’ have a common sense on the importance of Big Data. However, both of them are in a threat of missing the training on this interdisciplinary area. Some traditional teaching doctrines are far away being effective on Data Science. Practitioners needs some intuition and real-life examples how to apply new methods to data in size of terabytes. We simply explain the scope of Data Science training and exemplified its early stage application with LLC, which is a National Science Foundation (NSF) founded project under the supervision of Prof. Ward since 2014. Essentially, we aim to give some intuition for professors, researchers and practitioners to combine data science tools for comprehensive real-life examples with the guides of mentees’ feedback. As a result of discussing mentoring methods and computational challenges of Big Data, we intend to underline its potential with some more realization.

Keywords: Big Data, computation, mentoring, training

Procedia PDF Downloads 364
28376 Development of a Computer Aided Diagnosis Tool for Brain Tumor Extraction and Classification

Authors: Fathi Kallel, Abdulelah Alabd Uljabbar, Abdulrahman Aldukhail, Abdulaziz Alomran

Abstract:

The brain is an important organ in our body since it is responsible about the majority actions such as vision, memory, etc. However, different diseases such as Alzheimer and tumors could affect the brain and conduct to a partial or full disorder. Regular diagnosis are necessary as a preventive measure and could help doctors to early detect a possible trouble and therefore taking the appropriate treatment, especially in the case of brain tumors. Different imaging modalities are proposed for diagnosis of brain tumor. The powerful and most used modality is the Magnetic Resonance Imaging (MRI). MRI images are analyzed by doctor in order to locate eventual tumor in the brain and describe the appropriate and needed treatment. Diverse image processing methods are also proposed for helping doctors in identifying and analyzing the tumor. In fact, a large Computer Aided Diagnostic (CAD) tools including developed image processing algorithms are proposed and exploited by doctors as a second opinion to analyze and identify the brain tumors. In this paper, we proposed a new advanced CAD for brain tumor identification, classification and feature extraction. Our proposed CAD includes three main parts. Firstly, we load the brain MRI. Secondly, a robust technique for brain tumor extraction is proposed. This technique is based on both Discrete Wavelet Transform (DWT) and Principal Component Analysis (PCA). DWT is characterized by its multiresolution analytic property, that’s why it was applied on MRI images with different decomposition levels for feature extraction. Nevertheless, this technique suffers from a main drawback since it necessitates a huge storage and is computationally expensive. To decrease the dimensions of the feature vector and the computing time, PCA technique is considered. In the last stage, according to different extracted features, the brain tumor is classified into either benign or malignant tumor using Support Vector Machine (SVM) algorithm. A CAD tool for brain tumor detection and classification, including all above-mentioned stages, is designed and developed using MATLAB guide user interface.

Keywords: MRI, brain tumor, CAD, feature extraction, DWT, PCA, classification, SVM

Procedia PDF Downloads 253
28375 Prevalence and Associated Factors of Attention Deficit Hyperactivity Disorder among Children Age 6 to 17 Years Old Living in Girja District, Oromia Regional State, Rural Ethiopia: Community Based Cross-Sectional Study

Authors: Hirbaye Mokona, Abebaw Gebeyehu, Aemro Zerihun

Abstract:

Introduction: Attention deficit hyperactivity disorder is serious public health problem affecting millions of children throughout the world. Method: A cross-sectional study conducted from May to June 2015 among children age 6 to 17 years living in rural area of Girja district. Multi-stage cluster sampling technique was used to select 1302 study participants. Disruptive Behavior Disorder rating scale was used to collect the data. Data were coded, entered and cleaned by Epi-Data version 3.1 and analyzed by SPSS version 20. Logistic regression analysis was used and Variables that have P-values less than 0.05 on multivariable logistic regression was considered as statistically significant. Results: Prevalence of Attention deficit hyperactivity disorder (ADHD) among children age 6 to 17 years was 7.3%. Being male [AOR=1.81, 95%CI: (1.13, 2.91)]; living with single parent [AOR=5.0, 95%CI: (2.35, 10.65)]; child birth order/rank [AOR=2.35, 95%CI: (1.30, 4.25)]; low family socio-economic status [AOR= 2.43, 95%CI: (1.29, 4.59)]; maternal alcohol/khat use during pregnancy [AOR=3.14, 95%CI: (1.37, 7.37)] and complication at delivery [AOR=3.56, 95%CI: (1.19, 10.64)] were more likely to develop Attention deficit hyperactivity disorder. Conclusion: In this study, the prevalence of Attention deficit hyperactivity disorder was similar with worldwide prevalence. Prevention and early management of its modifiable risk factors should be carryout alongside increasing community awareness.

Keywords: attention deficit hyperactivity disorder, ADHD, associated factors, children, prevalence

Procedia PDF Downloads 188
28374 Fabrication of InGaAs P-I-N Micro-Photodiode Sensor Array

Authors: Jyun-Hao Liao, Chien-Ju Chen, Chia-Jui Yu, Meng Chyi Wu, Chia-Ching Wu

Abstract:

In this letter, we reported the fabrication of InGaAs micro-photodiode sensor array with the rapid thermal diffusion (RTD) technique. The spin-on dopant source Zn was used to form the p-type region in InP layer. Through the RTD technique, the InP/InGaAs heterostructure was formed. We improved our fabrication on the p-i-n photodiode to micro size which pixel is 7.8um, and the pitch is 12.8um. The proper SiNx was deposited to form the passivation layer. The leakage current of single pixel decrease to 3.3pA at -5V, and 35fA at -10mV. The leakage current densities of each voltage are 21uA/cm² at -5V and 0.223uA/cm² at -10mV. As we focus on the wavelength from 0.9um to 1.7um, the optimized Si/Al₂O₃ bilayers are deposited to form the AR-coating.

Keywords: InGaAs, micro sensor array, p-i-n photodiode, rapid thermal diffusion, Zn diffusion

Procedia PDF Downloads 319
28373 Towards a Secure Storage in Cloud Computing

Authors: Mohamed Elkholy, Ahmed Elfatatry

Abstract:

Cloud computing has emerged as a flexible computing paradigm that reshaped the Information Technology map. However, cloud computing brought about a number of security challenges as a result of the physical distribution of computational resources and the limited control that users have over the physical storage. This situation raises many security challenges for data integrity and confidentiality as well as authentication and access control. This work proposes a security mechanism for data integrity that allows a data owner to be aware of any modification that takes place to his data. The data integrity mechanism is integrated with an extended Kerberos authentication that ensures authorized access control. The proposed mechanism protects data confidentiality even if data are stored on an untrusted storage. The proposed mechanism has been evaluated against different types of attacks and proved its efficiency to protect cloud data storage from different malicious attacks.

Keywords: access control, data integrity, data confidentiality, Kerberos authentication, cloud security

Procedia PDF Downloads 335
28372 CompPSA: A Component-Based Pairwise RNA Secondary Structure Alignment Algorithm

Authors: Ghada Badr, Arwa Alturki

Abstract:

The biological function of an RNA molecule depends on its structure. The objective of the alignment is finding the homology between two or more RNA secondary structures. Knowing the common functionalities between two RNA structures allows a better understanding and a discovery of other relationships between them. Besides, identifying non-coding RNAs -that is not translated into a protein- is a popular application in which RNA structural alignment is the first step A few methods for RNA structure-to-structure alignment have been developed. Most of these methods are partial structure-to-structure, sequence-to-structure, or structure-to-sequence alignment. Less attention is given in the literature to the use of efficient RNA structure representation and the structure-to-structure alignment methods are lacking. In this paper, we introduce an O(N2) Component-based Pairwise RNA Structure Alignment (CompPSA) algorithm, where structures are given as a component-based representation and where N is the maximum number of components in the two structures. The proposed algorithm compares the two RNA secondary structures based on their weighted component features rather than on their base-pair details. Extensive experiments are conducted illustrating the efficiency of the CompPSA algorithm when compared to other approaches and on different real and simulated datasets. The CompPSA algorithm shows an accurate similarity measure between components. The algorithm gives the flexibility for the user to align the two RNA structures based on their weighted features (position, full length, and/or stem length). Moreover, the algorithm proves scalability and efficiency in time and memory performance.

Keywords: alignment, RNA secondary structure, pairwise, component-based, data mining

Procedia PDF Downloads 459
28371 Application of Latent Class Analysis and Self-Organizing Maps for the Prediction of Treatment Outcomes for Chronic Fatigue Syndrome

Authors: Ben Clapperton, Daniel Stahl, Kimberley Goldsmith, Trudie Chalder

Abstract:

Chronic fatigue syndrome (CFS) is a condition characterised by chronic disabling fatigue and other symptoms that currently can't be explained by any underlying medical condition. Although clinical trials support the effectiveness of cognitive behaviour therapy (CBT), the success rate for individual patients is modest. Patients vary in their response and little is known which factors predict or moderate treatment outcomes. The aim of the project is to develop a prediction model from baseline characteristics of patients, such as demographics, clinical and psychological variables, which may predict likely treatment outcome and provide guidance for clinical decision making and help clinicians to recommend the best treatment. The project is aimed at identifying subgroups of patients with similar baseline characteristics that are predictive of treatment effects using modern cluster analyses and data mining machine learning algorithms. The characteristics of these groups will then be used to inform the types of individuals who benefit from a specific treatment. In addition, results will provide a better understanding of for whom the treatment works. The suitability of different clustering methods to identify subgroups and their response to different treatments of CFS patients is compared.

Keywords: chronic fatigue syndrome, latent class analysis, prediction modelling, self-organizing maps

Procedia PDF Downloads 226
28370 Effects of Financial and Non-Financial Accounting Information Reports on Corporate Credibility and Image of the Listed-Firms in Thailand

Authors: Anocha Rojanapanich

Abstract:

This research investigates the effect of financial accounting information and non-financial accounting reports on corporate credibility via strength of board of directors and market environment volatility as moderating effect. Data in this research is collected by questionnaire form non-financial companies listed on the Stock Exchange of Thailand. Multiple regression statistic technique is used for analyzing the data. Results find that firms with greater financial accounting information reports and non-financial accounting information reports will gain greater corporate credibility. Therefore, the corporate reporting has the value for the firms. Moreover, the strength of board of directors will positively moderate the financial and non-financial accounting information reports and corporate credibility relationship. And market environment volatility will negatively moderate the financial and nonfinancial accounting information reports and corporate credibility relationship and the contribution of accounting information reports on corporate credibility is generated to the corporate image. That is the corporate image has affected by corporate credibility.

Keywords: corporate credibility, financial and non-financial reports, firms performance, corporate image

Procedia PDF Downloads 299
28369 Development of Partial Sulphonated Poly(Vinylidene Fluoride - Hexafluoro Propylene)–Montmorillonite Nano-Composites as Proton Exchange Membranes

Authors: K. Selvakumar, J. Kalaiselvimary, B. Jansirani, M. Ramesh Prabhu

Abstract:

Proton conducting sulphonated poly (vinylidene fluoride- hexafluoro propylene) PVdF-HFP membranes were modified with nano – sized montmorillonite (MMT) through homogeneous dispersive mixing and solution casting technique for fuel cell applications. The prepared composite membranes were characterized using Fourier Transform Infrared Spectroscopy and 1HNMR technique. The suitability of the composite membranes for fuel cell application was evaluated in terms of water uptake, swelling behavior, and proton conductivity. These composites showed good conductivities and durability and expected to be used in the development of proton exchange membrane for fuel cells.

Keywords: composite, proton conduction, sulphonation, water uptake

Procedia PDF Downloads 249
28368 Developing Optical Sensors with Application of Cancer Detection by Elastic Light Scattering Spectroscopy

Authors: May Fadheel Estephan, Richard Perks

Abstract:

Context: Cancer is a serious health concern that affects millions of people worldwide. Early detection and treatment are essential for improving patient outcomes. However, current methods for cancer detection have limitations, such as low sensitivity and specificity. Research Aim: The aim of this study was to develop an optical sensor for cancer detection using elastic light scattering spectroscopy (ELSS). ELSS is a noninvasive optical technique that can be used to characterize the size and concentration of particles in a solution. Methodology: An optical probe was fabricated with a 100-μm-diameter core and a 132-μm centre-to-centre separation. The probe was used to measure the ELSS spectra of polystyrene spheres with diameters of 2, 0.8, and 0.413 μm. The spectra were then analysed to determine the size and concentration of the spheres. Findings: The results showed that the optical probe was able to differentiate between the three different sizes of polystyrene spheres. The probe was also able to detect the presence of polystyrene spheres in suspension concentrations as low as 0.01%. Theoretical Importance: The results of this study demonstrate the potential of ELSS for cancer detection. ELSS is a noninvasive technique that can be used to characterize the size and concentration of cells in a tissue sample. This information can be used to identify cancer cells and assess the stage of the disease. Data Collection: The data for this study were collected by measuring the ELSS spectra of polystyrene spheres with different diameters. The spectra were collected using a spectrometer and a computer. Analysis Procedures: The ELSS spectra were analysed using a software program to determine the size and concentration of the spheres. The software program used a mathematical algorithm to fit the spectra to a theoretical model. Question Addressed: The question addressed by this study was whether ELSS could be used to detect cancer cells. The results of the study showed that ELSS could be used to differentiate between different sizes of cells, suggesting that it could be used to detect cancer cells. Conclusion: The findings of this research show the utility of ELSS in the early identification of cancer. ELSS is a noninvasive method for characterizing the number and size of cells in a tissue sample. To determine cancer cells and determine the disease's stage, this information can be employed. Further research is needed to evaluate the clinical performance of ELSS for cancer detection.

Keywords: elastic light scattering spectroscopy, polystyrene spheres in suspension, optical probe, fibre optics

Procedia PDF Downloads 82
28367 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network

Authors: Abdulaziz Alsadhan, Naveed Khan

Abstract:

In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion Detection System (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw data set for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. These optimal feature subset used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.

Keywords: Particle Swarm Optimization (PSO), Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP)

Procedia PDF Downloads 367
28366 A Generalisation of Pearson's Curve System and Explicit Representation of the Associated Density Function

Authors: S. B. Provost, Hossein Zareamoghaddam

Abstract:

A univariate density approximation technique whereby the derivative of the logarithm of a density function is assumed to be expressible as a rational function is introduced. This approach which extends Pearson’s curve system is solely based on the moments of a distribution up to a determinable order. Upon solving a system of linear equations, the coefficients of the polynomial ratio can readily be identified. An explicit solution to the integral representation of the resulting density approximant is then obtained. It will be explained that when utilised in conjunction with sample moments, this methodology lends itself to the modelling of ‘big data’. Applications to sets of univariate and bivariate observations will be presented.

Keywords: density estimation, log-density, moments, Pearson's curve system

Procedia PDF Downloads 282
28365 Space Telemetry Anomaly Detection Based On Statistical PCA Algorithm

Authors: Bassem Nassar, Wessam Hussein, Medhat Mokhtar

Abstract:

The crucial concern of satellite operations is to ensure the health and safety of satellites. The worst case in this perspective is probably the loss of a mission but the more common interruption of satellite functionality can result in compromised mission objectives. All the data acquiring from the spacecraft are known as Telemetry (TM), which contains the wealth information related to the health of all its subsystems. Each single item of information is contained in a telemetry parameter, which represents a time-variant property (i.e. a status or a measurement) to be checked. As a consequence, there is a continuous improvement of TM monitoring systems in order to reduce the time required to respond to changes in a satellite's state of health. A fast conception of the current state of the satellite is thus very important in order to respond to occurring failures. Statistical multivariate latent techniques are one of the vital learning tools that are used to tackle the aforementioned problem coherently. Information extraction from such rich data sources using advanced statistical methodologies is a challenging task due to the massive volume of data. To solve this problem, in this paper, we present a proposed unsupervised learning algorithm based on Principle Component Analysis (PCA) technique. The algorithm is particularly applied on an actual remote sensing spacecraft. Data from the Attitude Determination and Control System (ADCS) was acquired under two operation conditions: normal and faulty states. The models were built and tested under these conditions and the results shows that the algorithm could successfully differentiate between these operations conditions. Furthermore, the algorithm provides competent information in prediction as well as adding more insight and physical interpretation to the ADCS operation.

Keywords: space telemetry monitoring, multivariate analysis, PCA algorithm, space operations

Procedia PDF Downloads 417
28364 Destruction of Coastal Wetlands in Harper City-Liberia: Setting Nature against the Future Society

Authors: Richard Adu Antwako

Abstract:

Coastal wetland destruction and its consequences have recently taken the center stage of global discussions. This phenomenon is no gray area to humanity as coastal wetland-human interaction seems inevitably ingrained in the earliest civilizations, amidst the demanding use of its resources to meet their necessities. The severity of coastal wetland destruction parallels with growing civilizations, and it is against this backdrop that, this paper interrogated the causes of coastal wetland destruction in Harper City in Liberia, compared the degree of coastal wetland stressors to the non-equilibrium thermodynamic scale as well as suggested an integrated coastal zone management to address the problems. Literature complemented the primary data gleaned via global positioning system devices, field observation, questionnaire, and interviews. Multi-sampling techniques were used to generate data from the sand miners, institutional heads, fisherfolk, community-based groups, and other stakeholders. Non-equilibrium thermodynamic theory remains vibrant in discerning the ecological stability, and it would be employed to further understand the coastal wetland destruction in Harper City, Liberia and to measure the coastal wetland stresses-amplitude and elasticity. The non-equilibrium thermodynamics postulates that the coastal wetlands are capable of assimilating resources (inputs), as well as discharging products (outputs). However, the input-output relationship exceedingly stretches beyond the thresholds of the coastal wetlands, leading to coastal wetland disequilibrium. Findings revealed that the sand mining, mangrove removal, and crude dumping have transformed the coastal wetlands, resulting in water pollution, flooding, habitat loss and disfigured beaches in Harper City in Liberia. This paper demonstrates that the coastal wetlands are converted into developmental projects and agricultural fields, thus, endangering the future society against nature.

Keywords: amplitude, crude dumping, elasticity, non-equilibrium thermodynamics, wetland destruction

Procedia PDF Downloads 143
28363 Ontological Modeling Approach for Statistical Databases Publication in Linked Open Data

Authors: Bourama Mane, Ibrahima Fall, Mamadou Samba Camara, Alassane Bah

Abstract:

At the level of the National Statistical Institutes, there is a large volume of data which is generally in a format which conditions the method of publication of the information they contain. Each household or business data collection project includes a dissemination platform for its implementation. Thus, these dissemination methods previously used, do not promote rapid access to information and especially does not offer the option of being able to link data for in-depth processing. In this paper, we present an approach to modeling these data to publish them in a format intended for the Semantic Web. Our objective is to be able to publish all this data in a single platform and offer the option to link with other external data sources. An application of the approach will be made on data from major national surveys such as the one on employment, poverty, child labor and the general census of the population of Senegal.

Keywords: Semantic Web, linked open data, database, statistic

Procedia PDF Downloads 176
28362 Using Predictive Analytics to Identify First-Year Engineering Students at Risk of Failing

Authors: Beng Yew Low, Cher Liang Cha, Cheng Yong Teoh

Abstract:

Due to a lack of continual assessment or grade related data, identifying first-year engineering students in a polytechnic education at risk of failing is challenging. Our experience over the years tells us that there is no strong correlation between having good entry grades in Mathematics and the Sciences and excelling in hardcore engineering subjects. Hence, identifying students at risk of failure cannot be on the basis of entry grades in Mathematics and the Sciences alone. These factors compound the difficulty of early identification and intervention. This paper describes the development of a predictive analytics model in the early detection of students at risk of failing and evaluates its effectiveness. Data from continual assessments conducted in term one, supplemented by data of student psychological profiles such as interests and study habits, were used. Three classification techniques, namely Logistic Regression, K Nearest Neighbour, and Random Forest, were used in our predictive model. Based on our findings, Random Forest was determined to be the strongest predictor with an Area Under the Curve (AUC) value of 0.994. Correspondingly, the Accuracy, Precision, Recall, and F-Score were also highest among these three classifiers. Using this Random Forest Classification technique, students at risk of failure could be identified at the end of term one. They could then be assigned to a Learning Support Programme at the beginning of term two. This paper gathers the results of our findings. It also proposes further improvements that can be made to the model.

Keywords: continual assessment, predictive analytics, random forest, student psychological profile

Procedia PDF Downloads 136
28361 Machine Learning Framework: Competitive Intelligence and Key Drivers Identification of Market Share Trends among Healthcare Facilities

Authors: Anudeep Appe, Bhanu Poluparthi, Lakshmi Kasivajjula, Udai Mv, Sobha Bagadi, Punya Modi, Aditya Singh, Hemanth Gunupudi, Spenser Troiano, Jeff Paul, Justin Stovall, Justin Yamamoto

Abstract:

The necessity of data-driven decisions in healthcare strategy formulation is rapidly increasing. A reliable framework which helps identify factors impacting a healthcare provider facility or a hospital (from here on termed as facility) market share is of key importance. This pilot study aims at developing a data-driven machine learning-regression framework which aids strategists in formulating key decisions to improve the facility’s market share which in turn impacts in improving the quality of healthcare services. The US (United States) healthcare business is chosen for the study, and the data spanning 60 key facilities in Washington State and about 3 years of historical data is considered. In the current analysis, market share is termed as the ratio of the facility’s encounters to the total encounters among the group of potential competitor facilities. The current study proposes a two-pronged approach of competitor identification and regression approach to evaluate and predict market share, respectively. Leveraged model agnostic technique, SHAP, to quantify the relative importance of features impacting the market share. Typical techniques in literature to quantify the degree of competitiveness among facilities use an empirical method to calculate a competitive factor to interpret the severity of competition. The proposed method identifies a pool of competitors, develops Directed Acyclic Graphs (DAGs) and feature level word vectors, and evaluates the key connected components at the facility level. This technique is robust since its data-driven, which minimizes the bias from empirical techniques. The DAGs factor in partial correlations at various segregations and key demographics of facilities along with a placeholder to factor in various business rules (for ex. quantifying the patient exchanges, provider references, and sister facilities). Identified are the multiple groups of competitors among facilities. Leveraging the competitors' identified developed and fine-tuned Random Forest Regression model to predict the market share. To identify key drivers of market share at an overall level, permutation feature importance of the attributes was calculated. For relative quantification of features at a facility level, incorporated SHAP (SHapley Additive exPlanations), a model agnostic explainer. This helped to identify and rank the attributes at each facility which impacts the market share. This approach proposes an amalgamation of the two popular and efficient modeling practices, viz., machine learning with graphs and tree-based regression techniques to reduce the bias. With these, we helped to drive strategic business decisions.

Keywords: competition, DAGs, facility, healthcare, machine learning, market share, random forest, SHAP

Procedia PDF Downloads 92
28360 Bioengineering of a Plant System to Sustainably Remove Heavy Metals and to Harvest Rare Earth Elements (REEs) from Industrial Wastes

Authors: Edmaritz Hernandez-Pagan, Kanjana Laosuntisuk, Alex Harris, Allison Haynes, David Buitrago, Michael Kudenov, Colleen Doherty

Abstract:

Rare Earth Elements (REEs) are critical metals for modern electronics, green technologies, and defense systems. However, due to their dispersed nature in the Earth’s crust, frequent co-occurrence with radioactive materials, and similar chemical properties, acquiring and purifying REEs is costly and environmentally damaging, restricting access to these metals. Plants could serve as resources for bioengineering REE mining systems. Although there is limited information on how REEs affect plants at a cellular and molecular level, plants with high REE tolerance and hyperaccumulation have been identified. This dissertation aims to develop a plant-based system for harvesting REEs from industrial waste material with a focus on Acid Mine Drainage (AMD), a toxic coal mining product. The objectives are 1) to develop a non-destructive, in vivo detection method for REE detection in Phytolacca plants (REE hyperaccumulator) plants utilizing fluorescence spectroscopy and with a primary focus on dysprosium, 2) to characterize the uptake of REE and Heavy Metals in Phytolacca americana and Phytolacca acinosa (REE hyperaccumulator) in AMD for potential implementation in the plant-based system, 3) to implement the REE detection method to identify REE-binding proteins and peptides for potential enhancement of uptake and selectivity for targeted REEs in the plants implemented in the plant-based system. The candidates are known REE-binding peptides or proteins, orthologs of known metal-binding proteins from REE hyperaccumulator plants, and novel proteins and peptides identified by comparative plant transcriptomics. Lanmodulin, a high-affinity REE-binding protein from methylotrophic bacteria, is used as a benchmark for the REE-protein binding fluorescence assays and expression in A. thaliana to test for changes in REE plant tolerance and uptake.

Keywords: phytomining, agromining, rare earth elements, pokeweed, phytolacca

Procedia PDF Downloads 18
28359 Enhancing Organizational Performance through Employee Empowerment: A Study of Koosar Insurance Company in Tehran

Authors: Masoud Jabar Zadeh Mamaghani

Abstract:

Employee empowerment is an effective technique for increasing employee productivity and utilizing their individual and group capacities toward organizational goals. Empowerment is a process that helps improve and enhance performance through the development and expansion of individuals' and teams' influence and capabilities. In other words, empowerment is a strategy for organizational development and flourishing. In this study, the relationship between training and employee empowerment was examined in addition to measuring the level of empowerment among the employees of Kowsar Tehran Insurance Agency. The research method used was a descriptive correlation, and the statistical population of the study included all official employees with a degree higher than a diploma in Kowsar Tehran Insurance Agency. Data related to training hours while serving employees were extracted from their educational certificates, and data related to employees' empowerment levels were obtained through interviews and questionnaires. The research results showed that the level of empowerment among the employees in this agency is higher than the average in all dimensions. However, no correlation was observed between their empowerment level and the training hours they completed while serving.

Keywords: employee empowerment, organizational development, training, insurance industry

Procedia PDF Downloads 82
28358 Transcranial and Sacral Magnetic Stimulation as a Therapeutic Resource for Urinary Incontinence – A Brief Bibliographic Review

Authors: Ana Lucia Molina

Abstract:

Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique for the investigation and modulation of cortical excitability in humans. The modulation of the processing of different cortical areas can result in several areas for rehabilitation, showing great potential in the treatment of motor disorders. In the human brain, the supplementary motor area (SMA) is involved in the control of the pelvic floor muscles (MAP), where dysfunctions of these muscles can lead to urinary incontinence. Peripheral magnetic stimulation, specifically sacral magnetic stimulation, has been used as a safe and effective treatment option for patients with lower urinary tract dysfunction. A systematic literature review was carried out (Pubmed, Medline and Google academic database) without a time limit using the keywords: "transcranial magnetic stimulation", "sacral neuromodulation", and "urinary incontinence", where 11 articles attended to the inclusion criteria. Results: Thirteen articles were selected. Magnetic stimulation is a non-invasive neuromodulation technique widely used in the evaluation of cortical areas and their respective peripheral areas, as well as in the treatment of lesions of brain origin. With regard to pelvic-perineal disorders, repetitive transcranial stimulation showed significant effects in controlling urinary incontinence, as well as sacral peripheral magnetic stimulation, in addition to exerting the potential to restore bladder sphincter function. Conclusion: Data from the literature suggest that both transcranial stimulation and peripheral stimulation are non-invasive references that can be promising and effective means of treatment in pelvic and perineal disorders. More prospective and randomized studies on a larger scale are needed, adapting the most appropriate and resolving parameters.

Keywords: urinary incontinence, non-invasive neuromodulation, sacral neuromodulation, transcranial magnetic stimulation.

Procedia PDF Downloads 99
28357 Reconstruction Post-mastectomy: A Literature Review on Its Indications and Techniques

Authors: Layaly Ayoub, Mariana Ribeiro

Abstract:

Introduction: Breast cancer is currently considered the leading cause of cancer-related deaths among women in Brazil. Mastectomy, essential in this treatment, often necessitates subsequent breast reconstruction to restore physical appearance and aid in the emotional and psychological recovery of patients. The choice between immediate or delayed reconstruction is influenced by factors such as the type and stage of cancer, as well as the patient's overall health. The decision between autologous breast reconstruction or implant-based reconstruction requires a detailed analysis of individual conditions and needs. Objectives: This study analyzes the techniques and indications used in post-mastectomy breast reconstruction. Methodology: Literature review conducted in the PubMed and SciELO databases, focusing on articles that met the inclusion and exclusion criteria and descriptors. Results: After mastectomy, breast reconstruction is commonly performed. It is necessary to determine the type of technique to be used in each case depending on the specific characteristics of each patient. The tissue expander technique is indicated for patients with sufficient skin and tissue post-mastectomy, who do not require additional radiotherapy, and who opt for a less complex surgery with a shorter recovery time. This procedure promotes the gradual expansion of soft tissues where the definitive implant will be placed. Both temporary and permanent expanders offer flexibility, allowing for adjustment in the expander size until the desired volume is reached, enabling the skin and tissues to adapt to the breast implant area. Conversely, autologous reconstruction is indicated for patients who will undergo radiotherapy, have insufficient tissue, and prefer a more natural solution. This technique uses the transverse rectus abdominis muscle (TRAM) flap, the latissimus dorsi muscle flap, the gluteal flap, and local muscle flaps to shape a new breast, potentially combined with a breast implant. Conclusion: In this context, it is essential to conduct a thorough evaluation regarding the technique to be applied, as both have their benefits and challenges.

Keywords: indications, post-mastectomy, breast reconstruction, techniques

Procedia PDF Downloads 31
28356 Effects of Group Cognitive Restructuring and Rational Emotive Behavioral Therapy on Psychological Distress of Awaiting-Trial Inmates in Correctional Centers in North- West, Nigeria

Authors: Muhammad Shafi'u Adamu

Abstract:

This study examined the effects of two Group Cognitive Behavioural Therapies (Cognitive Restructuring and Rational Emotive Behavioural Therapy) on Psychological Distress of awaiting-trial Inmates in Correctional Centres in North-West, Nigeria. The study had four specific objectives, four research questions, and four null hypotheses. The study used a quasi-experimental design that involved pre-test and post-test. The population comprised of all 7,962 awaiting-trial inmates in correctional centres in North-west, Nigeria. 131 awaiting trial inmates from three intact Correctional Centres were randomly selected using the census technique. The respondents were sampled and randomly put into 3 groups (CR, REBT and Control). Kessler Psychological Distress Scale (K10) was adapted for data collection in the study. The instrument was validated by experts and subjected to pilot study using Cronbach's Alpha with reliability co-efficient of 0.772. Each group received treatment for 8 consecutive weeks (60 minutes/week). Data collected from the field were subjected to descriptive statistics of mean, standard deviation and mean difference to answer the research questions. Inferential statistics of ANOVA and independent sample t-test were used to test the null hypotheses at P≤ 0.05 level of significance. Results in the study revealed that there was no significant difference among the pre-treatment mean scores of experimental and control groups. Statistical evidence also showed a significant difference among the mean sores of the three groups, and thus, results of the Post Hoc multiple-comparison test indicating the posttreatment reduction of psychological distress on the awaiting-trial inmates. Documented output also showed a significant difference between the post-treatment psychologically distressed mean scores of male and female awaiting-trial inmates, but there was no difference on those exposed to REBT. The research recommends that a standardized structured CBT counselling technique treatment should be designed for correctional centres across Nigeria, and CBT counselling techniques could be used in the treatment of PD in both correctional and clinical settings.

Keywords: awaiting-trial inmates, cognitive restructuring, correctional centres, group cognitive behavioural therapies, rational emotive behavioural therapy

Procedia PDF Downloads 91