Search results for: Power Amplifier
4533 Microwave-Assisted Extraction of Lycopene from Gac Arils (Momordica cochinchinensis (Lour.) Spreng)
Authors: Yardfon Tanongkankit, Kanjana Narkprasom, Nukrob Narkprasom, Khwanruthai Saiupparat, Phatthareeya Siriwat
Abstract:
Gac fruit (Momordica cochinchinensis (Lour.) Spreng) possesses high potential for health food as it contains high lycopene contents. The objective of this study was to optimize the extraction of lycopene from gac arils using the microwave extraction method. Response surface method was used to find the conditions that optimize the extraction of lycopene from gac arils. The parameters of extraction used in this study were extraction time (120-600 seconds), the solvent to sample ratio (10:1, 20:1, 30:1, 40:1 and 50:1 mL/g) and set microwave power (100-800 watts). The results showed that the microwave extraction condition at the extraction time of 360 seconds, the sample ratio of 30:1 mL/g and the microwave power of 450 watts were suggested since it exhibited the highest value of lycopene content of 9.86 mg/gDW. It was also observed that lycopene contents extracted from gac arils by microwave method were higher than that by the conventional method.Keywords: conventional extraction, Gac arils, microwave-assisted extraction, Lycopene
Procedia PDF Downloads 3904532 Magnetic Simulation of the Underground Electric Cable in the Presence of a Short Circuit and Harmonics
Authors: Ahmed Nour El Islam Ayad, Wafa Krika, Abdelghani Ayad, Moulay Larab, Houari Boudjella, Farid Benhamida
Abstract:
The purpose of this study is to evaluate the magnetic emission of underground electric cable of high voltage, because these power lines generate electromagnetic interaction with other objects near to it. The aim of this work shows a numerical simulation of the magnetic field of buried 400 kV line in three cases: permanent and transient states of short circuit and the last case with the presence of the harmonics at different positions as a function of time variation, with finite element resolution using Comsol Multiphysics software. The results obtained showed that the amplitude and distribution of the magnetic flux density change in the transient state and the presence of harmonics. The results of this work calculate the magnetic field generated by the underground lines in order to evaluate and know their impact on ecology and health.Keywords: underground, electric power cables, cables crossing, harmonic, emission
Procedia PDF Downloads 2294531 Product Architecture and Production Process of Battery Modules from Prismatic Lithium-Ion-Battery Cells
Authors: Achim Kampker, Heiner Hans Heimes, Nemanja Sarovic, Jan-Philip Ganser, Saskia Wessel, Christoph Lienemann
Abstract:
The electrification of the power train is a fundamental technical transition in the automotive industry and poses a major challenge for established car companies. Providing the traction energy, requiring an ever greater amount of space within the car and having a high share of value-add the lithium-ion battery is a central component of the electric power train and a completely new component to car manufacturers at the same time. Being relatively new to the automotive industry, the current design of the product architecture and production process (including manufacturing and assembling processes) of lithium-ion battery modules do not allow for an easy and cost-efficient disassembly or product design change. Yet these two requirements will increase in importance with rising sales volumes of electric cars in the near future and need to be addressed for the electric car to be competitive with conventional power train systems. This paper focuses on the current product architecture and production process of common automotive battery modules from prismatic lithium-ion battery cells to derive impacts for a remanufacturing concept. The information necessary for this purpose were gathered by literature research, patent inquiries, industry expert interviews and first-hand experiences of the authors. On the basis of these results, the underlying causes for the design´s lack of remanufacturability and flexibility with regards to product design changes are examined. In all, this paper gives an extensive and detailed overview of the state of the art of the product architecture and production process of lithium-ion battery modules from prismatic battery cells, identifies its deficiencies and derives improvement measures.Keywords: battery module, prismatic lithium-ion battery cell, product architecture, production process, remanufacturing, flexibility
Procedia PDF Downloads 2674530 Practice on Design Knowledge Management and Transfer across the Life Cycle of a New-Built Nuclear Power Plant in China
Authors: Danying Gu, Xiaoyan Li, Yuanlei He
Abstract:
As a knowledge-intensive industry, nuclear industry highly values the importance of safety and quality. The life cycle of a NPP (Nuclear Power Plant) can last 100 years from the initial research and design to its decommissioning. How to implement the high-quality knowledge management and how to contribute to a more safe, advanced and economic NPP (Nuclear Power Plant) is the most important issue and responsibility for knowledge management. As the lead of nuclear industry, nuclear research and design institute has competitive advantages of its advanced technology, knowledge and information, DKM (Design Knowledge Management) of nuclear research and design institute is the core of the knowledge management in the whole nuclear industry. In this paper, the study and practice on DKM and knowledge transfer across the life cycle of a new-built NPP in China is introduced. For this digital intelligent NPP, the whole design process is based on a digital design platform which includes NPP engineering and design dynamic analyzer, visualization engineering verification platform, digital operation maintenance support platform and digital equipment design, manufacture integrated collaborative platform. In order to make all the design data and information transfer across design, construction, commissioning and operation, the overall architecture of new-built digital NPP should become a modern knowledge management system. So a digital information transfer model across the NPP life cycle is proposed in this paper. The challenges related to design knowledge transfer is also discussed, such as digital information handover, data center and data sorting, unified data coding system. On the other hand, effective delivery of design information during the construction and operation phase will contribute to the comprehensive understanding of design ideas and components and systems for the construction contractor and operation unit, largely increasing the safety, quality and economic benefits during the life cycle. The operation and maintenance records generated from the NPP operation process have great significance for maintaining the operating state of NPP, especially the comprehensiveness, validity and traceability of the records. So the requirements of an online monitoring and smart diagnosis system of NPP is also proposed, to help utility-owners to improve the safety and efficiency.Keywords: design knowledge management, digital nuclear power plant, knowledge transfer, life cycle
Procedia PDF Downloads 2724529 High Performance Direct Torque Control for Induction Motor Drive Fed from Photovoltaic System
Authors: E. E. EL-Kholy, Ahamed Kalas, Mahmoud Fauzy, M. El-Shahat Dessouki, Abdou M. El-refay, Mohammed El-Zefery
Abstract:
Direct Torque Control (DTC) is an AC drive control method especially designed to provide fast and robust responses. In this paper a progressive algorithm for direct torque control of three-phase induction drive system supplied by photovoltaic arrays using voltage source inverter to control motor torque and flux with maximum power point tracking at different level of insolation is presented. Experimental results of the new DTC method obtained by an experimental rapid prototype system for drives are presented. Simulation and experimental results confirm that the proposed system gives quick, robust torque and speed responses at constant switching frequencies.Keywords: photovoltaic (PV) array, direct torque control (DTC), constant switching frequency, induction motor, maximum power point tracking (MPPT)
Procedia PDF Downloads 4824528 Loss Allocation in Radial Distribution Networks for Loads of Composite Types
Authors: Sumit Banerjee, Chandan Kumar Chanda
Abstract:
The paper presents allocation of active power losses and energy losses to consumers connected to radial distribution networks in a deregulated environment for loads of composite types. A detailed comparison among four algorithms, namely quadratic loss allocation, proportional loss allocation, pro rata loss allocation and exact loss allocation methods are presented. Quadratic and proportional loss allocations are based on identifying the active and reactive components of current in each branch and the losses are allocated to each consumer, pro rata loss allocation method is based on the load demand of each consumer and exact loss allocation method is based on the actual contribution of active power loss by each consumer. The effectiveness of the proposed comparison among four algorithms for composite load is demonstrated through an example.Keywords: composite type, deregulation, loss allocation, radial distribution networks
Procedia PDF Downloads 2864527 Passenger Flow Characteristics of Seoul Metropolitan Subway Network
Authors: Kang Won Lee, Jung Won Lee
Abstract:
Characterizing the network flow is of fundamental importance to understand the complex dynamics of networks. And passenger flow characteristics of the subway network are very relevant for an effective transportation management in urban cities. In this study, passenger flow of Seoul metropolitan subway network is investigated and characterized through statistical analysis. Traditional betweenness centrality measure considers only topological structure of the network and ignores the transportation factors. This paper proposes a weighted betweenness centrality measure that incorporates monthly passenger flow volume. We apply the proposed measure on the Seoul metropolitan subway network involving 493 stations and 16 lines. Several interesting insights about the network are derived from the new measures. Using Kolmogorov-Smirnov test, we also find out that monthly passenger flow between any two stations follows a power-law distribution and other traffic characteristics such as congestion level and throughflow traffic follow exponential distribution.Keywords: betweenness centrality, correlation coefficient, power-law distribution, Korea traffic DB
Procedia PDF Downloads 2894526 Design Ultra Fast Gate Drive Board for Silicon Carbide MOSFET Applications
Authors: Syakirin O. Yong, Nasrudin A. Rahim, Bilal M. Eid, Buray Tankut
Abstract:
The aim of this paper is to develop an ultra-fast gate driver for Silicon Carbide (SiC) based switching device applications such as AC/DC DC/AC converters. Wide bandgap semiconductors such as SiC switches are growing rapidly nowadays due to their numerous capabilities such as faster switching, higher power density and higher voltage level. Wide band-gap switches can work properly on high frequencies such 50-250 kHz which is very useful for many power electronic applications such as solar inverters. Increasing the frequency minimizes the output filter size and system complexity however, this causes huge spike between MOSFET’s drain and source leg which leads to the failure of MOSFET if the voltage rating is exceeded. This paper investigates and concludes the optimum design for a gate drive board for SiC MOSFET switches without causing spikes and noises.Keywords: PV system, lithium-ion, charger, constant current, constant voltage, renewable energy
Procedia PDF Downloads 1564525 Location Management in Wireless Sensor Networks with Mobility
Authors: Amrita Anil Agashe, Sumant Tapas, Ajay Verma Yogesh Sonavane, Sourabh Yeravar
Abstract:
Due to advancement in MEMS technology today wireless sensors network has gained a lot of importance. The wide range of its applications includes environmental and habitat monitoring, object localization, target tracking, security surveillance etc. Wireless sensor networks consist of tiny sensor devices called as motes. The constrained computation power, battery power, storage capacity and communication bandwidth of the tiny motes pose challenging problems in the design and deployment of such systems. In this paper, we propose a ubiquitous framework for Real-Time Tracking, Sensing and Management System using IITH motes. Also, we explain the algorithm that we have developed for location management in wireless sensor networks with the aspect of mobility. Our developed framework and algorithm can be used to detect emergency events and safety threats and provides warning signals to handle the emergency.Keywords: mobility management, motes, multihop, wireless sensor networks
Procedia PDF Downloads 4184524 Combined Heat and Power Generation in Pressure Reduction City Gas Station (CGS)
Authors: Sadegh Torfi
Abstract:
Realization of anticipated energy efficiency from recuperative run-around energy recovery (RER) systems requires identification of the system components influential parameters. Because simulation modeling is considered as an integral part of the design and economic evaluation of RER systems, it is essential to calibrate the developed models and validate the performance predictions by means of comparison with data from experimental measurements. Several theoretical and numerical analyses on RER systems by researchers have been done, but generally the effect of distance between hot and cold flow is ignored. The objective of this study is to develop a thermohydroulic model for a typical RER system that accounts for energy loss from the interconnecting piping and effects of interconnecting pipes length performance of run-around energy recovery systems. Numerical simulation shows that energy loss from the interconnecting piping is change linear with pipes length and if pipes are properly isolated, maximum reduction of effectiveness of RER systems is 2% in typical piping systems.Keywords: combined heat and power, heat recovery, effectiveness, CGS
Procedia PDF Downloads 2004523 The Plasma Additional Heating Systems by Electron Cyclotron Waves
Authors: Ghoutia Naima Sabri, Tayeb Benouaz
Abstract:
The interaction between wave and electron cyclotron movement when the electron passes through a layer of resonance at a fixed frequency results an Electron Cyclotron (EC) absorption in Tokamak plasma and dependent magnetic field. This technique is the principle of additional heating (ECRH) and the generation of non-inductive current drive (ECCD) in modern fusion devices. In this paper we are interested by the problem of EC absorption which used a microscopic description of kinetic theory treatment versus the propagation which used the cold plasma description. The power absorbed depends on the optical depth which in turn depends on coefficient of absorption and the order of the excited harmonic for O-mode or X-mode. There is another possibility of heating by dissipation of Alfven waves, based on resonance of cold plasma waves, the shear Alfven wave (SW) and the compressional Alfven wave (FW). Once the (FW) power is coupled to (SW), it stays on the magnetic surface and dissipates there, which cause the heating of bulk plasmas.Keywords: electron cyclotron, heating, plasma, tokamak
Procedia PDF Downloads 5134522 Resolution Method for Unforeseen Ground Condition Problem Case in Coal Fired Steam Power Plant Project Location Adipala, Indonesia
Authors: Andi Fallahi, Bona Ryan Situmeang
Abstract:
The Construction Industry is notoriously risky. Much of the preparatory paperwork that precedes construction project can be viewed as the formulation of risk allocation between the owner and the Contractor. The Owner is taking the risk that his project will not get built on the schedule that it will not get built for what he has budgeted and that it will not be of the quality he expected. The Contractor Face a multitude of risk. One of them is an unforeseen condition at the construction site. The Owner usually has the upper hand here if the unforeseen condition occurred. Site data contained in Ground Investigation report is often of significant contractual importance in disputes related to the unforeseen ground condition. A ground investigation can never fully disclose all the details of the underground condition (Risk of an unknown ground condition can never be 100% eliminated). Adipala Coal Fired Steam Power Plant (CSFPP) 1 x 660 project is one of the large CSFPP project in Indonesia based on Engineering, Procurement, and Construction (EPC) Contract. Unforeseen Ground Condition it’s responsible by the Contractor has stipulated in the clausal of Contract. In the implementation, there’s indicated unforeseen ground condition at Circulating Water Pump House (CWPH) area which caused the Contractor should be changed the Method of Work that give big impact against Time of Completion and Cost Project. This paper tries to analyze the best way for allocating the risk between The Owner and The Contractor. All parties that allocating of sharing risk fairly can ultimately save time and money for all parties, and get the job done on schedule for the least overall cost.Keywords: unforeseen ground condition, coal fired steam power plant, circulating water pump house, Indonesia
Procedia PDF Downloads 3284521 A 500 MWₑ Coal-Fired Power Plant Operated under Partial Oxy-Combustion: Methodology and Economic Evaluation
Authors: Fernando Vega, Esmeralda Portillo, Sara Camino, Benito Navarrete, Elena Montavez
Abstract:
The European Union aims at strongly reducing their CO₂ emissions from energy and industrial sector by 2030. The energy sector contributes with more than two-thirds of the CO₂ emission share derived from anthropogenic activities. Although efforts are mainly focused on the use of renewables by energy production sector, carbon capture and storage (CCS) remains as a frontline option to reduce CO₂ emissions from industrial process, particularly from fossil-fuel power plants and cement production. Among the most feasible and near-to-market CCS technologies, namely post-combustion and oxy-combustion, partial oxy-combustion is a novel concept that can potentially reduce the overall energy requirements of the CO₂ capture process. This technology consists in the use of higher oxygen content in the oxidizer that should increase the CO₂ concentration of the flue gas once the fuel is burnt. The CO₂ is then separated from the flue gas downstream by means of a conventional CO₂ chemical absorption process. The production of a higher CO₂ concentrated flue gas should enhance the CO₂ absorption into the solvent, leading to further reductions of the CO₂ separation performance in terms of solvent flow-rate, equipment size, and energy penalty related to the solvent regeneration. This work evaluates a portfolio of CCS technologies applied to fossil-fuel power plants. For this purpose, an economic evaluation methodology was developed in detail to determine the main economical parameters for CO₂ emission removal such as the levelized cost of electricity (LCOE) and the CO₂ captured and avoided costs. ASPEN Plus™ software was used to simulate the main units of power plant and solve the energy and mass balance. Capital and investment costs were determined from the purchased cost of equipment, also engineering costs and project and process contingencies. The annual capital cost and operating and maintenance costs were later obtained. A complete energy balance was performed to determine the net power produced in each case. The baseline case consists of a supercritical 500 MWe coal-fired power plant using anthracite as a fuel without any CO₂ capture system. Four cases were proposed: conventional post-combustion capture, oxy-combustion and partial oxy-combustion using two levels of oxygen-enriched air (40%v/v and 75%v/v). CO₂ chemical absorption process using monoethanolamine (MEA) was used as a CO₂ separation process whereas the O₂ requirement was achieved using a conventional air separation unit (ASU) based on Linde's cryogenic process. Results showed a reduction of 15% of the total investment cost of the CO₂ separation process when partial oxy-combustion was used. Oxygen-enriched air production also reduced almost half the investment costs required for ASU in comparison with oxy-combustion cases. Partial oxy-combustion has a significant impact on the performance of both CO₂ separation and O₂ production technologies, and it can lead to further energy reductions using new developments on both CO₂ and O₂ separation processes.Keywords: carbon capture, cost methodology, economic evaluation, partial oxy-combustion
Procedia PDF Downloads 1474520 Supervisory Controller with Three-State Energy Saving Mode for Induction Motor in Fluid Transportation
Authors: O. S. Ebrahim, K. O. Shawky, M. O. S. Ebrahim, P. K. Jain
Abstract:
Induction Motor (IM) driving pump is the main consumer of electricity in a typical fluid transportation system (FTS). It was illustrated that changing the connection of the stator windings from delta to star at no load could achieve noticeable active and reactive energy savings. This paper proposes a supervisory hysteresis liquid-level control with three-state energy saving mode (ESM) for IM in FTS including storage tank. The IM pump drive comprises modified star/delta switch and hydromantic coupler. Three-state ESM is defined, along with the normal running, and named analog to computer ESMs as follows: Sleeping mode in which the motor runs at no load with delta stator connection, hibernate mode in which the motor runs at no load with a star connection, and motor shutdown is the third energy saver mode. A logic flow-chart is synthesized to select the motor state at no-load for best energetic cost reduction, considering the motor thermal capacity used. An artificial neural network (ANN) state estimator, based on the recurrent architecture, is constructed and learned in order to provide fault-tolerant capability for the supervisory controller. Sequential test of Wald is used for sensor fault detection. Theoretical analysis, preliminary experimental testing and, computer simulations are performed to show the effectiveness of the proposed control in terms of reliability, power quality and energy/coenergy cost reduction with the suggestion of power factor correction.Keywords: ANN, ESM, IM, star/delta switch, supervisory control, FT, reliability, power quality
Procedia PDF Downloads 1934519 Transient Level in the Surge Chamber at the Robert-bourassa Generating Station
Authors: Maryam Kamali Nezhad
Abstract:
The Robert-Bourassa development (LG-2), the first to be built on the Grande Rivière, comprises two sets of eight turbines- generator units each, the East and West powerhouses. Each powerhouse has two tailrace tunnels with an average length of about 1178 m. The LG-2A powerhouse houses 6 turbine-generator units. The water is discharged through two tailrace tunnels with a length of about 1330 m. The objective of this work, at RB (LG-2), is; 1) to establish a new maximum transient level in the surge chamber, 2) to define the new maximum equipment flow rate for the future turbine-generator units, 3) to ensure safe access to various intervention locations in the surge chamber. The transient levels under normal operating conditions at the RB plant were determined in 2001 by the Hydraulics Unit of HQE using the "Chamber" software. It is a one-dimensional mass oscillation calculation software; it is used to determine the variation of the water level in the equilibrium chamber located downstream of a power plant during the load shedding of the power plant units; it can also be used in the case of an equilibrium stack upstream of a power plant. The RB (LG-2) plant study is based on the theoretical nominal geometry of the chamber and the tailrace tunnels and the flow-level relationship at the outlet of the galleries established during design. The software is used in such a way that the results have an acceptable margin of safety, especially with respect to the maximum transient level (e.g., resumption of flow at an inopportune time), to take into account the turbulent and three-dimensional aspects of the actual flow in the chamber. Note that the transient levels depend on the water levels in the river and in the steady-state equilibrium chambers. These data are established in the HQP CRP database and updated from time to time. The maximum transient levels in the RB-East and RB-West powerhouses surge chamber were revised based on the latest update (set 4) of in-river rating curves and steady-state surge chamber water levels. The results of the revision were also used to update the technical advice on the operating conditions for the aforementioned surge chamber access while considering revisions to the calculated water levels.Keywords: generating station, surge chamber, maximum transient level, hydroelectric power station, turbine-generator, reservoir
Procedia PDF Downloads 844518 Political Alienation: Paving the Road to Corruption
Authors: Mabrouka Al-Werfalli
Abstract:
This paper aims to highlight reasons beyond the prevalence of “culture of corruption” amongst Libyans. One of the most prominent reason for the Libyan revolution in February 2011 was the pervasiveness of corruption. Corruption in Libya remained a significant problem despite harsh legislation and a robust anti-corruption discourse undertaken by the previous regime. The long-standing political corruption in Libya has offered ample opportunity for the evolution of a structure of negative values and morals. This has formed what is termed as a “culture of corruption”, which has induced people to accept and justify corrupt behaviour. The paper is a part of a study concerns the phenomenon of political alienation in Libya which was based on a survey conducted in 2001 in the city of Benghazi. The finding shows that abuse of power looms large within all activities. Embezzlement and misuse of public funds for personal enrichment is thought to be rife within public bodies, institutions, companies, factories, banks and enterprises owned entirely or partially by the state.Keywords: corruption, culture of corruption, participation in corruption, abuse of power, embezzlement, political alienation, anti-corruption
Procedia PDF Downloads 3604517 Optimization of E-motor Control Parameters for Electrically Propelled Vehicles by Integral Squared Method
Authors: Ibrahim Cicek, Melike Nikbay
Abstract:
Electrically propelled vehicles, either road or aerial vehicles are studied on contemporarily for their robust maneuvers and cost-efficient transport operations. The main power generating systems of such vehicles electrified by selecting proper components and assembled as e-powertrain. Generally, e-powertrain components selected considering the target performance requirements. Since the main component of propulsion is the drive unit, e-motor control system is subjected to achieve the performance targets. In this paper, the optimization of e-motor control parameters studied by Integral Squared Method (ISE). The overall aim is to minimize power consumption of such vehicles depending on mission profile and maintaining smooth maneuvers for passenger comfort. The sought-after values of control parameters are computed using the Optimal Control Theory. The system is modeled as a closed-loop linear control system with calibratable parameters.Keywords: optimization, e-powertrain, optimal control, electric vehicles
Procedia PDF Downloads 1324516 Effects of the Non-Newtonian Viscosity of Blood on Flow Field in a Constricted Artery with a Porous Plaque
Authors: Maedeh Shojaeizadeh, Amirreza Yeganegi
Abstract:
Nowadays many people lose their lives due to cardiovascular diseases. Inappropriate food habits and lack of exercise expedite deposit process of fatty substances on inner surface of blood arteries. This abnormal lump disturbs uniform blood flow and reduces oxygen delivery to active organs. This work presents a numerical simulation of Non-Newtonian blood flow in a stenosis vessel. The vessel is considered as two dimensional channel and plaque area is modelled as a homogenous porous medium. To simulate blood flow reaction around stenosis region, we use C++ code and solve coupled Cauchy, Darcy, governing continuity and energy equations. The analyses results show that viscosity power (n) plays an important role in flow separation and the size of the eddy at the downstream edge of the plaque. It is also observed that with increasing (n) value, temperature discontinuity and likelihood of vessel rupture declined.Keywords: blood flow, computational fluid dynamic, porosity, power law fluid
Procedia PDF Downloads 4594515 Empirical Testing of Hofstede’s Measures of National Culture: A Study in Four Countries
Authors: Nebojša Janićijević
Abstract:
At the end of 1970s, Dutch researcher Geert Hofstede, had conducted an enormous empirical research on the differences between national cultures. In his huge research, he had identified four dimensions of national culture according to which national cultures differ and determined the index for every dimension of national culture for each country that took part in his research. The index showed a country’s position on the continuum between the two extreme poles of the cultural dimensions. Since more than 40 years have passed since Hofstede's research, there is a doubt that, due to the changes in national cultures during that period, they are no longer a good basis for research. The aim of this research is to check the validity of Hofstee's indices of national culture The empirical study conducted in the branches of a multinational company in Serbia, France, the Netherlands and Denmark aimed to determine whether Hofstede’s measures of national culture dimensions are still valid. The sample consisted of 155 employees of one multinational company, where 40 employees came from three countries and 35 employees were from Serbia. The questionnaire that analyzed the positions of national cultures according to the Hofstede’s four dimensions was formulated on the basis of the initial Hofstede’s questionnaire, but it was much shorter and significantly simplified comparing to the original questionnaire. Such instrument had already been used in earlier researches. A statistical analysis of the obtained questionnaire results was done by a simple calculation of the frequency of the provided answers. Due to the limitations in methodology, sample size, instrument, and applied statistical methods, the aim of the study was not to explicitly test the accuracy Hofstede’s indexes but to enlighten the general position of the four observed countries in national culture dimensions and their mutual relations. The study results have indicated that the position of the four observed national cultures (Serbia, France, the Netherlands and Denmark) is precisely the same in three out of four dimensions as Hofstede had described in his research. Furthermore, the differences between national cultures and the relative relations between their positions in three dimensions of national culture correspond to Hofstede’s results. The only deviation from Hofstede’s results is concentrated around the masculinity–femininity dimension. In addition, the study revealed that the degree of power distance is a determinant when choosing leadership style. It has been found that national cultures with high power distance, like Serbia and France, favor one of the two authoritative leadership styles. On the other hand, countries with low power distance, such as the Netherlands and Denmark, prefer one of the forms of democratic leadership styles. This confirms Hofstede’s premises about the impact of power distance on leadership style. The key contribution of the study is that Hofstede’s national culture indexes are still a reliable tool for measuring the positions of countries in national culture dimensions, and they can be applied in the cross-cultural research in management. That was at least the case with four observed countries: Serbia, France, the Netherlands, and Denmark.Keywords: national culture, leadership styles, power distance, collectivism, masculinity, uncertainty avoidance
Procedia PDF Downloads 744514 Hole Characteristics of Percussion and Single Pulse Laser-Incised Radiata Pine and the Effects of Wood Anatomy on Laser-Incision
Authors: Subhasisa Nath, David Waugh, Graham Ormondroyd, Morwenna Spear, Andy Pitman, Paul Mason
Abstract:
Wood is one of the most sustainable and environmentally favourable materials and is chemically treated in timber industries to maximise durability. To increase the chemical preservative uptake and retention by the wood, current limiting incision technologies are commonly used. This work reports the effects of single pulse CO2 laser-incision and frequency tripled Nd:YAG percussion laser-incision on the characteristics of laser-incised holes in the Radiata Pine. The laser-incision studies were based on changing laser wavelengths, energies and focal planes to conclude on an optimised combination for the laser-incision of Radiata Pine. The laser pulse duration had a dominant effect over laser power in controlling hole aspect ratio in CO2 laser-incision. A maximum depth of ~ 30 mm was measured with a laser power output of 170 W and a pulse duration of 80 ms. However, increased laser power led to increased carbonisation of holes. The carbonisation effect was reduced during laser-incision in the ultra-violet (UV) regime. Deposition of a foamy phase on the laser-incised hole wall was evident irrespective of laser radiation wavelength and energy. A maximum hole depth of ~20 mm was measured in the percussion laser-incision in the UV regime (355 nm) with a pulse energy of 320 mJ. The radial and tangential faces had a significant effect on laser-incision efficiency for all laser wavelengths. The laser-incised hole shapes and circularities were affected by the wood anatomy (earlywoods and latewoods in the structure). Subsequently, the mechanism of laser-incision is proposed by analysing the internal structure of laser-incised holes.Keywords: CO2 Laser, Nd: YAG laser, incision, drilling, wood, hole characteristics
Procedia PDF Downloads 2414513 Presentation of HVA Faults in SONELGAZ Underground Network and Methods of Faults Diagnostic and Faults Location
Authors: I. Touaїbia, E. Azzag, O. Narjes
Abstract:
Power supply networks are growing continuously and their reliability is getting more important than ever. The complexity of the whole network comprises numerous components that can fail and interrupt the power supply for the end user. Underground distribution systems are normally exposed to permanent faults, due to specific construction characteristics. In these systems, visual inspection cannot be performed. In order to enhance service restoration, accurate fault location techniques must be applied. This paper describes the different faults that affect the underground distribution system of SONELGAZ (National Society of Electricity and Gas of Algeria), and cable fault location procedure with impulse reflection method (TDR), based in the analyses of the cable response of the electromagnetic impulse, allows cable fault prelocation. The results are obtained from real test in the underground distribution feeder from electrical network of energy distribution company of Souk-Ahras, in order to know the influence of cable characteristics in the types and frequency of faults.Keywords: distribution networks, fault location, TDR, underground cable
Procedia PDF Downloads 5334512 Power Asymmetry and Major Corporate Social Responsibility Projects in Mhondoro-Ngezi District, Zimbabwe
Authors: A. T. Muruviwa
Abstract:
Empirical studies of the current CSR agenda have been dominated by literature from the North at the expense of the nations from the South where most TNCs are located. Therefore, owing to the limitations of the current discourse that is dominated by Western ideas such as voluntarism, philanthropy, business case and economic gains, scholars have been calling for a new CSR agenda that is South-centred and addresses the needs of developing nations. The development theme has dominated in the recent literature as scholars concerned with the relationship between business and society have tried to understand its relationship with CSR. Despite a plethora of literature on the roles of corporations in local communities and the impact of CSR initiatives, there is lack of adequate empirical evidence to help us understand the nexus between CSR and development. For all the claims made about the positive and negative consequences of CSR, there is surprisingly little information about the outcomes it delivers. This study is a response to these claims made about the developmental aspect of CSR in developing countries. It offers some empirical bases for assessing the major CSR projects that have been fulfilled by a major mining company, Zimplats in Mhondoro-Ngezi Zimbabwe. The neo-liberal idea of capitalism and market dominations has empowered TNCs to stamp their authority in the developing countries. TNCs have made their mark in developing nations as they stamp their global private authority, rivalling or implicitly challenging the state in many functions. This dominance of corporate power raises great concerns over their tendencies of abuses in terms of environmental, social and human rights concerns as well as how to make them increasingly accountable. The hegemonic power of TNCs in the developing countries has had a tremendous impact on the overall CSR practices. While TNCs are key drivers of globalization they may be acting responsibly in their Global Northern home countries where there is a combination of legal mechanisms and the fear of civil society activism associated with corporate scandals. Using a triangulated approach in which both qualitative and quantitative methods were used the study found out that most CSR projects in Zimbabwe are dominated and directed by Zimplats because of the power it possesses. Most of the major CSR projects are beneficial to the mining company as they serve the business plans of the mining company. What was deduced from the study is that the infrastructural development initiatives by Zimplats confirm that CSR is a tool to advance business obligations. This shows that although proponents of CSR might claim that business has a mandate for social obligations to society, we need not to forget the dominant idea that the primary function of CSR is to enhance the firm’s profitability.Keywords: hegemonic power, projects, reciprocity, stakeholders
Procedia PDF Downloads 2544511 Inventory Policy with Continuous Price Reduction in Solar Photovoltaic Supply Chain
Authors: Xiangrong Liu, Chuanhui Xiong
Abstract:
With the concern of large pollution emissions from coal-fired power plants and new commitment to green energy, global solar power industry was emerging recently. Due to the advanced technology, the price of solar photovoltaic(PV) module was reduced at a fast rate, which arose an interesting but challenge question to solar supply chain. This research is modeling the inventory strategies for a PV supply chain with a PV manufacturer, an assembler and an end customer. Through characterizing the manufacturer's and PV assembler's optimal decision in decentralized and centralized situation, this study shed light on how to improve supply chain performance through parameters setting in the contract design. The results suggest the assembler to lower the optimal stock level gradually each period before price reduction and set up a newsvendor base-stock policy in all periods after price reduction. As to the PV module manufacturer, a non-stationary produce-up-to policy is optimal.Keywords: photovoltaic, supply chain, inventory policy, base-stock policy
Procedia PDF Downloads 3484510 The Effect of Bacteria on Mercury's Biological Removal
Authors: Nastaran Soltani
Abstract:
Heavy metals such as Mercury are toxic elements that enter the environment through different ways and endanger the environment, plants, animals, and humans’ health. Microbial activities reduce the amount of heavy metals. Therefore, an effective mechanism to eliminate heavy metals in the nature and factory slops, is using bacteria living in polluted areas. Karun River in Khuzestan Province in Iran has been always polluted by heavy metals as it is located among different industries in the region. This study was performed based on the data from sampling water and sediments of four stations across the river during the four seasons of a year. The isolation of resistant bacteria was performed through enrichment and direct cultivation in a solid medium containing mercury. Various bacteria such as Pseudomonas sp., Serratia Marcescens, and E.coli were identified as mercury-resistant bacteria. The power of these bacteria to remove mercury varied from 28% to 86%, with strongest power belonging to Pseudomonas sp. isolated in spring making a good candidate to be used for mercury biological removal from factory slops.Keywords: bacteria, Karun River, mercury, biological removal, mercury-resistant
Procedia PDF Downloads 2864509 Coupled Hydro-Geomechanical Modeling of Oil Reservoir Considering Non-Newtonian Fluid through a Fracture
Authors: Juan Huang, Hugo Ninanya
Abstract:
Oil has been used as a source of energy and supply to make materials, such as asphalt or rubber for many years. This is the reason why new technologies have been implemented through time. However, research still needs to continue increasing due to new challenges engineers face every day, just like unconventional reservoirs. Various numerical methodologies have been applied in petroleum engineering as tools in order to optimize the production of reservoirs before drilling a wellbore, although not all of these have the same efficiency when talking about studying fracture propagation. Analytical methods like those based on linear elastic fractures mechanics fail to give a reasonable prediction when simulating fracture propagation in ductile materials whereas numerical methods based on the cohesive zone method (CZM) allow to represent the elastoplastic behavior in a reservoir based on a constitutive model; therefore, predictions in terms of displacements and pressure will be more reliable. In this work, a hydro-geomechanical coupled model of horizontal wells in fractured rock was developed using ABAQUS; both extended element method and cohesive elements were used to represent predefined fractures in a model (2-D). A power law for representing the rheological behavior of fluid (shear-thinning, power index <1) through fractures and leak-off rate permeating to the matrix was considered. Results have been showed in terms of aperture and length of the fracture, pressure within fracture and fluid loss. It was showed a high infiltration rate to the matrix as power index decreases. A sensitivity analysis is conclusively performed to identify the most influential factor of fluid loss.Keywords: fracture, hydro-geomechanical model, non-Newtonian fluid, numerical analysis, sensitivity analysis
Procedia PDF Downloads 2054508 Electrokinetic Transport of Power Law Fluid through Hydrophobic Micro-Slits
Authors: Ainul Haque, Ameeye Kumar Nayak
Abstract:
Flow enhancement and species transport in a slit hydrophobic microchannel is studied for non-Newtonian fluids with the externally imposed electric field and pressure gradient. The incompressible Poisson-Nernst-Plank equations and the Navier-Stokes equations are approximated by lubrication theory to quantify the flow structure due to hydrophobic and hydrophilic surfaces. The analytical quantification of velocity and pressure of electroosmotic flow (EOF) is made with the numerical results due to the staggered grid based finite volume method for flow governing equations. The resistance force due to fluid friction and shear force along the surface are decreased by the hydrophobicity, enables the faster movement of fluid particles. The resulting flow enhancement factor Ef is increased with the low viscous fluid and provides maximum species transport. Also, the analytical comparison of EOF with pressure driven EOF justifies the flow enhancement due to hydrophobicity and shear impact on flow variation.Keywords: electroosmotic flow, hydrophobic surface, power-law fluid, shear effect
Procedia PDF Downloads 3774507 Rotor Side Speed Control Methods Using MATLAB/Simulink for Wound Induction Motor
Authors: Rajesh Kumar, Roopali Dogra, Puneet Aggarwal
Abstract:
In recent advancements in electric machine and drives, wound rotor motor is extensively used. The merit of using wound rotor induction motor is to control speed/torque characteristics by inserting external resistance. Wound rotor induction motor can be used in the cases such as (a) low inrush current, (b) load requiring high starting torque, (c) lower starting current is required, (d) loads having high inertia, and (e) gradual built up of torque. Examples include conveyers, cranes, pumps, elevators, and compressors. This paper includes speed control of wound induction motor using MATLAB/Simulink for rotor resistance and slip power recovery method. The characteristics of these speed control methods are hence analyzed.Keywords: MATLAB/Simulink, rotor resistance method, slip power recovery method, wound rotor induction motor
Procedia PDF Downloads 3704506 SNR Classification Using Multiple CNNs
Authors: Thinh Ngo, Paul Rad, Brian Kelley
Abstract:
Noise estimation is essential in today wireless systems for power control, adaptive modulation, interference suppression and quality of service. Deep learning (DL) has already been applied in the physical layer for modulation and signal classifications. Unacceptably low accuracy of less than 50% is found to undermine traditional application of DL classification for SNR prediction. In this paper, we use divide-and-conquer algorithm and classifier fusion method to simplify SNR classification and therefore enhances DL learning and prediction. Specifically, multiple CNNs are used for classification rather than a single CNN. Each CNN performs a binary classification of a single SNR with two labels: less than, greater than or equal. Together, multiple CNNs are combined to effectively classify over a range of SNR values from −20 ≤ SNR ≤ 32 dB.We use pre-trained CNNs to predict SNR over a wide range of joint channel parameters including multiple Doppler shifts (0, 60, 120 Hz), power-delay profiles, and signal-modulation types (QPSK,16QAM,64-QAM). The approach achieves individual SNR prediction accuracy of 92%, composite accuracy of 70% and prediction convergence one order of magnitude faster than that of traditional estimation.Keywords: classification, CNN, deep learning, prediction, SNR
Procedia PDF Downloads 1344505 Malpractice Makes Perfect: A Thematic Analysis on How Doctors Handle Medical Errors
Authors: Kathleen Joy Hingan, Jessiraye Luienne Catubigan, Carlo Mercado, Janisse RañEses
Abstract:
In this research, the researchers wanted to explore how specialists and resident doctors in the fields of surgery, and obstetrics and gynecology handle their medical errors. They are interested in understanding the factors that contributed to the disclosure of medical error, the feelings after the occurrence of an error, and the way they coped with it given the power relations in place. The researchers conducted semi-structured interviews, transcribed the recordings, and analyzed the transcripts using thematic analysis. They found that doctors disclosed to their superiors and co-residents to cope with and to learn from the errors. In terms of disclosure to patients, the participants told them about the adverse event, but not about the error because of fear for themselves, their colleagues, their institution, and their patient. Doctors also performed compensatory actions to make up for the error and the nondisclosure of its occurrence. These actions functioned as a form of damage control too. Resident doctors and specialists receive different sanctions because of the power structures in the system.Keywords: coping, disclosure, doctors, interviews, medical errors, thematic analysis
Procedia PDF Downloads 2904504 Implementation of MPPT Algorithm for Grid Connected PV Module with IC and P&O Method
Authors: Arvind Kumar, Manoj Kumar, Dattatraya H. Nagaraj, Amanpreet Singh, Jayanthi Prattapati
Abstract:
In recent years, the use of renewable energy resources instead of pollutant fossil fuels and other forms has increased. Photovoltaic generation is becoming increasingly important as a renewable resource since it does not cause in fuel costs, pollution, maintenance, and emitting noise compared with other alternatives used in power applications. In this paper, Perturb and Observe and Incremental Conductance methods are used to improve energy conversion efficiency under different environmental conditions. PI controllers are used to control easily DC-link voltage, active and reactive currents. The whole system is simulated under standard climatic conditions (1000 W/m2, 250C) in MATLAB and the irradiance is varied from 1000 W/m2 to 300 W/m2. The use of PI controller makes it easy to directly control the power of the grid connected PV system. Finally the validity of the system will be verified through the simulations in MATLAB/Simulink environment.Keywords: incremental conductance algorithm, modeling of PV panel, perturb and observe algorithm, photovoltaic system and simulation results
Procedia PDF Downloads 509