Search results for: trimming threshold selection
2967 The Effect of Gender Differences on Mate Selection in Private University
Authors: Hui Min Kong, Rajalakshmi A/P Ganesan
Abstract:
The present study was conducted to investigate the effect of gender differences in mate selection in a private university. Mate selection is an important process and decision to the people around the world, especially for single people. The future partner we have chosen could be our lifetime friend, supporter, and lover. Mate selection is important to us, but we have never fully understood the evolution of gender differences in mate selection. Besides, there was an insufficient empirical finding of gender differences in mate selection in Malaysia. Hence, the research would allow us to understand our feelings and thoughts about our future partners. The research null hypotheses have stated that there was no significant difference on 18 mate selections characteristics between males and females. A quantitative method was performed to test the hypotheses through independent t-test. There was a total of 373 heterosexual participants with the age range of 18 to 35 in the study. The instrument used was Factors in choosing a mate developed by Buss and Barnes (1986). Results indicated that females (M= 26.69) were found to be highly valued on refinement and neatness, good financial prospect, dependable character, emotional stability and maturity, desire for home and children, favorable social status or rating, similar religious background, ambition and industriousness, mutual attraction, good health and education and intelligence than males (M= 23.25). These results demonstrated that there were 61.11% significant gender differences in mate selections characteristics. Findings of this research have highlighted the importance of human mate selections in Malaysia. Further research is needed to identify the factors that could have a possible moderating effect of gender differences in mate selection.Keywords: gender differences, mate selections, evolution, future partner
Procedia PDF Downloads 1112966 An Experimental Study for Assessing Email Classification Attributes Using Feature Selection Methods
Authors: Issa Qabaja, Fadi Thabtah
Abstract:
Email phishing classification is one of the vital problems in the online security research domain that have attracted several scholars due to its impact on the users payments performed daily online. One aspect to reach a good performance by the detection algorithms in the email phishing problem is to identify the minimal set of features that significantly have an impact on raising the phishing detection rate. This paper investigate three known feature selection methods named Information Gain (IG), Chi-square and Correlation Features Set (CFS) on the email phishing problem to separate high influential features from low influential ones in phishing detection. We measure the degree of influentially by applying four data mining algorithms on a large set of features. We compare the accuracy of these algorithms on the complete features set before feature selection has been applied and after feature selection has been applied. After conducting experiments, the results show 12 common significant features have been chosen among the considered features by the feature selection methods. Further, the average detection accuracy derived by the data mining algorithms on the reduced 12-features set was very slight affected when compared with the one derived from the 47-features set.Keywords: data mining, email classification, phishing, online security
Procedia PDF Downloads 4322965 Perceptual Image Coding by Exploiting Internal Generative Mechanism
Authors: Kuo-Cheng Liu
Abstract:
In the perceptual image coding, the objective is to shape the coding distortion such that the amplitude of distortion does not exceed the error visibility threshold, or to remove perceptually redundant signals from the image. While most researches focus on color image coding, the perceptual-based quantizer developed for luminance signals are always directly applied to chrominance signals such that the color image compression methods are inefficient. In this paper, the internal generative mechanism is integrated into the design of a color image compression method. The internal generative mechanism working model based on the structure-based spatial masking is used to assess the subjective distortion visibility thresholds that are visually consistent to human eyes better. The estimation method of structure-based distortion visibility thresholds for color components is further presented in a locally adaptive way to design quantization process in the wavelet color image compression scheme. Since the lowest subband coefficient matrix of images in the wavelet domain preserves the local property of images in the spatial domain, the error visibility threshold inherent in each coefficient of the lowest subband for each color component is estimated by using the proposed spatial error visibility threshold assessment. The threshold inherent in each coefficient of other subbands for each color component is then estimated in a local adaptive fashion based on the distortion energy allocation. By considering that the error visibility thresholds are estimated using predicting and reconstructed signals of the color image, the coding scheme incorporated with locally adaptive perceptual color quantizer does not require side information. Experimental results show that the entropies of three color components obtained by using proposed IGM-based color image compression scheme are lower than that obtained by using the existing color image compression method at perceptually lossless visual quality.Keywords: internal generative mechanism, structure-based spatial masking, visibility threshold, wavelet domain
Procedia PDF Downloads 2482964 Supplier Selection Using Sustainable Criteria in Sustainable Supply Chain Management
Authors: Richa Grover, Rahul Grover, V. Balaji Rao, Kavish Kejriwal
Abstract:
Selection of suppliers is a crucial problem in the supply chain management. On top of that, sustainable supplier selection is the biggest challenge for the organizations. Environment protection and social problems have been of concern to society in recent years, and the traditional supplier selection does not consider about this factor; therefore, this research work focuses on introducing sustainable criteria into the structure of supplier selection criteria. Sustainable Supply Chain Management (SSCM) is the management and administration of material, information, and money flows, as well as coordination among business along the supply chain. All three dimensions - economic, environmental, and social - of sustainable development needs to be taken care of. Purpose of this research is to maximize supply chain profitability, maximize social wellbeing of supply chain and minimize environmental impacts. Problem statement is selection of suppliers in a sustainable supply chain network by ranking the suppliers against sustainable criteria identified. The aim of this research is twofold: To find out what are the sustainable parameters that can be applied to the supply chain, and to determine how these parameters can effectively be used in supplier selection. Multicriteria decision making tools will be used to rank both criteria and suppliers. AHP Analysis will be used to find out ratings for the criteria identified. It is a technique used for efficient decision making. TOPSIS will be used to find out rating for suppliers and then ranking them. TOPSIS is a MCDM problem solving method which is based on the principle that the chosen option should have the maximum distance from the negative ideal solution (NIS) and the minimum distance from the ideal solution.Keywords: sustainable supply chain management, sustainable criteria, MCDM tools, AHP analysis, TOPSIS method
Procedia PDF Downloads 3252963 Morphological Parameters and Selection of Turkish Edible Seed Pumpkins (Cucurbita pepo L.) Germplasm
Authors: Onder Turkmen, Musa Seymen, Sali Fidan, Mustafa Paksoy
Abstract:
There is a requirement for registered edible seed pumpkin suitable for eating in Turkey. A total of 81 genotypes collected from the researchers in 2005 originated from Eskisehir, Konya, Nevsehir, Tekirdag, Sakarya, Kayseri and Kirsehir provinces were utilized. The used genetic materials were brought to S5 generation by the research groups among 2006 and 2010 years. In this research, S5 stage reached in the genotype given some of the morphological features, and selection of promising genotypes generated scale were made. Results showed that the A-1 (420), A-7 (410), A-8 (420), A-32 (420), B-17 (410), B-24 (410), B-25 (420), B-33 (400), C-24 (420), C-25 (410), C-26 (410) and C-30 (420) genotypes are expected to be promising varieties.Keywords: candidate cultivar, edible seed pumpkin, morphologic parameters, selection
Procedia PDF Downloads 3812962 Characterization of Complex Gold Ores for Preliminary Process Selection: The Case of Kapanda, Ibindi, Mawemeru, and Itumbi in Tanzania
Authors: Sospeter P. Maganga, Alphonce Wikedzi, Mussa D. Budeba, Samwel V. Manyele
Abstract:
This study characterizes complex gold ores (elemental and mineralogical composition, gold distribution, ore grindability, and mineral liberation) for preliminary process selection. About 200 kg of ore samples were collected from each location using systematic sampling by mass interval. Ores were dried, crushed, milled, and split into representative sub-samples (about 1 kg) for elemental and mineralogical composition analyses using X-ray fluorescence (XRF), fire assay finished with Atomic Absorption Spectrometer (AAS), and X-ray Diffraction (XRD) methods, respectively. The gold distribution was studied on size-by-size fractions, while ore grindability was determined using the standard Bond test. The mineral liberation analysis was conducted using ThermoFisher Scientific Mineral Liberation Analyzer (MLA) 650, where unsieved polished grain mounts (80% passing 700 µm) were used as MLA feed. Two MLA measurement modes, X-ray modal analysis (XMOD) and sparse phase liberation-grain X-ray mapping analysis (SPL-GXMAP), were employed. At least two cyanide consumers (Cu, Fe, Pb, and Zn) and kinetics impeders (Mn, S, As, and Bi) were present in all locations investigated. Copper content at Kapanda (0.77% Cu) and Ibindi (7.48% Cu) exceeded the recommended threshold of 0.5% Cu for direct cyanidation. The gold ore at Ibindi indicated a higher rate of grinding compared to other locations. This could be explained by the highest grindability (2.119 g/rev.) and lowest Bond work index (10.213 kWh/t) values. The pyrite-marcasite, chalcopyrite, galena, and siderite were identified as major gold, copper, lead, and iron-bearing minerals, respectively, with potential for economic extraction. However, only gold and copper can be recovered under conventional milling because of grain size issues (galena is exposed by 10%) and process complexity (difficult to concentrate and smelt iron from siderite). Therefore, the preliminary process selection is copper flotation followed by gold cyanidation for Kapanda and Ibindi ores, whereas gold cyanidation with additives such as glycine or ammonia is selected for Mawemeru and Itumbi ores because of low concentrations of Cu, Pb, Fe, and Zn minerals.Keywords: complex gold ores, mineral liberation, ore characterization, ore grindability
Procedia PDF Downloads 732961 Possibility Theory Based Multi-Attribute Decision-Making: Application in Facility Location-Selection Problem under Uncertain and Extreme Environment
Authors: Bezhan Ghvaberidze
Abstract:
A fuzzy multi-objective facility location-selection problem (FLSP) under uncertain and extreme environments based on possibility theory is developed. The model’s uncertain parameters in the q-rung orthopair fuzzy values are presented and transformed in the Dempster-Shaper’s belief structure environment. An objective function – distribution centers’ selection ranking index as an extension of Dempster’s extremal expectations under discrimination q-rung orthopair fuzzy information is constructed. Experts evaluate each humanitarian aid from distribution centers (HADC) against each of the uncertain factors. HADCs location problem is reduced to the bicriteria problem of partitioning the set of customers by the set of centers: (1) – Minimization of transportation costs; (2) – Maximization of centers’ selection ranking indexes. Partitioning type constraints are also constructed. For an illustration of the obtained results, a numerical example is created from the facility location-selection problem.Keywords: FLSP, multi-objective combinatorial optimization problem, evidence theory, HADC, q-rung orthopair fuzzy set, possibility theory
Procedia PDF Downloads 1192960 Relation between Electrical Properties and Application of Chitosan Nanocomposites
Authors: Evgen Prokhorov, Gabriel Luna-Barcenas
Abstract:
The polysaccharide chitosan (CS) is an attractive biopolymer for the stabilization of several nanoparticles in acidic aqueous media. This is due in part to the presence of abundant primary NH2 and OH groups which may lead to steric or chemical stabilization. Applications of most CS nanocomposites are based upon the interaction of high surface area nanoparticles (NPs) with different substance. Therefore, agglomeration of NPs leads to decreasing effective surface area such that it may decrease the efficiency of nanocomposites. The aim of this work is to measure nanocomposite’s electrical conductivity phenomena that will allow one to formulate optimal concentrations of conductivity NPs in CS-based nanocomposites. Additionally, by comparing the efficiency of such nanocomposites, one can guide applications in the biomedical (antibacterial properties and tissue regeneration) and sensor fields (detection of copper and nitrate ions in aqueous solutions). It was shown that the best antibacterial (CS-AgNPs, CS-AgNPs-carbon nanotubes) and would healing properties (CS-AuNPs) are observed in nanocomposites with concentrations of NPs near the percolation threshold. In this regard, the best detection limit in potentiometric and impedimetric sensors for detection of copper ions (using CS-AuNPs membrane) and nitrate ions (using CS-clay membrane) in aqueous solutions have been observed for membranes with concentrations of NPs near percolation threshold. It is well known that at the percolation concentration of NPs an abrupt increasing of conductivity is observed due to the presence of physical contacts between NPs; above this concentration, agglomeration of NPs takes place such that a decrease in the effective surface and performance of nanocomposite appear. The obtained relationship between electrical percolation threshold and performance of polymer nanocomposites with conductivity NPs is important for the design and optimization of polymer-based nanocomposites for different applications.Keywords: chitosan, conductivity nanoparticles, percolation threshold, polymer nanocomposites
Procedia PDF Downloads 2122959 Proposals of Exposure Limits for Infrasound From Wind Turbines
Authors: M. Pawlaczyk-Łuszczyńska, T. Wszołek, A. Dudarewicz, P. Małecki, M. Kłaczyński, A. Bortkiewicz
Abstract:
Human tolerance to infrasound is defined by the hearing threshold. Infrasound that cannot be heard (or felt) is not annoying and is not thought to have any other adverse or health effects. Recent research has largely confirmed earlier findings. ISO 7196:1995 recommends the use of G-weighted characteristics for the assessment of infrasound. There is a strong correlation between G-weighted SPL and annoyance perception. The aim of this study was to propose exposure limits for infrasound from wind turbines. However, only a few countries have set limits for infrasound. These limits are usually no higher than 85-92 dBG, and none of them are specific to wind turbines. Over the years, a number of studies have been carried out to determine hearing thresholds below 20 Hz. It has been recognized that 10% of young people would be able to perceive 10 Hz at around 90 dB, and it has also been found that the difference in median hearing thresholds between young adults aged around 20 years and older adults aged over 60 years is around 10 dB, irrespective of frequency. This shows that older people (up to about 60 years of age) retain good hearing in the low frequency range, while their sensitivity to higher frequencies is often significantly reduced. In terms of exposure limits for infrasound, the average hearing threshold corresponds to a tone with a G-weighted SPL of about 96 dBG. In contrast, infrasound at Lp,G levels below 85-90 dBG is usually inaudible. The individual hearing threshold can, therefore be 10-15 dB lower than the average threshold, so the recommended limits for environmental infrasound could be 75 dBG or 80 dBG. It is worth noting that the G86 curve has been taken as the threshold of auditory perception of infrasound reached by 90-95% of the population, so the G75 and G80 curves can be taken as the criterion curve for wind turbine infrasound. Finally, two assessment methods and corresponding exposure limit values have been proposed for wind turbine infrasound, i.e. method I - based on G-weighted sound pressure level measurements and method II - based on frequency analysis in 1/3-octave bands in the frequency range 4-20 Hz. Separate limit values have been set for outdoor living areas in the open countryside (Area A) and for noise sensitive areas (Area B). In the case of Method I, infrasound limit values of 80 dBG (for areas A) and 75 dBG (for areas B) have been proposed, while in the case of Method II - criterion curves G80 and G75 have been chosen (for areas A and B, respectively).Keywords: infrasound, exposure limit, hearing thresholds, wind turbines
Procedia PDF Downloads 832958 Joint Optimization of Carsharing Stations with Vehicle Relocation and Demand Selection
Authors: Jiayuan Wu. Lu Hu
Abstract:
With the development of the sharing economy and mobile technology, carsharing becomes more popular. In this paper, we focus on the joint optimization of one-way station-based carsharing systems. We model the problem as an integer linear program with six elements: station locations, station capacity, fleet size, initial vehicle allocation, vehicle relocation, and demand selection. A greedy-based heuristic is proposed to address the model. Firstly, initialization based on the location variables relaxation using Gurobi solver is conducted. Then, according to the profit margin and demand satisfaction of each station, the number of stations is downsized iteratively. This method is applied to real data from Chengdu, Sichuan taxi data, and it’s efficient when dealing with a large scale of candidate stations. The result shows that with vehicle relocation and demand selection, the profit and demand satisfaction of carsharing systems are increased.Keywords: one-way carsharing, location, vehicle relocation, demand selection, greedy algorithm
Procedia PDF Downloads 1372957 Problem of Services Selection in Ubiquitous Systems
Authors: Malika Yaici, Assia Arab, Betitra Yakouben, Samia Zermani
Abstract:
Ubiquitous computing is nowadays a reality through the networking of a growing number of computing devices. It allows providing users with context aware information and services in a heterogeneous environment, anywhere and anytime. Selection of the best context-aware service, between many available services and providers, is a tedious problem. In this paper, a service selection method based on Constraint Satisfaction Problem (CSP) formalism is proposed. The services are considered as variables and domains; and the user context, preferences and providers characteristics are considered as constraints. The Backtrack algorithm is used to solve the problem to find the best service and provider which matches the user requirements. Even though this algorithm has an exponential complexity, but its use guarantees that the service, that best matches the user requirements, will be found. A comparison of the proposed method with the existing solutions finishes the paper.Keywords: ubiquitous computing, services selection, constraint satisfaction problem, backtrack algorithm
Procedia PDF Downloads 2442956 An Analysis of Present Supplier Selection Criteria of State Pharmaceutical Corporation (SPC) Sri Lanka: A Case Study
Authors: Gamalath M. B. P. Abeysekara
Abstract:
Primary objective of any organization is to enhance the bottom line profit. Strategic procurement is one of the prominent aspects in view of receiving this ultimate objective. Strategic procurement is an activity used in each and every organization in their operations. Pharmaceutical procurement is an especially significant task for any organizations, particularly state sector concerned. The whole pharmaceutical procurement requirement of the country is procured through the State Pharmaceutical Corporation (SPC) of Sri Lanka. They follow Pharmaceutical Procurement Guideline of 2006 as the procurement principle. The main objective of this project is to identify the importance of State Pharmaceutical Corporation supplier selection criteria and critical analysis of pharmaceutical procurement procedure. State Pharmaceutical Corporations applied net price, product quality, past performance, and delivery of suppliers’ as main criteria for the selection suppliers. Data collection for this study was taken place through a questionnaire, given to fifty doctors within the Colombo district attached to five main state hospitals. Data analysis is carried out with mean and standard deviation functions. The ultimate outcomes indicated product quality, net price, and delivery of suppliers’ are the most important criteria behind the selection of suppliers. Critical analysis proved State Pharmaceutical Corporation should focus on net price reduction, improving laboratory testing facilities and effective communication between up and down stream of supply chain.Keywords: government procurement procedure, pharmaceutical procurement supplier selection criteria, importance of SPC supplier selection criteria
Procedia PDF Downloads 4512955 Identification and Selection of a Supply Chain Target Process for Re-Design
Authors: Jaime A. Palma-Mendoza
Abstract:
A supply chain consists of different processes and when conducting supply chain re-design is necessary to identify the relevant processes and select a target for re-design. A solution was developed which consists to identify first the relevant processes using the Supply Chain Operations Reference (SCOR) model, then to use Analytical Hierarchy Process (AHP) for target process selection. An application was conducted in an Airline MRO supply chain re-design project which shows this combination can clearly aid the identification of relevant supply chain processes and the selection of a target process for re-design.Keywords: decision support systems, multiple criteria analysis, supply chain management
Procedia PDF Downloads 4922954 Qualitative and Quantitative Analysis of Motivation Letters to Model Turnover in Non-Governmental Organization
Authors: A. Porshnev, A. Zaporozhtchuk
Abstract:
Motivation regarded as a key factor of labor turnover, is especially important for volunteers working on an altruistic basis in NGO. Despite the motivational letter, candidate selection depends on the impression of the selection committee, which can be subject to human bias. We expect that structured and unstructured information provided in motivation letters could be used to improve candidate selection procedures. In our paper, we perform qualitative and quantitative analysis of 2280 motivation letters, create logistic regression, and build a decision tree to improve selection procedures. Our analysis showed that motivation factors are significant and enable human resources department to forecast labor turnover and provide extra information to demographic, professional and timing questions. In spite of the average level of accuracy the model demonstrates the selection procedures of company of under consideration can be improved. We also discuss interrelation between answers to open and closed motivation questions, recommend changes in motivational letter templates to ensure more relevant information about applicants and further steps to create more accurate model.Keywords: decision trees, logistic regression, model, motivational letter, non-governmental organization, retention, turnover
Procedia PDF Downloads 1772953 Site Selection and Construction Mechanism of the Island Settlements in China Based on CFD-GIS Technology
Authors: Weng Jiantao, Wu Yiqun
Abstract:
The efficiency of natural ventilation, wind pressure distribution on building surface, wind comfort for pedestrians and buildings’ wind tolerance in traditional settlements are closely related to the pattern of terrain. On the basis of field research on the typical island terrain in China, the physical and mathematical models are established by using CFD software, and then the simulation results of the wind field are exported. We discuss the relationship between wind direction and wind field results. Furthermore simulation results are imported into ArcGIS platform. The evaluation model of island site selection is established with considering slope factor. We realize the visual model of site selection on complex island terrain. The multi-plans of certain residential are discussed based on wind simulation; at last the optimal project is selected. Results can provide the theory guidance for settlement planning and construction in China's traditional island.Keywords: CFD, island terrain, site selection, construction mechanism
Procedia PDF Downloads 5092952 Roullete Wheel Selection Mechanism for Solving Travelling Salesman Problem in Ant Colony Optimization
Authors: Sourabh Joshi, Geetinder Kaur, Sarabjit Kaur, Gulwatanpreet Singh, Geetika Mannan
Abstract:
In this paper, we have use an algorithm that able to obtain an optimal solution to travelling salesman problem from a huge search space, quickly. This algorithm is based upon the ant colony optimization technique and employees roulette wheel selection mechanism. To illustrate it more clearly, a program has been implemented which is based upon this algorithm, that presents the changing process of route iteration in a more intuitive way. In the event, we had find the optimal path between hundred cities and also calculate the distance between two cities.Keywords: ant colony, optimization, travelling salesman problem, roulette wheel selection
Procedia PDF Downloads 4412951 Analysis of the Statistical Characterization of Significant Wave Data Exceedances for Designing Offshore Structures
Authors: Rui Teixeira, Alan O’Connor, Maria Nogal
Abstract:
The statistical theory of extreme events is progressively a topic of growing interest in all the fields of science and engineering. The changes currently experienced by the world, economic and environmental, emphasized the importance of dealing with extreme occurrences with improved accuracy. When it comes to the design of offshore structures, particularly offshore wind turbines, the importance of efficiently characterizing extreme events is of major relevance. Extreme events are commonly characterized by extreme values theory. As an alternative, the accurate modeling of the tails of statistical distributions and the characterization of the low occurrence events can be achieved with the application of the Peak-Over-Threshold (POT) methodology. The POT methodology allows for a more refined fit of the statistical distribution by truncating the data with a minimum value of a predefined threshold u. For mathematically approximating the tail of the empirical statistical distribution the Generalised Pareto is widely used. Although, in the case of the exceedances of significant wave data (H_s) the 2 parameters Weibull and the Exponential distribution, which is a specific case of the Generalised Pareto distribution, are frequently used as an alternative. The Generalized Pareto, despite the existence of practical cases where it is applied, is not completely recognized as the adequate solution to model exceedances over a certain threshold u. References that set the Generalised Pareto distribution as a secondary solution in the case of significant wave data can be identified in the literature. In this framework, the current study intends to tackle the discussion of the application of statistical models to characterize exceedances of wave data. Comparison of the application of the Generalised Pareto, the 2 parameters Weibull and the Exponential distribution are presented for different values of the threshold u. Real wave data obtained in four buoys along the Irish coast was used in the comparative analysis. Results show that the application of the statistical distributions to characterize significant wave data needs to be addressed carefully and in each particular case one of the statistical models mentioned fits better the data than the others. Depending on the value of the threshold u different results are obtained. Other variables of the fit, as the number of points and the estimation of the model parameters, are analyzed and the respective conclusions were drawn. Some guidelines on the application of the POT method are presented. Modeling the tail of the distributions shows to be, for the present case, a highly non-linear task and, due to its growing importance, should be addressed carefully for an efficient estimation of very low occurrence events.Keywords: extreme events, offshore structures, peak-over-threshold, significant wave data
Procedia PDF Downloads 2722950 [Keynote Speech]: Feature Selection and Predictive Modeling of Housing Data Using Random Forest
Authors: Bharatendra Rai
Abstract:
Predictive data analysis and modeling involving machine learning techniques become challenging in presence of too many explanatory variables or features. Presence of too many features in machine learning is known to not only cause algorithms to slow down, but they can also lead to decrease in model prediction accuracy. This study involves housing dataset with 79 quantitative and qualitative features that describe various aspects people consider while buying a new house. Boruta algorithm that supports feature selection using a wrapper approach build around random forest is used in this study. This feature selection process leads to 49 confirmed features which are then used for developing predictive random forest models. The study also explores five different data partitioning ratios and their impact on model accuracy are captured using coefficient of determination (r-square) and root mean square error (rsme).Keywords: housing data, feature selection, random forest, Boruta algorithm, root mean square error
Procedia PDF Downloads 3232949 A Hybrid Feature Selection Algorithm with Neural Network for Software Fault Prediction
Authors: Khalaf Khatatneh, Nabeel Al-Milli, Amjad Hudaib, Monther Ali Tarawneh
Abstract:
Software fault prediction identify potential faults in software modules during the development process. In this paper, we present a novel approach for software fault prediction by combining a feedforward neural network with particle swarm optimization (PSO). The PSO algorithm is employed as a feature selection technique to identify the most relevant metrics as inputs to the neural network. Which enhances the quality of feature selection and subsequently improves the performance of the neural network model. Through comprehensive experiments on software fault prediction datasets, the proposed hybrid approach achieves better results, outperforming traditional classification methods. The integration of PSO-based feature selection with the neural network enables the identification of critical metrics that provide more accurate fault prediction. Results shows the effectiveness of the proposed approach and its potential for reducing development costs and effort by detecting faults early in the software development lifecycle. Further research and validation on diverse datasets will help solidify the practical applicability of the new approach in real-world software engineering scenarios.Keywords: feature selection, neural network, particle swarm optimization, software fault prediction
Procedia PDF Downloads 942948 A Case Study on Evaluating and Selecting Soil /Pipeline Interaction Analysis Software for the Oil and Gas Industry
Authors: Abdinasir Mohamed, Ashraf El-Hamalawi, Steven Yeomans, Matthew Frost, Andy Connell
Abstract:
The evaluation and selection of appropriate software solutions to meet with an organisation’s inherent business requirements can be a problematic software engineering process that if done incorrectly can have a significant, costly and adverse effect on the business and its processes. The aim of this paper is to show the process and evaluation criteria followed to select the right engineering solution for the identified business requirement. The research adopted an action research method within an organisation in the oil and gas industry, which required a solution suitable for conducting stress analysis for soil-pipeline interaction analysis (SPIA). Through the use of the presented software selection and evaluation approach, to capture and measure key requirements, it was possible to determine a suitable software for the organisation. This paper investigates methodologies for selecting software packages, software evaluation techniques, and software evaluation criteria in evaluating software packages before providing an explanation of the developed methodology adopted. The key findings of the study are: (1) that there is a need to create a framework for software selection methodologies, (2) there are no universal selection criteria in the engineering industry, and (3) there is a need to validate the findings by creating an application based on the evaluation technique and evaluation criteria for selecting software packages for the engineering industry. The findings of the study are offered to support organisations in the oil and gas sector improve software selection methodologies for SPIA.Keywords: software evaluation, end user programs, soil pipeline analysis, software selection
Procedia PDF Downloads 1922947 Reliability and Validity of Determining Ventilatory Threshold and Respiratory Compensation Point by Near-Infrared Spectroscopy
Authors: Tso-Yen Mao, De-Yen Liu, Chun-Feng Huang
Abstract:
Purpose: This research intends to investigate the reliability and validity of ventilatory threshold (VT) and respiratory compensation point (RCP) determined by skeletal muscle hemodynamic status. Methods: One hundred healthy male (age: 22±3 yrs; height: 173.1±6.0 cm; weight: 67.1±10.5 kg) performed graded cycling exercise test which ventilatory and skeletal muscle hemodynamic data were collected simultaneously. VT and RCP were determined by combined V-slope (VE vs. VCO2) and ventilatory efficiency (VE/VO2 vs. VE/VCO2) methods. Pearson correlation, paired t-test, and Bland-Altman plots were used to analyze reliability, validity, and similarities. Statistical significance was set at α =. 05. Results: There are high test-retest correlations of VT and RCP in ventilatory or near-infrared spectroscopy (NIRS) methods (VT vs. VTNIRS: 0.95 vs. 0.94; RCP vs. RCPNIRS: 0.93 vs. 0.93, p<. 05). There are high coefficient of determination at the first timing point of O2Hb decreased (R2 = 0.88, p<. 05) with VT, and high coefficient of determination at the second timing point of O2Hb declined (R2 = 0.89, p< .05) with RCP. VO2 of VT and RCP are not significantly different between ventilatory and NIRS methods (p>. 05). Conclusion: Using NIRS method to determine VT and RCP is reliable and valid in male individuals during graded exercise. Non-invasive skeletal muscle hemodynamics monitor also can be used for controlling training intensity in the future.Keywords: anaerobic threshold, exercise intensity, hemodynamic, NIRS
Procedia PDF Downloads 3132946 A New Sign Subband Adaptive Filter Based on Dynamic Selection of Subbands
Authors: Mohammad Shams Esfand Abadi, Mehrdad Zalaghi, Reza ebrahimpour
Abstract:
In this paper, we propose a sign adaptive filter algorithm with the ability of dynamic selection of subband filters which leads to low computational complexity compared with conventional sign subband adaptive filter (SSAF) algorithm. Dynamic selection criterion is based on largest reduction of the mean square deviation at each adaption. We demonstrate that this simple proposed algorithm has the same performance of the conventional SSAF and somewhat faster than it. In the presence of impulsive interferences robustness of the simple proposed algorithm as well as the conventional SSAF and outperform the conventional normalized subband adaptive filter (NSAF) algorithm. Therefore, it is preferred for environments under impulsive interferences. Simulation results are presented to verify these above considerations very well have been achieved.Keywords: acoustic echo cancellation (AEC), normalized subband adaptive filter (NSAF), dynamic selection subband adaptive filter (DS-NSAF), sign subband adaptive filter (SSAF), impulsive noise, robust filtering
Procedia PDF Downloads 5992945 The Key Factors in Shipping Company's Port Selection for Providing Their Supplies
Authors: Sedigheh Zarei
Abstract:
The aim of this research is to identify the key factors in shipping company’s port selection in order to providing their requirement. To identify and rank factors that are play the main role in selecting port for providing the ship supplies. At the first step, Data were collected via Semi-structured interviews, The aim was to generate knowledge on how shipping company select the port and suppliers for providing their needs. 37 port selection factors were chosen from the previous researches and field interviews and have been categorized into two groups of port's factor and the factors of services of suppliers companies. The current study adopts a questionnaire survey to the main shipping companies' operators in Iran. Their responses reveal that level of services of supplying companies and customs rules play the important role in selecting the ports. Our findings could affect decisions made by port authorities to consider that supporting the privet sections for ship chandelling business could have the best result in attracting ships.Keywords: ship supplier, port selection, ship chandler, provision
Procedia PDF Downloads 4572944 Developing Biocompatible Iridium Oxide Electrodes for Bone-Guided Extra-Cochlear Implant
Authors: Yung-Shan Lu, Chia-Fone Lee, Shang-Hsuan Li, Chien-Hao Liu
Abstract:
Recently, various bioelectronic devices have been developed for neurologic disease treatments via electro-stimulations such as cochlear implants and retinal prosthesis. Since the electric signal needs electrodes to be transmitted to an organism, electrodes play an important role of stimulations. The materials of stimulation electrodes affect the efficiency of the delivered currents. The higher the efficiency of the electrodes, the lower the threshold current can be used to stimulate the organism which minimizes the potential damages to the adjacent tissues. In this study, we proposed a biocompatible composite electrode composed of high-charge-capacity iridium oxide (IrOₓ) film for a bone-guide extra-cochlear implant. IrOₓ was exploited to decrease the threshold current due to its high capacitance and low impedance. The IrOₓ electrode was fabricated via microelectromechanical systems (MEMS) photolithography and examined with in-vivo tests with guinea pigs. Based on the measured responses of brain waves to sound, the results demonstrated that IrOₓ electrodes have a lower threshold current compared with the Platinum (Pt) electrodes. The research results are expected to be beneficial for implantable and biocompatible electrodes for electrical stimulations.Keywords: cochlear implants, electrode, electrical stimulation, iridium oxide
Procedia PDF Downloads 1892943 Generalization of Blom Key Predistribution Scheme
Authors: Abbas Cheraghi
Abstract:
A key predistribution scheme provides one method to distribute secret ahead of time. Blom’s scheme is a symmetric threshold key exchange protocol in cryptography. The scheme was proposed by the Swedish cryptographer Rolf Blom. In this kind of scheme, trusted authority gives each user a secret key and a public identifier, which enables any two users to create independently a shared key for communicating between each other. However, if an attacker can compromise the keys of at least Known numbers of users, he can break the scheme and reconstruct every shared key. In this paper generalized Blom’s Scheme by multivariate Lagrange interpolation formula. This scheme is a form of threshold secret sharing scheme. In this new scheme, the amount of information transmitted by the trusted authority is independent of the numbers of users. In addition, this scheme is unconditionally secure against any individual user.Keywords: key predistribution, blom’s scheme, secret sharing, unconditional secure
Procedia PDF Downloads 4362942 Sparsity Order Selection and Denoising in Compressed Sensing Framework
Authors: Mahdi Shamsi, Tohid Yousefi Rezaii, Siavash Eftekharifar
Abstract:
Compressed sensing (CS) is a new powerful mathematical theory concentrating on sparse signals which is widely used in signal processing. The main idea is to sense sparse signals by far fewer measurements than the Nyquist sampling rate, but the reconstruction process becomes nonlinear and more complicated. Common dilemma in sparse signal recovery in CS is the lack of knowledge about sparsity order of the signal, which can be viewed as model order selection procedure. In this paper, we address the problem of sparsity order estimation in sparse signal recovery. This is of main interest in situations where the signal sparsity is unknown or the signal to be recovered is approximately sparse. It is shown that the proposed method also leads to some kind of signal denoising, where the observations are contaminated with noise. Finally, the performance of the proposed approach is evaluated in different scenarios and compared to an existing method, which shows the effectiveness of the proposed method in terms of order selection as well as denoising.Keywords: compressed sensing, data denoising, model order selection, sparse representation
Procedia PDF Downloads 4832941 Knowledge-Driven Decision Support System Based on Knowledge Warehouse and Data Mining by Improving Apriori Algorithm with Fuzzy Logic
Authors: Pejman Hosseinioun, Hasan Shakeri, Ghasem Ghorbanirostam
Abstract:
In recent years, we have seen an increasing importance of research and study on knowledge source, decision support systems, data mining and procedure of knowledge discovery in data bases and it is considered that each of these aspects affects the others. In this article, we have merged information source and knowledge source to suggest a knowledge based system within limits of management based on storing and restoring of knowledge to manage information and improve decision making and resources. In this article, we have used method of data mining and Apriori algorithm in procedure of knowledge discovery one of the problems of Apriori algorithm is that, a user should specify the minimum threshold for supporting the regularity. Imagine that a user wants to apply Apriori algorithm for a database with millions of transactions. Definitely, the user does not have necessary knowledge of all existing transactions in that database, and therefore cannot specify a suitable threshold. Our purpose in this article is to improve Apriori algorithm. To achieve our goal, we tried using fuzzy logic to put data in different clusters before applying the Apriori algorithm for existing data in the database and we also try to suggest the most suitable threshold to the user automatically.Keywords: decision support system, data mining, knowledge discovery, data discovery, fuzzy logic
Procedia PDF Downloads 3352940 FCNN-MR: A Parallel Instance Selection Method Based on Fast Condensed Nearest Neighbor Rule
Authors: Lu Si, Jie Yu, Shasha Li, Jun Ma, Lei Luo, Qingbo Wu, Yongqi Ma, Zhengji Liu
Abstract:
Instance selection (IS) technique is used to reduce the data size to improve the performance of data mining methods. Recently, to process very large data set, several proposed methods divide the training set into some disjoint subsets and apply IS algorithms independently to each subset. In this paper, we analyze the limitation of these methods and give our viewpoint about how to divide and conquer in IS procedure. Then, based on fast condensed nearest neighbor (FCNN) rule, we propose a large data sets instance selection method with MapReduce framework. Besides ensuring the prediction accuracy and reduction rate, it has two desirable properties: First, it reduces the work load in the aggregation node; Second and most important, it produces the same result with the sequential version, which other parallel methods cannot achieve. We evaluate the performance of FCNN-MR on one small data set and two large data sets. The experimental results show that it is effective and practical.Keywords: instance selection, data reduction, MapReduce, kNN
Procedia PDF Downloads 2532939 Indications and Characteristics of Clinical Application of Periodontal Suturing
Authors: Saimir Heta, Ilma Robo, Vera Ostreni, Glorja Demika, Sonila Kapaj
Abstract:
Suturing, as a procedure of joining the lips of the lembo or wound, is important at the beginning of the healing process. This procedure helps to pass the healing process from the procedure per secundam to the stages of healing per primam, thus logically reducing the healing time of the wound. The element that remains in the individual selection of the dentist applying the suture is the selection of the suture material. At a moment when some types of sutures are offered for use, some elements should be considered in the selection of the suture depending on the constituent material, the cross-section of the suture elements, and whether it collects bacteria in the "pits" created by the material. The presence of bacteria is a source of infection and possible delay in the healing of the sutured wound. Conclusion: The marketing of suture types offers a variety of materials, from which the selection of the most suitable suture type for specific application cases is a personal indication of the dental surgeon, based on professional experiences and knowledge in the field.Keywords: suture, suture material, types of sutures, clinical application
Procedia PDF Downloads 822938 Detecting Potential Biomarkers for Ulcerative Colitis Using Hybrid Feature Selection
Authors: Mustafa Alshawaqfeh, Bilal Wajidy, Echin Serpedin, Jan Suchodolski
Abstract:
Inflammatory Bowel disease (IBD) is a disease of the colon with characteristic inflammation. Clinically IBD is detected using laboratory tests (blood and stool), radiology tests (imaging using CT, MRI), capsule endoscopy and endoscopy. There are two variants of IBD referred to as Ulcerative Colitis (UC) and Crohn’s disease. This study employs a hybrid feature selection method that combines a correlation-based variable ranking approach with exhaustive search wrapper methods in order to find potential biomarkers for UC. The proposed biomarkers presented accurate discriminatory power thereby identifying themselves to be possible ingredients to UC therapeutics.Keywords: ulcerative colitis, biomarker detection, feature selection, inflammatory bowel disease (IBD)
Procedia PDF Downloads 402