Search results for: renewable energy forecasting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9037

Search results for: renewable energy forecasting

8887 Comparison of Applicability of Time Series Forecasting Models VAR, ARCH and ARMA in Management Science: Study Based on Empirical Analysis of Time Series Techniques

Authors: Muhammad Tariq, Hammad Tahir, Fawwad Mahmood Butt

Abstract:

Purpose: This study attempts to examine the best forecasting methodologies in the time series. The time series forecasting models such as VAR, ARCH and the ARMA are considered for the analysis. Methodology: The Bench Marks or the parameters such as Adjusted R square, F-stats, Durban Watson, and Direction of the roots have been critically and empirically analyzed. The empirical analysis consists of time series data of Consumer Price Index and Closing Stock Price. Findings: The results show that the VAR model performed better in comparison to other models. Both the reliability and significance of VAR model is highly appreciable. In contrary to it, the ARCH model showed very poor results for forecasting. However, the results of ARMA model appeared double standards i.e. the AR roots showed that model is stationary and that of MA roots showed that the model is invertible. Therefore, the forecasting would remain doubtful if it made on the bases of ARMA model. It has been concluded that VAR model provides best forecasting results. Practical Implications: This paper provides empirical evidences for the application of time series forecasting model. This paper therefore provides the base for the application of best time series forecasting model.

Keywords: forecasting, time series, auto regression, ARCH, ARMA

Procedia PDF Downloads 348
8886 Assessing Future Offshore Wind Farms in the Gulf of Roses: Insights from Weather Research and Forecasting Model Version 4.2

Authors: Kurias George, Ildefonso Cuesta Romeo, Clara Salueña Pérez, Jordi Sole Olle

Abstract:

With the growing prevalence of wind energy there is a need, for modeling techniques to evaluate the impact of wind farms on meteorology and oceanography. This study presents an approach that utilizes the WRF (Weather Research and Forecasting )with that include a Wind Farm Parametrization model to simulate the dynamics around Parc Tramuntana project, a offshore wind farm to be located near the Gulf of Roses off the coast of Barcelona, Catalonia. The model incorporates parameterizations for wind turbines enabling a representation of the wind field and how it interacts with the infrastructure of the wind farm. Current results demonstrate that the model effectively captures variations in temeperature, pressure and in both wind speed and direction over time along with their resulting effects on power output from the wind farm. These findings are crucial for optimizing turbine placement and operation thus improving efficiency and sustainability of the wind farm. In addition to focusing on atmospheric interactions, this study delves into the wake effects within the turbines in the farm. A range of meteorological parameters were also considered to offer a comprehensive understanding of the farm's microclimate. The model was tested under different horizontal resolutions and farm layouts to scrutinize the wind farm's effects more closely. These experimental configurations allow for a nuanced understanding of how turbine wakes interact with each other and with the broader atmospheric and oceanic conditions. This modified approach serves as a potent tool for stakeholders in renewable energy, environmental protection, and marine spatial planning. environmental protection and marine spatial planning. It provides a range of information regarding the environmental and socio economic impacts of offshore wind energy projects.

Keywords: weather research and forecasting, wind turbine wake effects, environmental impact, wind farm parametrization, sustainability analysis

Procedia PDF Downloads 72
8885 Forecasting Thermal Energy Demand in District Heating and Cooling Systems Using Long Short-Term Memory Neural Networks

Authors: Kostas Kouvaris, Anastasia Eleftheriou, Georgios A. Sarantitis, Apostolos Chondronasios

Abstract:

To achieve the objective of almost zero carbon energy solutions by 2050, the EU needs to accelerate the development of integrated, highly efficient and environmentally friendly solutions. In this direction, district heating and cooling (DHC) emerges as a viable and more efficient alternative to conventional, decentralized heating and cooling systems, enabling a combination of more efficient renewable and competitive energy supplies. In this paper, we develop a forecasting tool for near real-time local weather and thermal energy demand predictions for an entire DHC network. In this fashion, we are able to extend the functionality and to improve the energy efficiency of the DHC network by predicting and adjusting the heat load that is distributed from the heat generation plant to the connected buildings by the heat pipe network. Two case-studies are considered; one for Vransko, Slovenia and one for Montpellier, France. The data consists of i) local weather data, such as humidity, temperature, and precipitation, ii) weather forecast data, such as the outdoor temperature and iii) DHC operational parameters, such as the mass flow rate, supply and return temperature. The external temperature is found to be the most important energy-related variable for space conditioning, and thus it is used as an external parameter for the energy demand models. For the development of the forecasting tool, we use state-of-the-art deep neural networks and more specifically, recurrent networks with long-short-term memory cells, which are able to capture complex non-linear relations among temporal variables. Firstly, we develop models to forecast outdoor temperatures for the next 24 hours using local weather data for each case-study. Subsequently, we develop models to forecast thermal demand for the same period, taking under consideration past energy demand values as well as the predicted temperature values from the weather forecasting models. The contributions to the scientific and industrial community are three-fold, and the empirical results are highly encouraging. First, we are able to predict future thermal demand levels for the two locations under consideration with minimal errors. Second, we examine the impact of the outdoor temperature on the predictive ability of the models and how the accuracy of the energy demand forecasts decreases with the forecast horizon. Third, we extend the relevant literature with a new dataset of thermal demand and examine the performance and applicability of machine learning techniques to solve real-world problems. Overall, the solution proposed in this paper is in accordance with EU targets, providing an automated smart energy management system, decreasing human errors and reducing excessive energy production.

Keywords: machine learning, LSTMs, district heating and cooling system, thermal demand

Procedia PDF Downloads 142
8884 Iraqi Short Term Electrical Load Forecasting Based on Interval Type-2 Fuzzy Logic

Authors: Firas M. Tuaimah, Huda M. Abdul Abbas

Abstract:

Accurate Short Term Load Forecasting (STLF) is essential for a variety of decision making processes. However, forecasting accuracy can drop due to the presence of uncertainty in the operation of energy systems or unexpected behavior of exogenous variables. Interval Type 2 Fuzzy Logic System (IT2 FLS), with additional degrees of freedom, gives an excellent tool for handling uncertainties and it improved the prediction accuracy. The training data used in this study covers the period from January 1, 2012 to February 1, 2012 for winter season and the period from July 1, 2012 to August 1, 2012 for summer season. The actual load forecasting period starts from January 22, till 28, 2012 for winter model and from July 22 till 28, 2012 for summer model. The real data for Iraqi power system which belongs to the Ministry of Electricity.

Keywords: short term load forecasting, prediction interval, type 2 fuzzy logic systems, electric, computer systems engineering

Procedia PDF Downloads 397
8883 Advanced Nanomaterials in Catalysis: Bridging the Gap Between Pollution Control and Renewable Energy

Authors: Abonyi Matthew Ndubuisi, Christopher Chiedozie Obi, Joseph Tagbo Nwabanne

Abstract:

This review focuses on the application of advanced nanomaterials in catalysis for pollution control and renewable energy solutions. This review provides a comprehensive examination of the latest developments in nanocatalysts, highlighting their role in addressing environmental challenges and facilitating sustainable energy solutions. The unique properties of nanomaterials, including high surface area, tunable electronic properties, and enhanced reactivity, make them ideal candidates for catalytic applications. This review explores various types of nanomaterials, such as metal nanoparticles, carbon-based nanostructures, and metal-organic frameworks, and their effectiveness in processes like photocatalysis, electrocatalysis, and hydrogen production. Additionally, the review discusses the environmental benefits of using nanocatalysts in pollution control, focusing on the degradation of pollutants in water and air. The potential of these materials to bridge the gap between environmental remediation and clean energy production is emphasized, showcasing their dual role in mitigating pollution and advancing renewable energy technologies. In conclusion, the review analyzes the current challenges and future directions in the field, highlighting the need for continued research to improve the design and application of nanocatalysts for a sustainable future.

Keywords: nanomaterials, catalysis, pollution control, renewable energy, sustainable technology

Procedia PDF Downloads 23
8882 Advancement of Oscillating Water Column Wave Energy Technologies through Integrated Applications and Alternative Systems

Authors: S. Doyle, G. A. Aggidis

Abstract:

Wave energy converter technologies continue to show good progress in worldwide research. One of the most researched technologies, the Oscillating Water Column (OWC), is arguably one of the most popular categories within the converter technologies due to its robustness, simplicity and versatility. However, the versatility of the OWC is still largely untapped with most deployments following similar trends with respect to applications and operating systems. As the competitiveness of the energy market continues to increase, the demand for wave energy technologies to be innovative also increases. For existing wave energy technologies, this requires identifying areas to diversify for lower costs of energy with respect to applications and synergies or integrated systems. This paper provides a review of all OWCs systems integrated into alternative applications in the past and present. The aspects and variation in their design, deployment and system operation are discussed. Particular focus is given to the Multi-OWCs (M-OWCs) and their great potential to increase capture on a larger scale, especially in synergy applications. It is made clear that these steps need to be taken in order to make wave energy a competitive and viable option in the renewable energy mix as progression to date shows that stand alone single function devices are not economical. Findings reveal that the trend of development is moving toward these integrated applications in order to reduce the Levelised Cost of Energy (LCOE) and will ultimately continue in this direction in efforts to make wave energy a competitive option in the renewable energy mix.

Keywords: wave energy converter, oscillating water column, ocean energy, renewable energy

Procedia PDF Downloads 134
8881 Renewable Integration Algorithm to Compensate Photovoltaic Power Using Battery Energy Storage System

Authors: Hyung Joo Lee, Jin Young Choi, Gun Soo Park, Kyo Sun Oh, Dong Jun Won

Abstract:

The fluctuation of the output of the renewable generator caused by weather conditions must be mitigated because it imposes strain on the system and adversely affects power quality. In this paper, we focus on mitigating the output fluctuation of the photovoltaic (PV) using battery energy storage system (BESS). To satisfy tight conditions of system, proposed algorithm is developed. This algorithm focuses on adjusting the integrated output curve considering state of capacity (SOC) of the battery. In this paper, the simulation model is PSCAD / EMTDC software. SOC of the battery and the overall output curve are shown using the simulation results. We also considered losses and battery efficiency.

Keywords: photovoltaic generation, battery energy storage system, renewable integration, power smoothing

Procedia PDF Downloads 281
8880 pscmsForecasting: A Python Web Service for Time Series Forecasting

Authors: Ioannis Andrianakis, Vasileios Gkatas, Nikos Eleftheriadis, Alexios Ellinidis, Ermioni Avramidou

Abstract:

pscmsForecasting is an open-source web service that implements a variety of time series forecasting algorithms and exposes them to the user via the ubiquitous HTTP protocol. It allows developers to enhance their applications by adding time series forecasting functionalities through an intuitive and easy-to-use interface. This paper provides some background on time series forecasting and gives details about the implemented algorithms, aiming to enhance the end user’s understanding of the underlying methods before incorporating them into their applications. A detailed description of the web service’s interface and its various parameterizations is also provided. Being an open-source project, pcsmsForecasting can also be easily modified and tailored to the specific needs of each application.

Keywords: time series, forecasting, web service, open source

Procedia PDF Downloads 83
8879 Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite

Authors: F. Lazzeri, I. Reiter

Abstract:

Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.

Keywords: time-series, features engineering methods for forecasting, energy demand forecasting, Azure Machine Learning

Procedia PDF Downloads 297
8878 Geothermal Resources to Ensure Energy Security During Climate Change

Authors: Debasmita Misra, Arthur Nash

Abstract:

Energy security and sufficiency enables the economic development and welfare of a nation or a society. Currently, the global energy system is dominated by fossil fuels, which is a non-renewable energy resource, which renders vulnerability to energy security. Hence, many nations have begun augmenting their energy system with renewable energy resources, such as solar, wind, biomass and hydro. However, with climate change, how sustainable are some of the renewable energy resources in the future is a matter of concern. Geothermal energy resources have been underexplored or underexploited in global renewable energy production and security, although it is gaining attractiveness as a renewable energy resource. The question is, whether geothermal energy resources are more sustainable than other renewable energy resources. High-temperature reservoirs (> 220 °F) can produce electricity from flash/dry steam plants as well as binary cycle production facilities. Most of the world’s high enthalpy geothermal resources are within the seismo-tectonic belt. However, exploration for geothermal energy is of great importance in conventional geothermal systems in order to improve its economic viability. In recent years, there has been an increase in the use and development of several exploration methods for geo-thermal resources, such as seismic or electromagnetic methods. The thermal infrared band of the Landsat can reflect land surface temperature difference, so the ETM+ data with specific grey stretch enhancement has been used to explore underground heat water. Another way of exploring for potential power is utilizing fairway play analysis for sites without surface expression and in rift zones. Utilizing this type of analysis can improve the success rate of project development by reducing exploration costs. Identifying the basin distribution of geologic factors that control the geothermal environment would help in identifying the control of resource concentration aside from the heat flow, thus improving the probability of success. The first step is compiling existing geophysical data. This leads to constructing conceptual models of potential geothermal concentrations which can then be utilized in creating a geodatabase to analyze risk maps. Geospatial analysis and other GIS tools can be used in such efforts to produce spatial distribution maps. The goal of this paper is to discuss how climate change may impact renewable energy resources and how could a synthesized analysis be developed for geothermal resources to ensure sustainable and cost effective exploitation of the resource.

Keywords: exploration, geothermal, renewable energy, sustainable

Procedia PDF Downloads 154
8877 Renewable Energy Trends Analysis: A Patents Study

Authors: Sepulveda Juan

Abstract:

This article explains the elements and considerations taken into account when implementing and applying patent evaluation and scientometric study in the identifications of technology trends, and the tools that led to the implementation of a software application for patent revision. Univariate analysis helped recognize the technological leaders in the field of energy, and steered the way for a multivariate analysis of this sample, which allowed for a graphical description of the techniques of mature technologies, as well as the detection of emerging technologies. This article ends with a validation of the methodology as applied to the case of fuel cells.

Keywords: patents, scientometric, renewable energy, technology maps

Procedia PDF Downloads 307
8876 A Techno-Economic Evaluation of Bio Fuel Production from Waste of Starting Dates in South Algeria

Authors: Insaf Mehani, Bachir Bouchekima

Abstract:

The necessary reduction and progressive consumption of fossil fuels, whose scarcity is inevitable, involves mobilizing a set of alternatives.Renewable energy, including bio energy are an alternative to fossil fuel depletion and a way to fight against the harmful effects of climate change. It is possible to develop common dates of low commercial value, and put on the local and international market a new generation of products with high added values such as bio ethanol. Besides its use in chemical synthesis, bio ethanol can be blended with gasoline to produce a clean fuel while improving the octane.

Keywords: bioenergy, dates, bioethanol, renewable energy, south Algeria

Procedia PDF Downloads 489
8875 Geothermal Resources of Saudi Arabia: An Update

Authors: Aref Lashin

Abstract:

Saudi Arabia vision of 2030 calls for the diversification of energy sources in the Kingdom. Accordingly, Saudi Arabia has launched a promising plan aims to gradually power the major industrial activities in country by renewable and low carbon energy sources. The geothermal sources are among the promising renewable sources that can support the achievement of the country vision and energy mix plan. Saudi Arabia is enriched with several geothermal resources especially in the western and southwestern regions along the Red Sea region. This paper will give an overview on the different geothermal resources (Hydrothermal, Harrats volcanic eruptions and hot dry rocks) of Saudi Arabia, their categories and classifications as well as the different exploration (Geophysical, geological, geochemical, etc) and drilling enhanced during the last few decades. The economic viability and the possible contribution of geothermal resources in the future of renewable energy of Saudi Arabia is discussed. Some case studies from Jizan, Al-Lith, Harrats and Midyan areas are demonstrated. Scenarios of different low and high geothermal applications for possible power generations, as well as other low-grade utilizations, e.g. direct use, district heating & cooling, medical therapy, etc., are presented.

Keywords: KSA vison 2023, energy mix, geothermal resources, applications, Saudi Arabia

Procedia PDF Downloads 23
8874 Perspective and Challenge of Tidal Power in Bangladesh

Authors: Md. Alamgir Hossain, Md. Zakir Hossain, Md. Atiqur Rahman

Abstract:

Tidal power can play a vital role in integrating as new source of renewable energy to the off-grid power connection in isolated areas, namely Sandwip, in Bangladesh. It can reduce the present energy crisis and improve the social, environmental and economic perspective of Bangladesh. Tidal energy is becoming popular around the world due to its own facilities. The development of any country largely depends on energy sector improvement. Lack of energy sector is because of hampering progress of any country development, and the energy sector will be stable by only depend on sustainable energy sources. Renewable energy having environmental friendly is the only sustainable solution of secure energy system. Bangladesh has a huge potential of tidal power at different locations, but effective measures on this issue have not been considered sincerely. This paper summarizes the current energy scenario, and Bangladesh can produce power approximately 53.19 MW across the country to reduce the growing energy demand utilizing tidal energy as well as it is shown that Sandwip is highly potential place to produce tidal power, which is estimated approximately 16.49 MW by investing only US $10.37 million. Besides this, cost management for tidal power plant has been also discussed.

Keywords: sustainable energy, tidal power, cost analysis, power demand, gas crisis

Procedia PDF Downloads 494
8873 Impact of Transitioning to Renewable Energy Sources on Key Performance Indicators and Artificial Intelligence Modules of Data Center

Authors: Ahmed Hossam ElMolla, Mohamed Hatem Saleh, Hamza Mostafa, Lara Mamdouh, Yassin Wael

Abstract:

Artificial intelligence (AI) is reshaping industries, and its potential to revolutionize renewable energy and data center operations is immense. By harnessing AI's capabilities, we can optimize energy consumption, predict fluctuations in renewable energy generation, and improve the efficiency of data center infrastructure. This convergence of technologies promises a future where energy is managed more intelligently, sustainably, and cost-effectively. The integration of AI into renewable energy systems unlocks a wealth of opportunities. Machine learning algorithms can analyze vast amounts of data to forecast weather patterns, solar irradiance, and wind speeds, enabling more accurate energy production planning. AI-powered systems can optimize energy storage and grid management, ensuring a stable power supply even during intermittent renewable generation. Moreover, AI can identify maintenance needs for renewable energy infrastructure, preventing costly breakdowns and maximizing system lifespan. Data centers, which consume substantial amounts of energy, are prime candidates for AI-driven optimization. AI can analyze energy consumption patterns, identify inefficiencies, and recommend adjustments to cooling systems, server utilization, and power distribution. Predictive maintenance using AI can prevent equipment failures, reducing energy waste and downtime. Additionally, AI can optimize data placement and retrieval, minimizing energy consumption associated with data transfer. As AI transforms renewable energy and data center operations, modified Key Performance Indicators (KPIs) will emerge. Traditional metrics like energy efficiency and cost-per-megawatt-hour will continue to be relevant, but additional KPIs focused on AI's impact will be essential. These might include AI-driven cost savings, predictive accuracy of energy generation and consumption, and the reduction of carbon emissions attributed to AI-optimized operations. By tracking these KPIs, organizations can measure the success of their AI initiatives and identify areas for improvement. Ultimately, the synergy between AI, renewable energy, and data centers holds the potential to create a more sustainable and resilient future. By embracing these technologies, we can build smarter, greener, and more efficient systems that benefit both the environment and the economy.

Keywords: data center, artificial intelligence, renewable energy, energy efficiency, sustainability, optimization, predictive analytics, energy consumption, energy storage, grid management, data center optimization, key performance indicators, carbon emissions, resiliency

Procedia PDF Downloads 33
8872 [Keynote Talk]: Analysis of Intelligent Based Fault Tolerant Capability System for Solar Photovoltaic Energy Conversion

Authors: Albert Alexander Stonier

Abstract:

Due to the fossil fuel exhaustion and environmental pollution, renewable energy sources especially solar photovoltaic system plays a predominant role in providing energy to the consumers. It has been estimated that by 2050 the renewable energy sources will satisfy 50% of the total energy requirement of the world. In this context, the faults in the conversion process require a special attention which is considered as a major problem. A fault which remains even for a few seconds will cause undesirable effects to the system. The presentation comprises of the analysis, causes, effects and mitigation methods of various faults occurring in the entire solar photovoltaic energy conversion process. In order to overcome the faults in the system, an intelligent based artificial neural networks and fuzzy logic are proposed which can significantly mitigate the faults. Hence the presentation intends to find the problem in renewable energy and provides the possible solution to overcome it with simulation and experimental results. The work performed in a 3kWp solar photovoltaic plant whose results cites the improvement in reliability, availability, power quality and fault tolerant ability.

Keywords: solar photovoltaic, power electronics, power quality, PWM

Procedia PDF Downloads 280
8871 Renewable Energy and Environment: Design of a Decision Aided Tool for Sustainable Development

Authors: Mustapha Ouardouz, Mina Amharref, Abdessamed Bernoussi

Abstract:

The future energy, for limited energy resources countries, goes through renewable energies (solar, wind etc.). The renewable energies constitute a major component of the energy strategy to cover a substantial part of the growing needs and contribute to environmental protection by replacing fossil fuels. Indeed, sustainable development involves the promotion of renewable energy and the preservation of the environment by the use of clean energy technologies to limit emissions of greenhouse gases and reducing the pressure exerted on the forest cover. So the impact studies, of the energy use on the environment and farm-related risks are necessary. For that, a global approach integrating all the various sectors involved in such project seems to be the best approach. In this paper we present an approach based on the multi criteria analysis and the realization of one pilot to achieve the development of an innovative geo-intelligent environmental platform. An implementation of this platform will collect, process, analyze and manage environmental data in connection with the nature of used energy in the studied region. As an application we consider a region in the north of Morocco characterized by intense agricultural and industrials activities and using diverse renewable energy. The strategic goals of this platform are; the decision support for better governance, improving the responsiveness of public and private companies connected by providing them in real time with reliable data, modeling and simulation possibilities of energy scenarios, the identification of socio-technical solutions to introduce renewable energies and estimate technical and implantable potential by socio-economic analyzes and the assessment of infrastructure for the region and the communities, the preservation and enhancement of natural resources for better citizenship governance through democratization of access to environmental information, the tool will also perform simulations integrating environmental impacts of natural disasters, particularly those linked to climate change. Indeed extreme cases such as floods, droughts and storms will be no longer rare and therefore should be integrated into such projects.

Keywords: renewable energies, decision aided tool, environment, simulation

Procedia PDF Downloads 459
8870 Forecasting Stock Prices Based on the Residual Income Valuation Model: Evidence from a Time-Series Approach

Authors: Chen-Yin Kuo, Yung-Hsin Lee

Abstract:

Previous studies applying residual income valuation (RIV) model generally use panel data and single-equation model to forecast stock prices. Unlike these, this paper uses Taiwan longitudinal data to estimate multi-equation time-series models such as Vector Autoregressive (VAR), Vector Error Correction Model (VECM), and conduct out-of-sample forecasting. Further, this work assesses their forecasting performance by two instruments. In favor of extant research, the major finding shows that VECM outperforms other three models in forecasting for three stock sectors over entire horizons. It implies that an error correction term containing long-run information contributes to improve forecasting accuracy. Moreover, the pattern of composite shows that at longer horizon, VECM produces the greater reduction in errors, and performs substantially better than VAR.

Keywords: residual income valuation model, vector error correction model, out of sample forecasting, forecasting accuracy

Procedia PDF Downloads 316
8869 Energy Use and Econometric Models of Soybean Production in Mazandaran Province of Iran

Authors: Majid AghaAlikhani, Mostafa Hojati, Saeid Satari-Yuzbashkandi

Abstract:

This paper studies energy use patterns and relationship between energy input and yield for soybean (Glycine max (L.) Merrill) in Mazandaran province of Iran. In this study, data were collected by administering a questionnaire in face-to-face interviews. Results revealed that the highest share of energy consumption belongs to chemical fertilizers (29.29%) followed by diesel (23.42%) and electricity (22.80%). Our investigations showed that a total energy input of 23404.1 MJ.ha-1 was consumed for soybean production. The energy productivity, specific energy, and net energy values were estimated as 0.12 kg MJ-1, 8.03 MJ kg-1, and 49412.71 MJ.ha-1, respectively. The ratio of energy outputs to energy inputs was 3.11. Obtained results indicated that direct, indirect, renewable and non-renewable energies were (56.83%), (43.17%), (15.78%) and (84.22%), respectively. Three econometric models were also developed to estimate the impact of energy inputs on yield. The results of econometric models revealed that impact of chemical, fertilizer, and water on yield were significant at 1% probability level. Also, direct and non-renewable energies were found to be rather high. Cost analysis revealed that total cost of soybean production per ha was around 518.43$. Accordingly, the benefit-cost ratio was estimated as 2.58. The energy use efficiency in soybean production was found as 3.11. This reveals that the inputs used in soybean production are used efficiently. However, due to higher rate of nitrogen fertilizer consumption, sustainable agriculture should be extended and extension staff could be proposed substitution of chemical fertilizer by biological fertilizer or green manure.

Keywords: Cobbe Douglas function, economical analysis, energy efficiency, energy use patterns, soybean

Procedia PDF Downloads 334
8868 Willingness of Spanish Wineries to Implement Renewable Energies in Their Vineyards and Wineries, as Well as the Limitations They Perceive for Their Implementation

Authors: Javier Carroquino, Nieves García-Casarejos, Pilar Gargallo

Abstract:

Climate change, depletion of non-renewable resources in the current energies, pollution from them, the greater ecological awareness of the population, are factors that suggest the change of energy sources in business. The agri-food industry is a growth sector, concerned about product innovation, process and with a clear awareness of what climate change may mean for it. This sector is supposed to have a high receptivity to the implementation of clean energy, as this favors not only the environment but also the essence of its business. This work, through surveys, aims to know the willingness of Spanish wineries to implement renewable energies in their vineyards, as well as the limitations they perceive for their implementation. This questionnaire allows the characterization of the sector in terms of its geographical typologies, their activity levels, their perception of environmental issues, the degree of implementation of measures to mitigate climate change and improve energy efficiency, and its uses and energy consumption. The analysis of data proves that the penetration of renewable energies is still at low levels, being the most used energies, solar thermal, photovoltaic and biomass. The initial investment seems to be at the origin of the lack of implantation of this type of energy in the wineries, and not so much the costs of operations and maintenance. The environmental management of the wineries is still at an embryonic stage within the company's organization chart, because these services are either outsourced or, if technicians are available, they are not exclusively dedicated to these tasks. However, there is a strong environmental awareness, as evidenced by the number of climate change mitigation and energy efficiency measures already adopted. The gap between high awareness and low achievement is probably due to the lack of knowledge about how to do it or the perception of a high cost.

Keywords: survey, renewable energy, winery, Spanish case

Procedia PDF Downloads 252
8867 An Analysis of Institutional Environments on Corporate Social Responsibility Practices in Nigerian Renewable Energy Firms

Authors: Bolanle Deborah Motilewa, E. K. Rowland Worlu, Gbenga Mayowa Agboola, Ayodele Maxwell Olokundun

Abstract:

Several studies have proposed a one-size fit all approach to Corporate Social Responsibility (CSR) practices, such that CSR as it applies to developed countries is adapted to developing countries, ignoring the differing institutional environments (such as the regulative, economic, social and political environments), which affects the profitability and practices of businesses operating in them. CSR as it applies to filling institutional gaps in developing countries, was categorized into four themes: environmental protection, product and service innovation, social innovation and local cluster development. Based on the four themes, the study employed a qualitative research approach through the use of interviews and review of available publications to study the influence of institutional environments on CSR practices engaged in by three renewable energy firms operating in Nigeria. Over the course of three 60-minutes sessions with the top management and selected workers of the firms, four propositions were made: regulatory environment influences environmental protection practice of Nigerian renewable firms, economic environment influences product and service innovation practice of Nigerian renewable energy firms, the social environment impacts on social innovation in Nigerian renewable energy firms, and political environment affects local cluster development practice of Nigerian renewable energy firms. It was also observed that beyond institutional environments, the international exposure of an organization’s managers reflected in their approach to CSR. This finding on the influence of international exposure on CSR practices creates an area for further study. Insights from this paper are set to help policy makers in developing countries, CSR managers, and future researchers.

Keywords: corporate social responsibility, renewable energy firms, institutional environment, social entrepreneurship

Procedia PDF Downloads 291
8866 Association Between Renewable Energy and Community Forest User Group: A Case of Siranchowk Rural Municipality, Nepal

Authors: Prem Bahadur Giri, MathineeYucharoen

Abstract:

Community forest user groups (CFUGs) have been the core stone of forest management efforts in Nepal. Due to the lack of a smooth transition into the local governance structure in 2017, policy instruments have not been effectively cascaded to the local level, creating ambiguity and inconsistency in forest governance. Descriptive mixed-method research was performed with community users and stakeholders of the Tarpakha community forest, Siranchowk Rural Municipality, to understand the role of the political economy in CFUG management. The household survey was conducted among 100 households (who also are existing members of the Tarpakha CFUG) to understand and document their energy consumption preferences and practices. Likewise, ten key informant interviews and five focus group discussions with the municipality and forest management officials were also conducted to have a wider overview of the factors and political, socio-economic, and religious contexts behind the utilization of renewable energy for sustainable development. Findings from our study suggest that only 3% of households use biogas as their main source of energy. The rest of the households mention liquid petroleum gas (LPG), electricity, and firewood as major sources of energy for domestic purposes. Community members highlighted the difficulty in accessing firewood due to strict regulations from the CFUG, lack of cattle and manpower to rear cattle to produce cow dung (for biogas), and lack of technical expertise at the community level for the operation and maintenance of solar energy, among others as challenges of the resource. Likewise, key informants have mentioned policy loopholes at both the federal and local levels, especially with regard to the promotion of alternative or renewable energy, as there are no clear mandates and provisions to regulate the renewable energy industry. The study recommends doing an in-depth study on the feasibility of renewable energy sources, especially in the context of CFUGs, where biodiversity conservation aspects need to be equally taken into consideration while thinking of the promotion and expansion of renewable energy sources.

Keywords: community forest, renewable energy, sustainable development, Nepal

Procedia PDF Downloads 12
8865 Fault Detection and Isolation in Sensors and Actuators of Wind Turbines

Authors: Shahrokh Barati, Reza Ramezani

Abstract:

Due to the countries growing attention to the renewable energy producing, the demand for energy from renewable energy has gone up among the renewable energy sources; wind energy is the fastest growth in recent years. In this regard, in order to increase the availability of wind turbines, using of Fault Detection and Isolation (FDI) system is necessary. Wind turbines include of various faults such as sensors fault, actuator faults, network connection fault, mechanical faults and faults in the generator subsystem. Although, sensors and actuators have a large number of faults in wind turbine but have discussed fewer in the literature. Therefore, in this work, we focus our attention to design a sensor and actuator fault detection and isolation algorithm and Fault-tolerant control systems (FTCS) for Wind Turbine. The aim of this research is to propose a comprehensive fault detection and isolation system for sensors and actuators of wind turbine based on data-driven approaches. To achieve this goal, the features of measurable signals in real wind turbine extract in any condition. The next step is the feature selection among the extract in any condition. The next step is the feature selection among the extracted features. Features are selected that led to maximum separation networks that implemented in parallel and results of classifiers fused together. In order to maximize the reliability of decision on fault, the property of fault repeatability is used.

Keywords: FDI, wind turbines, sensors and actuators faults, renewable energy

Procedia PDF Downloads 400
8864 Simulation of Wind Solar Hybrid Power Generation for Pumping Station

Authors: Masoud Taghavi, Gholamreza Salehi, Ali Lohrasbi Nichkoohi

Abstract:

Despite the growing use of renewable energies in different fields of application of this technology in the field of water supply has been less attention. Photovoltaic and wind hybrid system is that new topics in renewable energy, including photovoltaic arrays, wind turbines, a set of batteries as a storage system and a diesel generator as a backup system is. In this investigation, first climate data including average wind speed and solar radiation at any time during the year, data collection and analysis are performed in the energy. The wind turbines in four models, photovoltaic panels at the 6 position of relative power, batteries and diesel generator capacity in seven states in the two models are combined hours of operation with renewables, diesel generator and battery bank check and a hybrid system of solar power generation-wind, which is optimized conditions, are presented.

Keywords: renewable energy, wind and solar energy, hybrid systems, cloning station

Procedia PDF Downloads 399
8863 Design and Implementation of Machine Learning Model for Short-Term Energy Forecasting in Smart Home Management System

Authors: R. Ramesh, K. K. Shivaraman

Abstract:

The main aim of this paper is to handle the energy requirement in an efficient manner by merging the advanced digital communication and control technologies for smart grid applications. In order to reduce user home load during peak load hours, utility applies several incentives such as real-time pricing, time of use, demand response for residential customer through smart meter. However, this method provides inconvenience in the sense that user needs to respond manually to prices that vary in real time. To overcome these inconvenience, this paper proposes a convolutional neural network (CNN) with k-means clustering machine learning model which have ability to forecast energy requirement in short term, i.e., hour of the day or day of the week. By integrating our proposed technique with home energy management based on Bluetooth low energy provides predicted value to user for scheduling appliance in advanced. This paper describes detail about CNN configuration and k-means clustering algorithm for short-term energy forecasting.

Keywords: convolutional neural network, fuzzy logic, k-means clustering approach, smart home energy management

Procedia PDF Downloads 305
8862 Two Day Ahead Short Term Load Forecasting Neural Network Based

Authors: Firas M. Tuaimah

Abstract:

This paper presents an Artificial Neural Network based approach for short-term load forecasting and exactly for two days ahead. Two seasons have been discussed for Iraqi power system, namely summer and winter; the hourly load demand is the most important input variables for ANN based load forecasting. The recorded daily load profile with a lead time of 1-48 hours for July and December of the year 2012 was obtained from the operation and control center that belongs to the Ministry of Iraqi electricity. The results of the comparison show that the neural network gives a good prediction for the load forecasting and for two days ahead.

Keywords: short-term load forecasting, artificial neural networks, back propagation learning, hourly load demand

Procedia PDF Downloads 464
8861 Nigeria Energy Security: The Role of Solar Batteries

Authors: Ihugba Okezie A., Oguzie Emeka E.

Abstract:

Nigeria's renewable energy market is expanding due to increased environmental awareness, supportive government policies, and the need for energy diversification. This paper examines the role of solar batteries in enhancing Nigeria's energy security. With growing energy demands and frequent power outages, integrating solar batteries presents a viable solution to stabilize the energy supply. The study investigates the current state of solar battery technology in Nigeria, its economic and environmental benefits, and the challenges to implementation. Through a literature review, case studies, and stakeholder interviews, the paper provides a comprehensive analysis of solar batteries' contribution to a resilient energy future. Key players include Engie SA, TotalEnergies SE, Starsight Energy, Enel SpA, and North-South Power Co. Ltd. Challenges include high upfront costs, inadequate policies, weak infrastructure, and security risks. The paper recommends that the government should strengthen policies and incentives to encourage investments through tax breaks, subsidies, and financial incentives.

Keywords: renewable energy, solar batteries, energy security, Nigeria’s electricity generation, job creation

Procedia PDF Downloads 38
8860 India’s Energy System Transition, Survival of the Greenest

Authors: B. Sudhakara Reddy

Abstract:

The transition to a clean and green energy system is an economic and social transformation that is exciting as well as challenging. The world today faces a formidable challenge in transforming its economy from being driven primarily by fossil fuels, which are non-renewable and a major source of global pollution, to becoming an economy that can function effectively using renewable energy sources and by achieving high energy efficiency levels. In the present study, a green economy scenario is developed for India using a bottom-up approach. The results show that the penetration rate of renewable energy resources will reduce the total primary energy demand by 23% under GE. Improvements in energy efficiency (e.g. households, industrial and commercial sectors) will result in reduced demand to the tune of 318 MTOE. The volume of energy-related CO2 emissions decline to 2,218 Mt in 2030 from 3,440 under the BAU scenario and the per capita emissions will reduce by about 35% (from 2.22 to 1.45) under the GE scenario. The reduction in fossil fuel demand and focus on clean energy will reduce the energy intensity to 0.21 (TOE/US$ of GDP) and carbon intensity to 0.42 (ton/US$ of GDP) under the GE scenario. total import bill (coal and oil) will amount to US$ 334 billion by 2030 (at 2010/11 prices), but as per the GE scenario, it would be US$ 194.2 billion, a saving of about US$ 140 billion. The building of a green energy economy can also serve another purpose: to develop new ‘pathways out of poverty’ by creating more than 10 million jobs and thus raise the standard of living of low-income people. The differences between the baseline and green energy scenarios are not so much the consequence of the diffusion of various technologies. It is the result of the active roles of different actors and the drivers that become dominant.

Keywords: emissions, green energy, fossil fuels, green jobs, renewables, scenario

Procedia PDF Downloads 532
8859 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro-Grids

Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone

Abstract:

Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.

Keywords: short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, gain

Procedia PDF Downloads 468
8858 Study on Eco-Feedback of Thermal Comfort and Cost Efficiency for Low Energy Residence

Authors: Y. Jin, N. Zhang, X. Luo, W. Zhang

Abstract:

China with annual increasing 0.5-0.6 billion squares city residence has brought in enormous energy consumption by HVAC facilities and other appliances. In this regard, governments and researchers are encouraging renewable energy like solar energy, geothermal energy using in houses. However, high cost of equipment and low energy conversion result in a very low acceptable to residents. So what’s the equilibrium point of eco-feedback to reach economic benefit and thermal comfort? That is the main question should be answered. In this paper, the objective is an on-site solar PV and heater house, which has been evaluated as a low energy building. Since HVAC system is considered as main energy consumption equipment, the residence with 24-hour monitoring system set to measure temperature, wind velocity and energy in-out value with no HVAC system for one month of summer and winter. Thermal comfort time period will be analyzed and confirmed; then the air-conditioner will be started within thermal discomfort time for the following one summer and winter month. The same data will be recorded to calculate the average energy consumption monthly for a purpose of whole day thermal comfort. Finally, two analysis work will be done: 1) Original building thermal simulation by computer at design stage with actual measured temperature after construction will be contrastive analyzed; 2) The cost of renewable energy facilities and power consumption converted to cost efficient rate to assess the feasibility of renewable energy input for residence. The results of the experiment showed that a certain deviation exists between actual measured data and simulated one for human thermal comfort, especially in summer period. Moreover, the cost-effectiveness is high for a house in targeting city Guilin now with at least 11 years of cost-covering. The conclusion proves that an eco-feedback of a low energy residence is never only consideration of its energy net value, but also the cost efficiency that is the critical factor to push renewable energy acceptable by the public.

Keywords: cost efficiency, eco-feedback, low energy residence, thermal comfort

Procedia PDF Downloads 255