Search results for: multifunctional nanostructure
124 Assessment and Evaluation of Traffic Noise in Selected Government Healthcare Facilities at Birnin Kebbi, Kebbi State-Nigeria
Authors: Muhammad Naziru Yahaya, Buhari Samaila, Nasiru Abubakar
Abstract:
Noise pollution caused by vehicular movement in urban cities has reached alarming proportions due to continuous increases in vehicles and industrialization. Traffic noise causes deafness, annoyance, and other health challenges. According to World Health Organization recommends 60Db daytime sound levels and 40db night time sound levels in hospitals, schools, and other residential areas. Measurements of traffic noise were taken at six different locations of selected healthcare facilities at Birnin Kebbi (Sir Yahaya Memorial Hospital and Federal Medical Centre Birnin Kebbi). The data was collected in the vicinity of hospitals using the slow setting of the device and pointed at noise sources. An integrated multifunctional sound level GM1352, KK2821163 model, was used for measuring the emitted noise and temperatures. The data was measured and recorded at three different periods of the day 8 am – 12 pm, 3 pm – 6 pm, and 6 pm – 8:30 pm, respectively. The results show that a fair traffic flow producing an average sound level in the order of 38db – 64db was recorded at GOPDF, amenityF, and ante-natalF. Similarly, high traffic noise was observed at GOPDS, amenityS, and Fati-LamiS in the order of 52db – 78db unsatisfactory threshold for human hearing.Keywords: amenities, healthcare, noise, hospital, traffic
Procedia PDF Downloads 115123 Customized Design of Amorphous Solids by Generative Deep Learning
Authors: Yinghui Shang, Ziqing Zhou, Rong Han, Hang Wang, Xiaodi Liu, Yong Yang
Abstract:
The design of advanced amorphous solids, such as metallic glasses, with targeted properties through artificial intelligence signifies a paradigmatic shift in physical metallurgy and materials technology. Here, we developed a machine-learning architecture that facilitates the generation of metallic glasses with targeted multifunctional properties. Our architecture integrates the state-of-the-art unsupervised generative adversarial network model with supervised models, allowing the incorporation of general prior knowledge derived from thousands of data points across a vast range of alloy compositions, into the creation of data points for a specific type of composition, which overcame the common issue of data scarcity typically encountered in the design of a given type of metallic glasses. Using our generative model, we have successfully designed copper-based metallic glasses, which display exceptionally high hardness or a remarkably low modulus. Notably, our architecture can not only explore uncharted regions in the targeted compositional space but also permits self-improvement after experimentally validated data points are added to the initial dataset for subsequent cycles of data generation, hence paving the way for the customized design of amorphous solids without human intervention.Keywords: metallic glass, artificial intelligence, mechanical property, automated generation
Procedia PDF Downloads 56122 Analysis of Osmotin as Transcription Factor/Cell Signaling Modulator Using Bioinformatic Tools
Authors: Usha Kiran, M. Z. Abdin
Abstract:
Osmotin is an abundant cationic multifunctional protein discovered in cells of tobacco (Nicotiana tabacum L. var Wisconsin 38) adapted to an environment of low osmotic potential. It provides plants protection from pathogens, hence placed in the PRP family of proteins. The osmotin induced proline accumulation has been reported in plants including transgenic tomato and strawberry conferring tolerance against both biotic and abiotic stresses. The exact mechanism of induction of proline by osmotin is however, not known till date. These observations have led us to hypothesize that osmotin induced proline accumulation could be due to its involvement as transcription factor and/or cell signal pathway modulator in proline biosynthesis. The present investigation was therefore, undertaken to analyze the osmotin protein as transcription factor /cell signalling modulator using bioinformatics tools. The results of available online DNA binding motif search programs revealed that osmotin does not contain DNA-binding motifs. The alignment results of osmotin protein with the protein sequence from DATF showed the homology in the range of 0-20%, suggesting that it might not contain a DNA binding motif. Further to find unique DNA-binding domain, the superimposition of osmotin 3D structure on modeled Arabidopsis transcription factors using Chimera also suggested absence of the same. We, however, found evidence implicating osmotin in cell signaling. With these results, we concluded that osmotin is not a transcription factor but regulating proline biosynthesis and accumulation through cell signaling during abiotic stresses.Keywords: osmotin, cell signaling modulator, bioinformatic tools, protein
Procedia PDF Downloads 272121 Role of Chloride Ions on The Properties of Electrodeposited ZnO Nanostructures
Authors: L. Mentar, O. Baka, M. R. Khelladi, A. Azizi
Abstract:
Zinc oxide (ZnO), as a transparent semiconductor with a wide band gap of 3.4 eV and a large exciton binding energy of 60 meV at room temperature, is one of the most promising materials for a wide range of modern applications. With the development of film growth technologies and intense recent interest in nanotechnology, several varieties of ZnO nanostructured materials have been synthesized almost exclusively by thermal evaporation methods, particularly chemical vapor deposition (CVD), which generally require a high growth temperature above 550 °C. In contrast, wet chemistry techniques such as hydrothermal synthesis and electro-deposition are promising alternatives to synthesize ZnO nanostructures, especially at a significantly lower temperature (below 200°C). In this study, the electro-deposition method was used to produce zinc oxide (ZnO) nanostructures on fluorine-doped tin oxide (FTO)-coated conducting glass substrate from chloride bath. We present the influence of KCl concentrations on the electro-deposition process, morphological, structural and optical properties of ZnO nanostructures. The potentials of electro-deposition of ZnO were determined using the cyclic voltammetry. From the Mott-Schottky measurements, the flat-band potential and the donor density for the ZnO nanostructure are determined. Field emission scanning electron microscopy (FESEM) images showed different sizes and morphologies of the nanostructures which depends on the concentrations of Cl-. Very netted hexagonal grains are observed for the nanostructures deposited at 0.1M of KCl. X-ray diffraction (XRD) study confirms the Wurtzite phase of the ZnO nanostructures with a preferred oriented along (002) plane normal to the substrate surface. UV-Visible spectra showed a significant optical transmission (~80%), which decreased with low Cl-1 concentrations. The energy band gap values have been estimated to be between 3.52 and 3.80 eV.Keywords: Cl-, electro-deposition, FESEM, Mott-Schottky, XRD, ZnO
Procedia PDF Downloads 289120 An Effective Synthesis Method of Microwave Solution Combustion with the Application of Visible Light-Responsive Photocatalyst of Rb21 Dye
Authors: Rahul Jarariya
Abstract:
The textile industry uses various types of dyes and discharges a lot of highly coloured wastewater. It impacts the environment like allergic reaction, respiratory, skin problems, irritation to a mucous membrane, the upper respiratory tract has to the fore, Intoxicated dye discharges 40 to 50,000 tons with great concern. Spinel ferrites gained a lot of attention due to their wide application area from biomedical to wastewater treatment. Generally, spinel ferrite is known as M-Fe2O4. Spinel type nanoparticles possess high suspension stability. The synthesis method of Microwave solution combustion (MC) method is effective for nanoscale materials, including oxides, metals, alloys, and sulfides, works as fast and energy-efficient during the process. The review focuses on controlling, nanostructure and doping. The influence of the fuel concentration and the post-treatment temperature on the structural and magnetic properties. The effects of amounts of fuel and phase changes, particle size and shape, and magnetic properties can be characterized by various techniques. Urea is the most commonly used fuel. Ethanol or n-butanol is apt for removing impurities. As a result of the materials gives fine purity. Photocatalysis phenomena act with catalyst dosage to degrade dye from wastewater. Visible light responsive produces a large amount of hydroxyl (•OH) radical made the degradation efficiency of Rh21 type dye. It develops a narrow bandgap to make it suitable for enhanced photocatalytic activity.Keywords: microwave solution combustion method, normal spinel, doped spinels, magnetic property, Rb21
Procedia PDF Downloads 183119 Enhancement of Light Extraction of Luminescent Coating by Nanostructuring
Authors: Aubry Martin, Nehed Amara, Jeff Nyalosaso, Audrey Potdevin, FrançOis ReVeret, Michel Langlet, Genevieve Chadeyron
Abstract:
Energy-saving lighting devices based on LightEmitting Diodes (LEDs) combine a semiconductor chip emitting in the ultraviolet or blue wavelength region to one or more phosphor(s) deposited in the form of coatings. The most common ones combine a blue LED with the yellow phosphor Y₃Al₅O₁₂:Ce³⁺ (YAG:Ce) and a red phosphor. Even if these devices are characterized by satisfying photometric parameters (Color Rendering Index, Color Temperature) and good luminous efficiencies, further improvements can be carried out to enhance light extraction efficiency (increase in phosphor forward emission). One of the possible strategies is to pattern the phosphor coatings. Here, we have worked on different ways to nanostructure the coating surface. On the one hand, we used the colloidal lithography combined with the Langmuir-Blodgett technique to directly pattern the surface of YAG:Tb³⁺ sol-gel derived coatings, YAG:Tb³⁺ being used as phosphor model. On the other hand, we achieved composite architectures combining YAG:Ce coatings and ZnO nanowires. Structural, morphological and optical properties of both systems have been studied and compared to flat YAG coatings. In both cases, nanostructuring brought a significative enhancement of photoluminescence properties under UV or blue radiations. In particular, angle-resolved photoluminescence measurements have shown that nanostructuring modifies photons path within the coatings, with a better extraction of the guided modes. These two strategies have the advantage of being versatile and applicable to any phosphor synthesizable by sol-gel technique. They then appear as promising ways to enhancement luminescence efficiencies of both phosphor coatings and the optical devices into which they are incorporated, such as LED-based lighting or safety devices.Keywords: phosphor coatings, nanostructuring, light extraction, ZnO nanowires, colloidal lithography, LED devices
Procedia PDF Downloads 176118 Generation of Charged Nanoparticles and Their Contribution to the Thin Film and Nanowire Growth during Chemical Vapour Deposition
Authors: Seung-Min Yang, Seong-Han Park, Sang-Hoon Lee, Seung-Wan Yoo, Chan-Soo Kim, Nong-Moon Hwang
Abstract:
The theory of charged nanoparticles suggested that in many Chemical Vapour Depositions (CVD) processes, Charged Nanoparticles (CNPs) are generated in the gas-phase and become a building block of thin films and nanowires. Recently, the nanoparticle-based crystallization has become a big issue since the growth of nanorods or crystals by the building block of nanoparticles was directly observed by transmission electron microscopy observations in the liquid cell. In an effort to confirm charged gas-phase nuclei, that might be generated under conventional processing conditions of thin films and nanowires during CVD, we performed an in-situ measurement using differential mobility analyser and particle beam mass spectrometer. The size distribution and number density of CNPs were affected by process parameters such as precursor flow rate and working temperature. It was shown that many films and nanostructures, which have been believed to grow by individual atoms or molecules, actually grow by the building blocks of such charged nuclei. The electrostatic interaction between CNPs and the growing surface induces the self-assembly into films and nanowires. In addition, the charge-enhanced atomic diffusion makes CNPs liquid-like quasi solid. As a result, CNPs tend to land epitaxial on the growing surface, which results in the growth of single crystalline nanowires with a smooth surface.Keywords: chemical vapour deposition, charged nanoparticle, electrostatic force, nanostructure evolution, differential mobility analyser, particle beam mass spectrometer
Procedia PDF Downloads 451117 Experimental Investigation, Analysis and Optimization of Performance and Emission Characteristics of Composite Oil Methyl Esters at 160 bar, 180 bar and 200 bar Injection Pressures by Multifunctional Criteria Technique
Authors: Yogish Huchaiah, Chandrashekara Krishnappa
Abstract:
This study considers the optimization and validation of experimental results using Multi-Functional Criteria Technique (MFCT). MFCT is concerned with structuring and solving decision and planning problems involving multiple variables. Production of biodiesel from Composite Oil Methyl Esters (COME) of Jatropha and Pongamia oils, mixed in various proportions and Biodiesel thus obtained from two step transesterification process were tested for various Physico-Chemical properties and it has been ascertained that they were within limits proposed by ASTME. They were blended with Petrodiesel in various proportions. These Methyl Esters were blended with Petrodiesel in various proportions and coded. These blends were used as fuels in a computerized CI DI engine to investigate Performance and Emission characteristics. From the analysis of results, it was found that 180MEM4B20 blend had the maximum Performance and minimum Emissions. To validate the experimental results, MFCT was used. Characteristics such as Fuel Consumption (FC), Brake Power (BP), Brake Specific Fuel Consumption (BSFC), Brake Thermal Efficiency (BTE), Carbon dioxide (CO2), Carbon Monoxide (CO), Hydro Carbon (HC) and Nitrogen oxide (NOx) were considered as dependent variables. It was found from the application of this method that the optimized combination of Injection Pressure (IP), Mix and Blend is 178MEM4.2B24. Overall corresponding variation between optimization and experimental results was found to be 7.45%.Keywords: COME, IP, MFCT, optimization, PI, PN, PV
Procedia PDF Downloads 211116 Oxygen-Tolerant H₂O₂ Reduction Catalysis by Iron Phosphate Coated Iron Oxides
Authors: Chia-Ting Chang, Chia-Yu Lin
Abstract:
We report on the decisive role of iron phosphate (FePO₄), formed in-situ during the electrochemical characterization, played in the electrocatalytic activity, especially its oxygen tolerance of iron oxides towards H₂O₂ reduction. Iron oxides studied including, Nanorod arrays (NRs) of β-FeOOH, γ-Fe₂O₃, α-Fe₂O₃, α-Fe₂O₃ nanosheets (α-Fe₂O₃NS), α-Fe₂O₃ nanoparticles (α-Fe₂O₃NP), were synthesized using chemical bath deposition. The nanostructure was controlled simply by adjusting the composition of precursor solution and reaction duration for CBD process, whereas the crystal phase was controlled by adjusting the annealing temperature. It was found that iron phosphate (FePO₄) was deposited in-situ onto the surface of this nanostructured α-Fe₂O₃ during the electrochemical pretreatment in the phosphate electrolyte, and both FePO₄ and α-Fe₂O₃ showed the activity in catalysing the electrochemical reduction of H₂O₂. In addition, the interaction/compatibility between deposited FePO₄ and iron oxides has a decisive effect on the overall electrocatalytic activity of the resultant electrodes; FePO₄ only showed synergetic effect on the overall electrocatalytic activity of α-Fe₂O₃NR and α-Fe2O₃NS. Both α-Fe₂O₃NR and α-Fe₂O₃NS showed two reduction peaks in phosphate electrolyte containing H₂O₂, one being pH-dependent and related to the electrocatalytic properties of FePO₄, and the other one being pH-independent and only related to the intrinsic electrocatalytic properties of α-Fe₂O₃NR and α-Fe₂O₃NS. However, all iron oxides showed only one pH-independent reductive peak in non-phosphate electrolyte containing H₂O₂. The synergesitic catalysis exerted by FePO₄ with α-Fe₂O₃NR or α-Fe₂O₃NS providing additional oxygen-insensitive active site for H₂O₂ reduction, which allows their applications to electrochemical detection of H₂O₂ without the interference of O₂ involving in oxidase-catalyzed chemical processes.Keywords: H₂O₂ reduction, Iron oxide, iron phosphate, O₂ tolerance
Procedia PDF Downloads 415115 Plasma Ion Implantation Study: A Comparison between Tungsten and Tantalum as Plasma Facing Components
Authors: Tahreem Yousaf, Michael P. Bradley, Jerzy A. Szpunar
Abstract:
Currently, nuclear fusion is considered one of the most favorable options for future energy generation, due both to its abundant fuel and lack of emissions. For fusion power reactors, a major problem will be a suitable material choice for the Plasma Facing Components (PFCs) which will constitute the reactor first wall. Tungsten (W) has advantages as a PFC material because of its high melting point, low vapour pressure, high thermal conductivity and low retention of hydrogen isotopes. However, several adverse effects such as embrittlement, melting and morphological evolution have been observed in W when it is bombarded by low-energy and high-fluence helium (He) and deuterium (D) ions, as a simulation conditions adjacent to a fusion plasma. Recently, tantalum (Ta) also investigate as PFC and show better reluctance to nanostructure fuzz as compared to W under simulated fusion plasma conditions. But retention of D ions found high in Ta than W. Preparatory to plasma-based ion implantation studies, the effect of D and He ion impact on W and Ta is predicted by using the stopping and range of ions in the matter (SRIM) code. SRIM provided some theoretical results regarding projected range, ion concentration (at. %) and displacement damage (dpa) in W and Ta. The projected range for W under Irradiation of He and D ions with an energy of 3-keV and 1×fluence is determined 75Å and 135 Å and for Ta 85Å and 155Å, respectively. For both W and Ta samples, the maximum implanted peak for helium is predicted ~ 5.3 at. % at 12 nm and for De ions concentration peak is located near 3.1 at. % at 25 nm. For the same parameters, the displacement damage for He ions is observed in W ~ 0.65 dpa and Ta ~ 0.35 dpa at 5 nm. For D ions the displacement damage for W ~ 0.20 dpa at 8 nm and Ta ~ 0.175 dpa at 7 nm. The mean implantation depth is same for W and Ta, i.e. for He ions ~ 40 nm and D ions ~ 70 nm. From these results, we conclude that retention of D is high than He ions, but damage is low for Ta as compared to W. Further investigation still in progress regarding W and T.Keywords: helium and deuterium ion impact, plasma facing components, SRIM simulation, tungsten, tantalum
Procedia PDF Downloads 129114 Increasing Toughness of Oriented Polyvinyl Alcohol (PVA)/Fe3O4 Nanocomposite
Authors: Mozhgan Chaichi, Farhad Sharif, Saeede Mazinani
Abstract:
Polymer nanocomposites are a new class of materials for fabricating future multifunctional and lightweight structures. To obtain good mechanical, thermal and electrical properties, it is essential to achieve uniform dispersion of nanoparticles in polymer matrix. Alignment of nanoparticles in matrix can enhance mechanical, thermal, electrical and barrier properties of nanocomposites in oriented direction. Fe3O4 nanoparticles have generated huge activity in many areas of science and engineering due to its magnetic properties. Magnetic nanoparticles have been investigated for a wide range of applications in sensors, magnetic energy storage, environmental remediation, heterogeneous catalysts and drug delivery. The magnetic response from the Fe3O4 nanoparticles can facilitate with the alignment of nanofillers in a polymer matrix under magnetic field, aiming at fabricating composites with directional properties and functions. Here we report oriented nanocomposites based on Fe3O4 nanoparticles and poly (vinyl alcohol) (PVA), which prepared via a facile aqueous solution by applying a low external magnetic field (750 G). A significant enhancement of mechanical properties, and especially toughness of nanofilms, of oriented PVA/ Fe3O4 nanocomposites is obtained at low nanoparticles loading. Orientation of nanoparticles can align polymer chains and enhance mechanical properties. For example, orientation of 0.1 wt. % Fe3O4 nanoparticles increase 31% toughness and 23% modulus of oriented nanocomposite in compare of pure films, which indicate good dispersion of nanoparticles and efficient load transfer between nanoparticles and matrix.Keywords: magnetic nanoparticles, nanocomposites, toughness, orientation
Procedia PDF Downloads 329113 Electrochemical Growth and Properties of Cu2O Nanostructures
Authors: A. Azizi, S. Laidoudi, G. Schmerber, A. Dinia
Abstract:
Cuprous oxide (Cu2O) is a well-known oxide semiconductor with a band gap of 2.1 eV and a natural p-type conductivity, which is an attractive material for device applications because of its abundant availability, non toxicity, and low production cost. It has a higher absorption coefficient in the visible region and the minority carrier diffusion length is also suitable for use as a solar cell absorber layer and it has been explored in junction with n type ZnO for photovoltaic applications. Cu2O nanostructures have been made by a variety of techniques; the electrodeposition method has emerged as one of the most promising processing routes as it is particularly provides advantages such as a low-cost, low temperature and a high level of purity in the products. In this work, Cu2O nanostructures prepared by electrodeposition from aqueous cupric sulfate solution with citric acid at 65°C onto a fluorine doped tin oxide (FTO) coated glass substrates were investigated. The effects of deposition potential on the electrochemical, surface morphology, structural and optical properties of Cu2O thin films were investigated. During cyclic voltammetry experiences, the potential interval where the electrodeposition of Cu2O is carried out was established. The Mott–Schottky (M-S) plot demonstrates that all the films are p-type semiconductors, the flat-band potential and the acceptor density for the Cu2O thin films are determined. AFM images reveal that the applied potential has a very significant influence on the surface morphology and size of the crystallites of thin Cu2O. The XRD measurements indicated that all the obtained films display a Cu2O cubic structure with a strong preferential orientation of the (111) direction. The optical transmission spectra in the UV-Visible domains revealed the highest transmission (75 %), and their calculated gap values increased from 1.93 to 2.24 eV, with increasing potentials.Keywords: Cu2O, electrodeposition, Mott–Schottky plot, nanostructure, optical properties, XRD
Procedia PDF Downloads 355112 Optical Design and Modeling of Micro Light-Emitting Diodes for Display Applications
Authors: Chaya B. M., C. Dhanush, Inti Sai Srikar, Akula Pavan Parvatalu, Chirag Gowda R
Abstract:
Recently, there has been a lot of interest in µ-LED technology because of its exceptional qualities, including auto emission, high visibility, low consumption of power, rapid response and longevity. Light-emitting diodes (LED) using III-nitride, such as lighting sources, visible light communication (VLC) devices, and high-power devices, are finding increasing use as miniaturization technology advances. The use of micro-LED displays in place of traditional display technologies like liquid crystal displays (LCDs) and organic light-emitting diodes (OLEDs) is one of the most prominent recent advances, which may even represent the next generation of displays. The development of fully integrated, multifunctional devices and the incorporation of extra capabilities into micro-LED displays, such as sensing, light detection, and solar cells, are the pillars of advanced technology. Due to the wide range of applications for micro-LED technology, the effectiveness and dependability of these devices in numerous harsh conditions are becoming increasingly important. Enough research has been conducted to overcome the under-effectiveness of micro-LED devices. In this paper, different Micro LED design structures are proposed in order to achieve optimized optical properties. In order to attain improved external quantum efficiency (EQE), devices' light extraction efficiency (LEE) has also been boosted.Keywords: finite difference time domain, light out coupling efficiency, far field intensity, power density, quantum efficiency, flat panel displays
Procedia PDF Downloads 79111 Utilization of Brachystegia Spiciformis Leaf Powder in the Removal of Nitrates from Wastewaters: An Equilibrium Study
Authors: Isheanesu Hungwe, Munyaradzi Shumba, Tichaona Nharingo
Abstract:
High levels of nitrates in drinking water present a potential risk to human health for it is responsible for methemoglobinemia in infants. It also gives rise to eutrophication of dams and rivers. It is, therefore, important to find ways of compating the increasing amount of nitrates in the environment. This study explored the bioremediation of nitrates from aqueous solution using Brachystegia spiciformis leaf powder (BSLP). The acid treated leaf powder was characterized using FTIR and SEM before and after nitrate biosorption and desorption experiments. Critical biosorption factors, pH, contact time and biomass dosage were optimized as 4, 30 minutes and 10 g/L respectively. The equilibrium data generated from the investigation of the effect of initial nitrate ion concentration fitted the isotherm models in the order Dudinin-Radushkevich < Halsey=Freundlich < Langmuir < Temkin model based on the correlation of determination (R2). The Freundlich’s adsorption intensity and Langmuir’s separation factors revealed the favorability of nitrate ion sorption onto BSLP biomass with maximum sorption capacity of 87.297 mg/g. About 95% of the adsorbed nitrate was removed from the biomass under alkaline conditions (pH 11) proving that the regeration of the biomass, critical in sorption-desorption cycles, was possible. It was concluded that the BSLP was a multifunctional group material characterised by both micropores and macropores that could be effectively utilised in nitrate ion removal from aqueous solutions.Keywords: adsorption, brachystegia spiciformis, methemoglobinemia, nitrates
Procedia PDF Downloads 258110 Comprehensive Multi-Omics Study Highlights Osteopontin/SPP1 in Ovarian Aging Control
Authors: Chia-Jung Li, Li-Te Lin, Kuan-Hao Tsui
Abstract:
The study identifies SPP1 as a potential gene associated with ovarian aging, revealing a significant decline in its expression in aged ovaries. SPP1, also known as osteopontin (OPN), is a multifunctional glycoprotein involved with regulatory proteins and pro-inflammatory immune chemokines. However, its genetic links to ovarian aging have not been extensively explored. Spatial transcriptomic analyses were conducted on ovaries from young and aged female mice, along with a sample from a 73-year-old individual. Additionally, single-cell RNA sequencing analysis was performed to identify associations between SPP1 and key genes. The study focused on crucial genes, including ITGAV, ITGB1, CD44, MMP3, and FN1, with a particular emphasis on the correlation between SPP1 and ITGB1. The findings indicate a significant decline in SPP1 expression in aged ovaries, which was consistent in the 73-year-old sample. Single-cell RNA sequencing unveiled associations between SPP1 and key genes, emphasizing a strong co-expression correlation between SPP1 and ITGB1. While the study provides valuable insights, further research is necessary to understand the broader implications and potential applications of SPP1 in ovarian aging. Translating these findings to clinical settings requires careful consideration. The identification of SPP1 as a gene implicated in ovarian aging opens new avenues for advancing precision medicine and refining treatment strategies for conditions related to ovarian aging.Keywords: SPP1, ovarian aging, spatial transcriptomic, single-cell RNA sequencing
Procedia PDF Downloads 34109 Microwave-Assisted 3D Porous Graphene for Its Multi-Functionalities
Authors: Jung-Hwan Oh, Rajesh Kumar, Il-Kwon Oh
Abstract:
Porous graphene has extensive potential applications in variety of fields such as hydrogen storage, CO oxidation, gas separation, supercapacitors, fuel cells, nanoelectronics, oil adsorption, and so on. However, the generation of some carbon atoms vacancies for precise small holes have been not extensively studied to prevent the agglomerates of graphene sheets and to obtain porous graphene with high surface area. Recently, many research efforts have been presented to develop physical and chemical synthetic approaches for porous graphene. But physical method has very high cost of manufacture and chemical method consumes so many hours for porous graphene. Herein, we propose a porous graphene contained holes with atomic scale precision by embedding metal nano-particles through microwave irradiation for hydrogen storage and CO oxidation multi- functionalities. This proposed synthetic method is appropriate for fast and convenient production of three dimensional nanostructures, which have nanoholes on the graphene surface in consequence of microwave irradiation. The metal nanoparticles are dispersed quickly on the graphene surface and generated uniform nanoholes on the graphene nanosheets. The morphological and structural characterization of the porous graphene were examined by scanning electron microscopy (SEM), transmission scanning electron microscopy (TEM) and RAMAN spectroscopy, respectively. The metal nanoparticle-embedded porous graphene exhibits a microporous volume of 2.586cm3g-1 with an average pore radius of 0.75 nm. HR-TEM analysis was carried out to further characterize the microstructures. By investigating the RAMAN spectra, we can understand the structural changes of graphene. The results of this work demonstrate a possibility to produce a new class of porous graphene. Furthermore, the newly acquired knowledge for the diffusion into graphene can provide useful guidance for the development of the growth of nanostructure.Keywords: CO oxidation, hydrogen storage, nanocomposites, porous graphene
Procedia PDF Downloads 372108 Synthesis and Theoretical Calculations of Carbazole Substituted Pyridopyrimidine Urea/Thioure Derivatives and Studies Their PPO Enzyme Activity
Authors: Arleta Rifati Nixha, Mustafa Arslan, Adem Ergün, Nahit Gencer
Abstract:
Polyphenol oxidase (PPO), sometimes referred to as phenol oxidase, catecholase, phenolase, catechol oxidase, or even tyrosinase, is considered to be an o-dipenol. PPO (EC 1.14.18.1), a multifunctional copper containing enzyme, is widely distributed in nature. It catalyzes two distinct reactions of melanin synthesis: a hydroxylation of monophenols to o-diphenols (monophenolase activity) and an oxidation of o-diphenols to o-quinones (diphenolase activity), both using molecular oxygen. Additionaly, investigation demonstrated that various dermatological disorders, such as age spots and freckle, were caused by the accumulation of an excessive level of epidermal pigmentation. Tyrosinase has also been linked to Parkinson’s and other neurodegenerative diseases. Nitrogen heterocycles have received a great deal of attention in the literature because of biological properties. Especially, among these heterocyclic systems, pyridine containing compounds have been the subject of expanding research efforts in heteroaromatic and biological chemistry. The pyrido [2,3-d] pyrimidine heterocycles, which are those annelated to a pyrimidine ring, are important because of their wide range of biological and pharmaceutical applications (i.e., bronchodilators, vasodilators) and their anti-allergic, cardiotonic, antihypertensive, and hepatoprotective activities. In this study series of 12 new carbazole substituted pyridopyrimidine urea(thiourea) derivatives were synthesized and evaluated effect on PPO. Additionally, we presented structure-activity relationship analyses and theoretical calculations of the compounds.Keywords: carbazole, pyridopyrimidine, urea, thiourea, tyrosinase inhibitors
Procedia PDF Downloads 439107 Energy Absorption Capacity of Aluminium Foam Manufactured by Kelvin Model Loaded Under Different Biaxial Combined Compression-Torsion Conditions
Authors: H. Solomon, A. Abdul-Latif, R. Baleh, I. Deiab, K. Khanafer
Abstract:
Aluminum foams were developed and tested due to their high energy absorption abilities for multifunctional applications. The aim of this research work was to investigate experimentally the effect of quasi-static biaxial loading complexity (combined compression-torsion) on the energy absorption capacity of highly uniform architecture open-cell aluminum foam manufactured by kelvin cell model. The two generated aluminum foams have 80% and 85% porosities, spherical-shaped pores having 11mm in diameter. These foams were tested by means of several square-section specimens. A patented rig called ACTP (Absorption par Compression-Torsion Plastique), was used to investigate the foam response under quasi-static complex loading paths having different torsional components (i.e., 0°, 37° and 53°). The main mechanical responses of the aluminum foams were studied under simple, intermediate and severe loading conditions. In fact, the key responses to be examined were stress plateau and energy absorption capacity of the two foams with respect to loading complexity. It was concluded that the higher the loading complexity and the higher the relative density, the greater the energy absorption capacity of the foam. The highest energy absorption was thus recorded under the most complicated loading path (i.e., biaxial-53°) for the denser foam (i.e., 80% porosity).Keywords: open-cell aluminum foams, biaxial loading complexity, foams porosity, energy absorption capacity, characterization
Procedia PDF Downloads 130106 Information Technology Approaches to Literature Text Analysis
Authors: Ayse Tarhan, Mustafa Ilkan, Mohammad Karimzadeh
Abstract:
Science was considered as part of philosophy in ancient Greece. By the nineteenth century, it was understood that philosophy was very inclusive and that social and human sciences such as literature, history, and psychology should be separated and perceived as an autonomous branch of science. The computer was also first seen as a tool of mathematical science. Over time, computer science has grown by encompassing every area in which technology exists, and its growth compelled the division of computer science into different disciplines, just as philosophy had been divided into different branches of science. Now there is almost no branch of science in which computers are not used. One of the newer autonomous disciplines of computer science is digital humanities, and one of the areas of digital humanities is literature. The material of literature is words, and thanks to the software tools created using computer programming languages, data that a literature researcher would need months to complete, can be achieved quickly and objectively. In this article, three different tools that literary researchers can use in their work will be introduced. These studies were created with the computer programming languages Python and R and brought to the world of literature. The purpose of introducing the aforementioned studies is to set an example for the development of special tools or programs on Ottoman language and literature in the future and to support such initiatives. The first example to be introduced is the Stylometry tool developed with the R language. The other is The Metrical Tool, which is used to measure data in poems and was developed with Python. The latest literature analysis tool in this article is Voyant Tools, which is a multifunctional and easy-to-use tool.Keywords: DH, literature, information technologies, stylometry, the metrical tool, voyant tools
Procedia PDF Downloads 151105 Effects of Hierarchy on Poisson’s Ratio and Phononic Bandgaps of Two-Dimensional Honeycomb Structures
Authors: Davood Mousanezhad, Ashkan Vaziri
Abstract:
As a traditional cellular structure, hexagonal honeycombs are known for their high strength-to-weight ratio. Here, we introduce a class of fractal-appearing hierarchical metamaterials by replacing the vertices of the original non-hierarchical hexagonal grid with smaller hexagons and iterating this process to achieve higher levels of hierarchy. It has been recently shown that the isotropic in-plane Young's modulus of this hierarchical structure at small deformations becomes 25 times greater than its regular counterpart with the same mass. At large deformations, we find that hierarchy-dependent elastic buckling introduced at relatively early stages of deformation decreases the value of Poisson's ratio as the structure is compressed uniaxially leading to auxeticity (i.e., negative Poisson's ratio) in subsequent stages of deformation. We also show that the topological hierarchical architecture and instability-induced pattern transformations of the structure under compression can be effectively used to tune the propagation of elastic waves within the structure. We find that the hierarchy tends to shift the existing phononic bandgaps (defined as frequency ranges of strong wave attenuation) to lower frequencies while opening up new bandgaps. Deformation is also demonstrated as another mechanism for opening more bandgaps in hierarchical structures. The results provide new insights into the role of structural organization and hierarchy in regulating mechanical properties of materials at both the static and dynamic regimes.Keywords: cellular structures, honeycombs, hierarchical structures, metamaterials, multifunctional structures, phononic crystals, auxetic structures
Procedia PDF Downloads 349104 Electrophoretic Deposition of Ultrasonically Synthesized Nanostructured Conducting Poly(o-phenylenediamine)-Co-Poly(1-naphthylamine) Film for Detection of Glucose
Authors: Vaibhav Budhiraja, Chandra Mouli Pandey
Abstract:
The ultrasonic synthesis of nanostructured conducting copolymer is an effective technique to synthesize polymer with desired chemical properties. This tailored nanostructure, shows tremendous improvement in sensitivity and stability to detect a variety of analytes. The present work reports ultrasonically synthesized nanostructured conducting poly(o-phenylenediamine)-co-poly(1-naphthylamine) (POPD-co-PNA). The synthesized material has been characterized using Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy, transmission electron microscopy, X-ray diffraction and cyclic voltammetry. FTIR spectroscopy confirmed random copolymerization, while UV-visible studies reveal the variation in polaronic states upon copolymerization. High crystallinity was achieved via ultrasonic synthesis which was confirmed by X-ray diffraction, and the controlled morphology of the nanostructures was confirmed by transmission electron microscopy analysis. Cyclic voltammetry shows that POPD-co-PNA has rather high electrochemical activity. This behavior was explained on the basis of variable orientations adopted by the conducting polymer chains. The synthesized material was electrophoretically deposited at onto indium tin oxide coated glass substrate which is used as cathode and parallel platinum plate as the counter electrode. The fabricated bioelectrode was further used for detection of glucose by crosslinking of glucose oxidase in the PODP-co-PNA film. The bioelectrode shows a surface-controlled electrode reaction with the electron transfer coefficient (α) of 0.72, charge transfer rate constant (ks) of 21.77 s⁻¹ and diffusion coefficient 7.354 × 10⁻¹⁵ cm²s⁻¹.Keywords: conducting, electrophoretic, glucose, poly (o-phenylenediamine), poly (1-naphthylamine), ultrasonic
Procedia PDF Downloads 142103 Functionalized Nano porous Ceramic Membranes for Electrodialysis Treatment of Harsh Wastewater
Authors: Emily Rabe, Stephanie Candelaria, Rachel Malone, Olivia Lenz, Greg Newbloom
Abstract:
Electrodialysis (ED) is a well-developed technology for ion removal in a variety of applications. However, many industries generate harsh wastewater streams that are incompatible with traditional ion exchange membranes. Membrion® has developed novel ceramic-based ion exchange membranes (IEMs) offering several advantages over traditional polymer membranes: high performance in low pH, chemical resistance to oxidizers, and a rigid structure that minimizes swelling. These membranes are synthesized with our patented silane-based sol-gel techniques. The pore size, shape, and network structure are engineered through a molecular self-assembly process where thermodynamic driving forces are used to direct where and how pores form. Either cationic or anionic groups can be added within the membrane nanopore structure to create cation- and anion-exchange membranes. The ceramic IEMs are produced on a roll-to-roll manufacturing line with low-temperature processing. Membrane performance testing is conducted using in-house permselectivity, area-specific resistance, and ED stack testing setups. Ceramic-based IEMs show comparable performance to traditional IEMs and offer some unique advantages. Long exposure to highly acidic solutions has a negligible impact on ED performance. Additionally, we have observed stable performance in the presence of strong oxidizing agents such as hydrogen peroxide. This stability is expected, as the ceramic backbone of these materials is already in a fully oxidized state. This data suggests ceramic membranes, made using sol-gel chemistry, could be an ideal solution for acidic and/or oxidizing wastewater streams from processes such as semiconductor manufacturing and mining.Keywords: ion exchange, membrane, silane chemistry, nanostructure, wastewater
Procedia PDF Downloads 86102 Grating Assisted Surface Plasmon Resonance Sensor for Monitoring of Hazardous Toxic Chemicals and Gases in an Underground Mines
Authors: Sanjeev Kumar Raghuwanshi, Yadvendra Singh
Abstract:
The objective of this paper is to develop and optimize the Fiber Bragg (FBG) grating based Surface Plasmon Resonance (SPR) sensor for monitoring the hazardous toxic chemicals and gases in underground mines or any industrial area. A fully cladded telecommunication standard FBG is proposed to develop to produce surface plasmon resonance. A thin few nm gold/silver film (subject to optimization) is proposed to apply over the FBG sensing head using e-beam deposition method. Sensitivity enhancement of the sensor will be done by adding a composite nanostructured Graphene Oxide (GO) sensing layer using the spin coating method. Both sensor configurations suppose to demonstrate high responsiveness towards the changes in resonance wavelength. The GO enhanced sensor may show increased sensitivity of many fold compared to the gold coated traditional fibre optic sensor. Our work is focused on to optimize GO, multilayer structure and to develop fibre coating techniques that will serve well for sensitive and multifunctional detection of hazardous chemicals. This research proposal shows great potential towards future development of optical fiber sensors using readily available components such as Bragg gratings as highly sensitive chemical sensors in areas such as environmental sensing.Keywords: surface plasmon resonance, fibre Bragg grating, sensitivity, toxic gases, MATRIX method
Procedia PDF Downloads 266101 Role of Interleukin 6 on Cell Differentiations in Stem Cells Isolated from Human Exfoliated Deciduous Teeth
Authors: Nunthawan Nowwarote, Waleerat Sukarawan, Prasit Pavasant, Thanaphum Osathanon
Abstract:
Interleukin 6 (IL-6) is a multifunctional cytokine, regulating various biological responses in several tissues. A Recent study shows that IL-6 plays a role in stemness maintenance in stem cells isolated from human exfoliated deciduous teeth (SHEDs). However, the role of IL-6 on cell differentiation in SHEDs remains unknown. The present study investigated the effect of IL-6 on SHEDs differentiation. Cells were isolated from dental pulp tissues of human deciduous teeth. Flow cytometry was used to determined mesenchymal stem cell marker expression, and the multipotential differentiation (osteogenic, adipogenic and neurogenic lineage ) was also determined. The mRNA was determined using real-time quantitative polymerase chain reaction, and the phenotypes were confirmed by chemical and immunofluorescence staining. Results demonstrated that SHEDs expressed CD44, CD73, CD90, CD105 but not CD45. Further, the up-regulation of osteogenic, adipogenic and neurogenic marker genes was observed upon maintaining cells in osteogenic, adipogenic and neurogenic induction medium, respectively. The addition of IL-6 induced osteogenic by up-regulated osteogenic marker gene also increased in vitro mineralization. Under neurogenic medium supplement with IL-6, up-regulated neurogenic marker. Whereas, an addition of IL-6 attenuated adipogenic differentiation by SHEDs. In conclusion, this evidence implies that IL-6 may participate in cells differentiation ability of SHEDs.Keywords: SHEDs, IL-6, cell differentiations, dental pulp
Procedia PDF Downloads 180100 Induction Melting as a Fabrication Route for Aluminum-Carbon Nanotubes Nanocomposite
Authors: Muhammad Shahid, Muhammad Mansoor
Abstract:
Increasing demands of contemporary applications for high strength and lightweight materials prompted the development of metal-matrix composites (MMCs). After the discovery of carbon nanotubes (CNTs) in 1991 (revealing an excellent set of mechanical properties) became one of the most promising strengthening materials for MMC applications. Additionally, the relatively low density of the nanotubes imparted high specific strengths, making them perfect strengthening material to reinforce MMCs. In the present study, aluminum-multiwalled carbon nanotubes (Al-MWCNTs) composite was prepared in an air induction furnace. The dispersion of the nanotubes in molten aluminum was assisted by inherent string action of induction heating at 790°C. During the fabrication process, multifunctional fluxes were used to avoid oxidation of the nanotubes and molten aluminum. Subsequently, the melt was cast in to a copper mold and cold rolled to 0.5 mm thickness. During metallographic examination using a scanning electron microscope, it was observed that the nanotubes were effectively dispersed in the matrix. The mechanical properties of the composite were significantly increased as compared to pure aluminum specimen i.e. the yield strength from 65 to 115 MPa, the tensile strength from 82 to 125 MPa and hardness from 27 to 30 HV for pure aluminum and Al-CNTs composite, respectively. To recognize the associated strengthening mechanisms in the nanocomposites, three foremost strengthening models i.e. shear lag model, Orowan looping and Hall-Petch have been critically analyzed; experimental data were found to be closely satisfying the shear lag model.Keywords: carbon nanotubes, induction melting, strengthening mechanism, nanocomposite
Procedia PDF Downloads 36999 Ideology and Lexicogrammar: Discourse Against the Power in Lyrical Texts (XIII, XVII and XX Centuries)
Authors: Ulisses Tadeu Vaz de Oliveira
Abstract:
The development of multifunctional studies in the theoretical-methodological perspective of the Systemic-Functional Grammar (SFG) and the increasing number of critical literary studies have introduced new opportunities for the study of ideologies and societies, but also brought up new challenges across and within many areas. In this regard, the Critical Linguistics researches allow a form of pairing a textual linguistic analysis method (micro level) with a social language theory in political and ideological processes (macro level), presented in the literature. This presentation will report on strategies to criticize power holders in literary productions from three distinct eras, namely: (a) Satirical Galego-Portuguese chants of Gil Pérez Conde (thirteenth century), (b) Poems of Gregorio de Matos Guerra (seventeenth century), and (c) Songs of Chico Buarque de Holanda (twentieth century). The analysis of these productions is based on the SFG proposals, which considers the clause as a social event. Therefore, the structure serves to realize three concurrent meanings (metafunctions): Ideational, Interpersonal and Textual. The presenter aims to shed light on the core issues relevant to the successes of the authors to criticize authorities in repressive times while caring about face-threatening and politeness. The effective and meaningful critical discourse was a way of moving the society`s chains towards new ideologies reflected in the lexicogrammatical choices made and the rhetorical functions of the persuasive structures used by the authors.Keywords: ideology, literature, persuasion, systemic-functional grammar
Procedia PDF Downloads 41798 Poly(Amidoamine) Dendrimer-Cisplatin Nanocomplex Mixed with Multifunctional Ovalbumin Coated Iron Oxide Nanoparticles for Immuno-Chemotherapeutics with M1 Polarization of Macrophages
Authors: Tefera Worku Mekonnen, Hiseh Chih Tsai
Abstract:
Enhancement of drug efficacy is essential in cancer treatment. The immune stimulator ovalbumin (Ova)-coated citric acid (AC-)-stabilized iron oxide nanoparticles (AC-IO-Ova NPs) and enhanced permeability and retention (EPR) based tumor targeted 4.5 (4.5G) poly(amidoamine) dendrimer-cisplatin nanocomplex (4.5GDP-Cis-pt NC) were used for enhanced anticancer efficiency. The formations of 4.5GDP-Cis-pt NC, AC-IO, and AC-IO-Ova NPs have been examined by FTIR, X-ray diffraction, Raman, and X-ray photoelectron spectroscopy. The conjugation of cisplatin (Cis-pt) with 4.5GDP was confirmed using carbon NMR. The tumor-specific 4.5GDP-Cis-pt NC provided ~45% and 28% cumulative cisplatin release in 72 h at pH 6.5 and 7.4, respectively. A significant immune response with high TNF-α and IL-6 cytokine secretion was confirmed when the co-incubation of AC-IO-Ova with RAW 264.7 or HaCaT cells. AC-IO-Ova NP was biocompatible in different cell lines, even at a high concentration (200 µg mL−1). In contrast, AC-IO-Ova NPs mixed with 4.5GDP-Cis-pt NC (Cis-pt at 15 µg mL−1) significantly increased the cytotoxicity against the cancer cells, which is dose-dependent on the concentration of AC-IO-Ova NPs. The increased anticancer effects may be attributed to the generation of reactive oxygen species (ROS). Moreover, the efficiency of anticancer cells may be further assisted by induction of an innate immune response via M1 macrophage polarization due to the presence of AC-IO-Ova NPs. We provide a better synergestic chemoimmunotherapeutic strategy to enhance the efficiency of anticancer of cisplatin via chemotherapeutic agent 4.5GDP-Cis-pt NC and induction of proinflammatory cytokines to stimulate innate immunity through AC-IO-Ova NPs against tumors.Keywords: cisplatin-release, iron oxide, ovalbumin, poly(amidoamine) dendrimer
Procedia PDF Downloads 14597 Optimization of Platinum Utilization by Using Stochastic Modeling of Carbon-Supported Platinum Catalyst Layer of Proton Exchange Membrane Fuel Cells
Authors: Ali Akbar, Seungho Shin, Sukkee Um
Abstract:
The composition of catalyst layers (CLs) plays an important role in the overall performance and cost of the proton exchange membrane fuel cells (PEMFCs). Low platinum loading, high utilization, and more durable catalyst still remain as critical challenges for PEMFCs. In this study, a three-dimensional material network model is developed to visualize the nanostructure of carbon supported platinum Pt/C and Pt/VACNT catalysts in pursuance of maximizing the catalyst utilization. The quadruple-phase randomly generated CLs domain is formulated using quasi-random stochastic Monte Carlo-based method. This unique statistical approach of four-phase (i.e., pore, ionomer, carbon, and platinum) model is closely mimic of manufacturing process of CLs. Various CLs compositions are simulated to elucidate the effect of electrons, ions, and mass transport paths on the catalyst utilization factor. Based on simulation results, the effect of key factors such as porosity, ionomer contents and Pt weight percentage in Pt/C catalyst have been investigated at the represented elementary volume (REV) scale. The results show that the relationship between ionomer content and Pt utilization is in good agreement with existing experimental calculations. Furthermore, this model is implemented on the state-of-the-art Pt/VACNT CLs. The simulation results on Pt/VACNT based CLs show exceptionally high catalyst utilization as compared to Pt/C with different composition ratios. More importantly, this study reveals that the maximum catalyst utilization depends on the distance spacing between the carbon nanotubes for Pt/VACNT. The current simulation results are expected to be utilized in the optimization of nano-structural construction and composition of Pt/C and Pt/VACNT CLs.Keywords: catalyst layer, platinum utilization, proton exchange membrane fuel cell, stochastic modeling
Procedia PDF Downloads 12196 Critical Approach to Define the Architectural Structure of a Health Prototype in a Rural Area of Brazil
Authors: Domenico Chizzoniti, Monica Moscatelli, Letizia Cattani, Luca Preis
Abstract:
A primary healthcare facility in developing countries should be a multifunctional space able to respond to different requirements: Flexibility, modularity, aggregation and reversibility. These basic features could be better satisfied if applied to an architectural artifact that complies with the typological, figurative and constructive aspects of the context in which it is located. Therefore, the purpose of this paper is to identify a procedure that can define the figurative aspects of the architectural structure of the health prototype for the marginal areas of developing countries through a critical approach. The application context is the rural areas of the Northeast of Bahia in Brazil. The prototype should be located in the rural district of Quingoma, in the municipality of Lauro de Freitas, a particular place where there is still a cultural fusion of black and indigenous populations. Based on the historical analysis of settlement strategies and architectural structures in spaces of public interest or collective use, this paper aims to provide a procedure able to identify the categories and rules underlying typological and figurative aspects, in order to detect significant and generalizable elements, as well as materials and constructive techniques typically adopted in the rural areas of Brazil. The object of this work is therefore not only the recovery of certain constructive approaches but also the development of a procedure that integrates the requirements of the primary healthcare prototype with its surrounding economic, social, cultural, settlement and figurative conditions.Keywords: architectural typology, developing countries, local construction techniques, primary health care.
Procedia PDF Downloads 32395 Theatrical Architecture in Bologna at the Beginning of the Twentieth Century: The Renaissance of Modernissimo Cinema
Authors: Giorgia Predari, Riccardo Gulli
Abstract:
The paper describes the history and the stylistic choices adopted in the construction of Palazzo Ronzani in Bologna, which was the first building to rise after the heavy demolitions carried out in the historical center of the city at the beginning of the twentieth century. In 1910, the local administration adopted a detailed plan to change the aspect of the city, as it was already happening in the main European capitals. In this context, starting from 1911, the architect and scenographer Gualtiero Pontoni designed for Alessandro Ronzani -the owner of a well-known Bolognese beer company- his Palazzo, which is listed among the first multifunctional buildings in Bologna, containing offices, commercial activities, and entertainment spaces. In an area of about 2000 m², the architect was able to propose a theatre with a capacity of 2000 seats at the basement, shops, a cafè-chantant and a restaurant on the ground floor, clubs, studios and commercial stores on the mezzanine and the first plan, and a hotel on the upper floors. The whole core of the building, at the underground levels, consisted of a reinforced concrete frame (one of the first examples of this type of construction in the city), which allowed the hall to have a free span of 11 x 12 meters, and a height of about 9 meters. Used until 2007 as a cinema, the hall has remained then in disuse for almost 10 years, but now an important functional restoration project with a strong architectural and scenographic value is taking place. It will bring the spaces back to the original geometries, in a historical and artistic condition inspired by the styles of the early Twentieth century.Keywords: Modernissimo, Palazzo Ronzani, liberty, Bologna
Procedia PDF Downloads 120