Search results for: mixing process
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15383

Search results for: mixing process

15233 Neutral Heavy Scalar Searches via Standard Model Gauge Boson Decays at the Large Hadron Electron Collider with Multivariate Techniques

Authors: Luigi Delle Rose, Oliver Fischer, Ahmed Hammad

Abstract:

In this article, we study the prospects of the proposed Large Hadron electron Collider (LHeC) in the search for heavy neutral scalar particles. We consider a minimal model with one additional complex scalar singlet that interacts with the Standard Model (SM) via mixing with the Higgs doublet, giving rise to an SM-like Higgs boson and a heavy scalar particle. Both scalar particles are produced via vector boson fusion and can be tested via their decays into pairs of SM particles, analogously to the SM Higgs boson. Using multivariate techniques, we show that the LHeC is sensitive to heavy scalars with masses between 200 and 800 GeV down to scalar mixing of order 0.01.

Keywords: beyond the standard model, large hadron electron collider, multivariate analysis, scalar singlet

Procedia PDF Downloads 109
15232 Software Tool Design for Heavy Oil Upgrading by Hydrogen Donor Addition in a Hydrodynamic Cavitation Process

Authors: Munoz A. Tatiana, Solano R. Brandon, Montes C. Juan, Cierco G. Javier

Abstract:

The hydrodynamic cavitation is a process in which the energy that the fluids have in the phase changes is used. From this energy, local temperatures greater than 5000 °C are obtained where thermal cracking of the fluid molecules takes place. The process applied to heavy oil affects variables such as viscosity, density, and composition, which constitutes an important improvement in the quality of crude oil. In this study, the need to design a software through mathematical integration models of mixing, cavitation, kinetics, and reactor, allows modeling changes in density, viscosity, and composition of a heavy oil crude, when the fluid passes through a hydrodynamic cavitation reactor. In order to evaluate the viability of this technique in the industry, a heavy oil of 18° API gravity, was simulated using naphtha as a hydrogen donor at concentrations of 1, 2 and 5% vol, where the simulation results showed an API gravity increase to 0.77, 1.21 and 1.93° respectively and a reduction viscosity by 9.9, 12.9 and 15.8%. The obtained results allow to have a favorable panorama on this technological development, an appropriate visualization on the generation of innovative knowledge of this technique and the technical-economic opportunity that benefits the development of the hydrocarbon sector related to heavy crude oil that includes the largest world oil production.

Keywords: hydrodynamic cavitation, thermal cracking, hydrogen donor, heavy oil upgrading, simulator

Procedia PDF Downloads 129
15231 Bio Ethanol Production From the Co-Mixture of Jatropha Carcus L. Kernel Cake and Rice Straw

Authors: Felix U. Asoiro, Daniel I. Eleazar, Peter O. Offor

Abstract:

As a result of increasing energy demands, research in bioethanol has increased in recent years all through the world, in abide to partially or totally replace renewable energy supplies. The first and third generation feedstocks used for biofuel production have fundamental drawbacks. Waste rice straw and cake from second generation feedstock like Jatropha curcas l. kernel (JC) is seen as non-food feedstock and promising candidates for the industrial production of bioethanol. In this study, JC and rice husk (RH) wastes were characterized for proximate composition. Bioethanol was produced from the residual polysaccharides present in rice husk (RH) and Jatropha seed cake by sequential hydrolytic and fermentative processes at varying mixing proportions (50 g JC/50 g RH, 100 g JC/10 g RH, 100 g JC/20 g RH, 100 g JC/50 g RH, 100 g JC/100 g RH, 100 g JC/200 g RH and 200 g JC/100 g RH) and particle sizes (0.25, 0.5 and 1.00 mm). Mixing proportions and particle size significantly affected both bioethanol yield and some bioethanol properties. Bioethanol yield (%) increased with an increase in particle size. The highest bioethanol (8.67%) was produced at a mixing proportion of 100 g JC/50g RH at 0.25 mm particle size. The bioethanol had the lowest values of specific gravity and density of 1.25 and 0.92 g cm-3 and the highest values of 1.57 and 0.97 g cm-3 respectively. The highest values of viscosity (4.64 cSt) were obtained with 200 g JC/100 g RH, at 1.00 mm particle size. The maximum flash point and cloud point values were 139.9 oC and 23.7oC (100 g JC/200 g RH) at 1 mm and 0.5 mm particle sizes respectively. The maximum pour point value recorded was 3.85oC (100 g JC/50 g RH) at 1 mm particle size. The paper concludes that bioethanol can be recovered from JC and RH wastes. JC and RH blending proportions as well as particle sizes are important factors in bioethanol production.

Keywords: bioethanol, hydrolysis, Jatropha curcas l. kernel, rice husk, fermentation, proximate composition

Procedia PDF Downloads 68
15230 Co-Pyrolysis of Bituminous Coal with Peat by Thermogravimetric Analysis

Authors: Ceren Efe, Hale Sütçü

Abstract:

In this study, the pyrolysis of bituminous coal, peat and their blends formed by mixing various ratios of them were examined by thermogravimetric analysis method. Thermogravimetric analyses of peat, bituminous coal and their blends in the proportions of 25 %, 50 % and 75 % were performed at heating rate of 10 °C/min and from the room temperature until to 800 °C temperature, in a nitrogen atmosphere of 100 ml/min. Kinetic parameters for the pyrolysis process were calculated using Coats&Redfern kinetic model.

Keywords: bituminous coal, peat, pyrolysis, thermogravimetric analysis, Coats&Redfern

Procedia PDF Downloads 233
15229 Municipal Leachate Treatment by Using Polyaluminium Chloride as a Coagulant

Authors: Syeda Azeem Unnisa

Abstract:

The present study was undertaken at Jawaharnagar Solid Waste Municipal Dumpsite, Greater Hyderabad Municipal Corporation, Telangana State, India in 2017 which generates 90,000 litres of leachate per day. The main objective of the leachate treatment was to remove organic compounds like color, suspended solids, ammonia and COD by coagulation-flocculation using polyaluminum chloride (PAC) as coagulant which has higher coagulant efficiency and relative low cost compared to the conventional coagulants. Jar test apparatus was used to conduct experiments for pH 7, rapid mixing speed 150 rpm for 3 minute, slow mixing speed 30 rpm for 20 minute and the settling time of 30 minute for different dosage of PAC (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5 and 5.0 g/L). The highest percentage of removal of suspended solids, color, COD and ammonical nitrogen are 97%, 96%, 60% and 37% with PAC optimum dose of 2.0 g/l. The results indicate that the PAC was effective in leachate treatment which is very much suitable for high toxicity of waste and economically feasible for Indian conditions. The treated water can be utilized for other purpose apart from drinking.

Keywords: coagulant, leachate, polyaluminium chloride, treatment

Procedia PDF Downloads 166
15228 Magnetofluidics for Mass Transfer and Mixing Enhancement in a Micro Scale Device

Authors: Majid Hejazian, Nam-Trung Nguyen

Abstract:

Over the past few years, microfluidic devices have generated significant attention from industry and academia due to advantages such as small sample volume, low cost and high efficiency. Microfluidic devices have applications in chemical, biological and industry analysis and can facilitate assay of bio-materials and chemical reactions, separation, and sensing. Micromixers are one of the important microfluidic concepts. Micromixers can work as stand-alone devices or be integrated in a more complex microfluidic system such as a lab on a chip (LOC). Micromixers are categorized as passive and active types. Passive micromixers rely only on the arrangement of the phases to be mixed and contain no moving parts and require no energy. Active micromixers require external fields such as pressure, temperature, electric and acoustic fields. Rapid and efficient mixing is important for many applications such as biological, chemical and biochemical analysis. Achieving fast and homogenous mixing of multiple samples in the microfluidic devices has been studied and discussed in the literature recently. Improvement in mixing rely on effective mass transport in microscale, but are currently limited to molecular diffusion due to the predominant laminar flow in this size scale. Using magnetic field to elevate mass transport is an effective solution for mixing enhancement in microfluidics. The use of a non-uniform magnetic field to improve mass transfer performance in a microfluidic device is demonstrated in this work. The phenomenon of mixing ferrofluid and DI-water streams has been reported before, but mass transfer enhancement for other non-magnetic species through magnetic field have not been studied and evaluated extensively. In the present work, permanent magnets were used in a simple microfluidic device to create a non-uniform magnetic field. Two streams are introduced into the microchannel: one contains fluorescent dye mixed with diluted ferrofluid to induce enhanced mass transport of the dye, and the other one is a non-magnetic DI-water stream. Mass transport enhancement of fluorescent dye is evaluated using fluorescent measurement techniques. The concentration field is measured for different flow rates. Due to effect of magnetic field, a body force is exerted on the paramagnetic stream and expands the ferrofluid stream into non-magnetic DI-water flow. The experimental results demonstrate that without a magnetic field, both magnetic nanoparticles of the ferrofluid and the fluorescent dye solely rely on molecular diffusion to spread. The non-uniform magnetic field, created by the permanent magnets around the microchannel, and diluted ferrofluid can improve mass transport of non-magnetic solutes in a microfluidic device. The susceptibility mismatch between the fluids results in a magnetoconvective secondary flow towards the magnets and subsequently the mass transport of the non-magnetic fluorescent dye. A significant enhancement in mass transport of the fluorescent dye was observed. The platform presented here could be used as a microfluidics-based micromixer for chemical and biological applications.

Keywords: ferrofluid, mass transfer, micromixer, microfluidics, magnetic

Procedia PDF Downloads 196
15227 First Formaldehyde Retrieval Using the Raw Data Obtained from Pandora in Seoul: Investigation of the Temporal Characteristics and Comparison with Ozone Monitoring Instrument Measurement

Authors: H. Lee, J. Park

Abstract:

In this present study, for the first time, we retrieved the Formaldehyde (HCHO) Vertical Column Density (HCHOVCD) using Pandora instruments in Seoul, a megacity in northeast Asia, for the period between 2012 and 2014 and investigated the temporal characteristics of HCHOVCD. HCHO Slant Column Density (HCHOSCD) was obtained using the Differential Optical Absorption Spectroscopy (DOAS) method. HCHOSCD was converted to HCHOVCD using geometric Air Mass Factor (AMFG) as Pandora is the direct-sun measurement. The HCHOVCDs is low at 12:00 Local Time (LT) and is high in the morning (10:00 LT) and late afternoon (16:00 LT) except for winter. The maximum (minimum) values of Pandora HCHOVCD are 2.68×1016 (1.63×10¹⁶), 3.19×10¹⁶ (2.23×10¹⁶), 2.00×10¹⁶ (1.26×10¹⁶), and 1.63×10¹⁶ (0.82×10¹⁶) molecules cm⁻² in spring, summer, autumn, and winter, respectively. In terms of seasonal variations, HCHOVCD was high in summer and low in winter which implies that photo-oxidation plays an important role in HCHO production in Seoul. In comparison with the Ozone Monitoring Instrument (OMI) measurements, the HCHOVCDs from the OMI are lower than those from Pandora. The correlation coefficient (R) between monthly HCHOVCDs values from Pandora and OMI is 0.61, with slop of 0.35. Furthermore, to understand HCHO mixing ratio within Planetary Boundary Layer (PBL) in Seoul, we converted Pandora HCHOVCDs to HCHO mixing ratio in the PBL using several meteorological input data from the Atmospheric InfraRed Sounder (AIRS). Seasonal HCHO mixing ratio in PBL converted from Pandora (OMI) HCHOVCDs are estimated to be 6.57 (5.17), 7.08 (6.68), 7.60 (4.70), and 5.00 (4.76) ppbv in spring, summer, autumn, and winter, respectively.

Keywords: formaldehyde, OMI, Pandora, remote sensing

Procedia PDF Downloads 130
15226 Water Quality Management Based on Hydrodynamic Approach, Landuse, and Human Intervention in Wulan Delta Central Java Indonesia: Problems Identification and Review

Authors: Lintang Nur Fadlillah, Muh Aris Marfai, M. Widyastuti

Abstract:

Delta is dynamics area which is influenced by marine and river. Increasing human population in coastal area and the need of life exert pressure in delta that provides various resources. Wulan Delta is one of active Delta in Central Java, Indonesia. It has been experienced multiple pressures because of natural factors and human factors. In order to provide scientific solution and to analyze the main driving force in river delta, we collected several evidences based on news, papers, and publications related to Wulan Delta. This paper presents a review and problems identification in Wulan Delta, based on hydrodynamic approach, land use, and human activities which influenced water quality in the delta. A comprehensive overview is needed to address best policies under local communities and government. The analysis based on driving forces which affect delta estuary and river mouth. Natural factor in particular hydrodynamic influenced by tides, waves, runoff, and sediment transport. However, hydrodynamic affecting mixing process in river estuaries. The main problem is human intervention in land which is land use exchange leads to several problems such us decreasing water quality. Almost 90% of delta has been transformed into fish pond by local communities. Yet, they have not apply any water management to treat waste water before flush it to the sea and estuary. To understand the environmental condition, we need to assess water quality of river delta. The assessment based on land use as non-point source pollution. In Wulan Delta there are no industries. The land use in Wulan Delta consist of fish pond, settlement, and agriculture. The samples must represent the land use, to estimate which land use are most influence in river delta pollution. The hydrodynamic condition such as high tides and runoff must be considered, because it will affect the mixing process and water quality as well. To determine the samples site, we need to involve local community, in order to give insight into them. Furthermore, based on this review and problem identification, recommendations and strategies for water management are formulated.

Keywords: delta, land use, water quality, management, hydrodynamics

Procedia PDF Downloads 225
15225 Development of CaO-based Sorbents Applied to Sorption Enhanced Steam Reforming Processes

Authors: P. Comendador, I. Garcia, S. Orozco, L. Santamaria, M. Amutio, G. Lopez, M. Olazar

Abstract:

In situ CO₂ capture in steam reforming processes has been studied in the last years as an alternative for increasing H₂ yields and H₂ purity in the product stream. For capturing the CO₂ at the reforming conditions, CaO-based sorbents are usually employed due to their properties at high temperature, low cost and high availability. However, the challenge is to develop high-capacity (gCO₂/gsorbent) materials that retain their capacity over cycles of operation. Besides, since the objective is to capture the CO₂ generated in situ, another key aspect is the sorption dynamics, which means that, in order to efficiently use the sorbent, it has to capture the CO₂ at a rate equal to or higher than the generation rate. In this work, different CaO-based materials have been prepared to aim at meeting these criteria. First, and by using the wet mixing method, different inert materials (Mg, Ce and Al) were combined with CaO. Second, and with the inert material selected (Mg), the effect of its concentration in the final material was studied. Transversally, the calcination temperature was also evaluated. It was determined that the wet mixing method is a simple procedure suitable for the preparation of CaO sorbents mixed with inert materials. The materials prepared by mixing the CaO with Mg have shown satisfactory anti-sintering properties and adequate sorption kinetics for their application in steam reforming processes. Regarding the concentration of Mg in the solid, it was concluded that high values contribute to the stability but at the expense of losing sorption capacity. Finally, it was observed that high calcination temperatures negatively affected the sorption properties of the final materials due to the decrease in the pore volume and the specific surface area.

Keywords: calcination temperature effect, CO₂ capture, Mg-Ce-Al stabilizers, Mg varying concentration effect, Sorbent stabilization

Procedia PDF Downloads 58
15224 Hydrodynamics of Shear Layers at River Confluences by Formation of Secondary Circulation

Authors: Ali Aghazadegan, Ali Shokri, Julia Mullarney

Abstract:

River confluences are areas where there is a lot of mixing, which is often caused by the formation of shear layers and helical motions. The hydrodynamics of secondary circulation at river confluences with low flow discharge ratios and a 90° junction angle are investigated in this study. The analysis is based on Delft 3D modelling, which includes a three-dimensional time-averaged velocity field, turbulence, and water surface levels that have been validated using laboratory data. Confluence structure was characterized by shear layer, secondary circulation, and mixing at the junction and post confluence channel. This study analysis formation of the shear layer by generation of secondary circulations in variation discharge ratios. The values of streamwise, cross-wise, and vertical components are used to estimate the secondary circulation observed within and downstream of the tributary mouth. These variables are estimated for three horizontal planes at Z = [0.14; 0.07; 0.02] and for eight cross-sections at X = [-0.1; 0.00; 0.10; 0.2; 0.30; 0.4; 0.5; 0.6] within a range of 0.05 Y 0.30.

Keywords: river confluence, shear layer, secondary circulation, hydrodynamics

Procedia PDF Downloads 71
15223 A Study on Unix Process Crash Based on Efficient Process Management Method

Authors: Guo Haonan, Chen Peiyu, Zhao Hanyu, Burra Venkata Durga Kumar

Abstract:

Unix and Unix-like operating systems are widely used due to their high stability but are limited by the parent-child process structure, and the child process depends on the parent process, so the crash of a single process may cause the entire process group or even the entire system to fail. Another possibility of unexpected process termination is that the system administrator inadvertently closed the terminal or pseudo-terminal where the application was launched, causing the application process to terminate unexpectedly. This paper mainly analyzes the reasons for the problems and proposes two solutions.

Keywords: process management, daemon, login-bash and non-login bash, process group

Procedia PDF Downloads 106
15222 Study on the Thermal Mixing of Steam and Coolant in the Hybrid Safety Injection Tank

Authors: Sung Uk Ryu, Byoung Gook Jeon, Sung-Jae Yi, Dong-Jin Euh

Abstract:

In such passive safety injection systems in the nuclear power plant as Core Makeup Tank (CMT) and Hybrid Safety Injection Tank, various thermal-hydraulic phenomena including the direct contact condensation of steam and the thermal stratification of coolant occur. These phenomena are also closely related to the performance of the system. Depending on the condensation rate of the steam injected to the tank, the injection of the coolant and pressure equalizing timings of the tank are decided. The steam injected to the tank from the upper nozzle penetrates the coolant and induces a direct contact condensation. In the present study, the direct contact condensation of steam and the thermal mixing between the steam and coolant were examined by using the Particle Image Velocimetry (PIV) technique. Especially, by altering the size of the nozzle from which the steam is injected, the influence of steam injection velocity on the thermal mixing with coolant and condensation shall be comprehended, while also investigating the influence of condensation on the pressure variation inside the tank. Even though the amounts of steam inserted were the same in three different nozzle size conditions, it was found that the velocity of pressure rise becomes lower as the steam injection area decreases. Also, as the steam injection area increases, the thickness of the zone within which the coolant’s temperature decreases. Thereby, the amount of steam condensed by the direct contact condensation also decreases. The results derived from the present study can be utilized for the detailed design of a passive safety injection system, as well as for modeling the direct contact condensation triggered by the steam jet’s penetration into the coolant.

Keywords: passive safety injection systems, steam penetration, direct contact condensation, particle image velocimetry

Procedia PDF Downloads 369
15221 Behavior of hFOB 1.19 Cells in Injectable Scaffold Composing of Pluronic F127 and Carboxymethyl Hexanoyl Chitosan

Authors: Lie-Sian Yap, Ming-Chien Yang

Abstract:

This study demonstrated a novel injectable hydrogel scaffold composing of Pluronic F127, carboxymethyl hexanoyl chitosan (CA) and glutaraldehyde (GA) for encapsulating human fetal osteoblastic cells (hFOB) 1.19. The hydrogel was prepared by mixing F127 and GA in CA solution at 4°C. The mechanical properties and cytotoxicity of this hydrogel were determined through rheological measurements and MTT assay, respectively. After encapsulation process, the hFOB 1.19 cells morphology was examined using fluorescent and confocal imaging. The results indicated that the Tgel of this system was around 30°C, where sol-gel transformation occurred within 90s and F127/CA/GA gel was able to remain intact in the medium for more than 1 month. In vitro cell culture assay revealed that F127/CA/GA hydrogels were non-cytotoxic. Encapsulated hFOB 1.19 cells not only showed the spherical shape and formed colonies, but also reduced their size. Moreover, the hFOB 1.19 cells showed that cells remain alive after the encapsulation process. Based on these results, these F127/CA/GA hydrogels can be used to encapsulate cells for tissue engineering applications.

Keywords: carboxymethyl hexanoyl chitosan, cell encapsulation, hFOB 1.19, Pluronic F127

Procedia PDF Downloads 222
15220 The Impact of Ultrasonicator on the Vertical and Horizontal Mixing Profile of Petrol-Bioethanol

Authors: D. Nkazi, S. E. Iyuke, J. Mulopo

Abstract:

Increasing global energy demand as well as air quality concerns have in recent years led to the search for alternative clean fuels to replace fossil fuels. One such alternative is the blending of petrol with ethanol, which has numerous advantages such ethanol’s ability to act as oxygenate thus reducing the carbon monoxide emissions from the exhaust of internal combustion engines of vehicles. However, the hygroscopic nature of ethanol is a major concern in obtaining a perfectly homogenized petrol-ethanol fuel. This problem has led to the study of ways of homogenizing the petrol-ethanol mixtures. During the blending process, volumes fraction of ethanol and petrol were studied with respect to the depth within the storage container to confirm homogenization of the blend and time of storage. The results reveal that the density of the mixture was constant. The binodal curve of the ternary diagram shows an increase of homogeneous region, indicating an improved of interaction between water and petrol. The concentration distribution in the reactor showed proof of cavitation formation since in both directions, the variation of concentration with both time and distance was found to be oscillatory. On comparing the profiles in both directions, the concentration gradient, diffusion flux, and energy and diffusion rates were found to be higher in the vertical direction compared to the horizontal direction. It was therefore concluded that ultrasonication creates cavitation in the mixture which enhances mass transfer and mixing of ethanol and petrol. The horizontal direction was found to be the diffusion rate limiting step which proposed that the blender should have a larger height to diameter ratio. It is, however, recommended that further studies be done on the rate-limiting step so as to have actual dimensions of the reactor.

Keywords: ultrasonication, petrol, ethanol, concentration

Procedia PDF Downloads 342
15219 Approach to Study the Workability of Concrete with the Fractal Model

Authors: Achouri Fatima, Chouicha Kaddour

Abstract:

The main parameters affecting the workability are the water content, particle size, and the total surface of the grains, as long as the mixing water begins by wetting the surface of the grains and then fills the voids between the grains to form entrapped water, the quantity of water remaining is called free water. The aim is to undertake a fractal approach through the relationship between the concrete formulation parameters and workability, to develop this approach a series of concrete taken from the literature was investigated by varying formulation parameters such as G / S, the quantity of cement C and the quantity of mixing water E. We also call on other model as the model for the thickness of the water layer and model of the thickness of the paste layer to judge their relevance, hence the following results : the relevance of the model of the thickness of the water layer is considered relevant when there is a variation in the water quantity, the model of the thickness of the layer of the paste is only applicable if we consider that the paste is made with the grain value Dmax = 2.85: value from which we see a stable model.

Keywords: concrete, fractal method, paste thickness, water thickness, workability

Procedia PDF Downloads 350
15218 Experimental Study on the Preparation of Pelletizing of the Panzhihua's Fine Ilmenite Concentrate

Authors: Han Kexi, Lv Xuewei, Song Bing

Abstract:

This paper focuses on the preparation of pelletizing with the Panzhihua ilmenite concentrate to satisfy the requirement of smelting titania slag. The effects of the moisture content, mixing time of raw materials, pressure of pellet, roller rotating speed of roller, drying temperature and time on the pelletizing yield and compressive strength were investigated. The experimental results show that the moister content was controlled at 2.0%~2.5%, mixing time at 20 min, the pressure of the ball forming machine at 13~15 mpa, the pelletizing yield can reach up 85%. When the roller rotating speed is 6~8 r/min while the drying temperature and time respectively is 350 ℃ and 40~60 min, the compressive strength of pelletizing more than 1500 N. The preparation of pelletizing can meet the requirement of smelting titania slag.

Keywords: Panzhihua fine ilmenite concentrate, pelletizing, pelletizing yield, compressive strength, drying

Procedia PDF Downloads 196
15217 Nondecoupling Signatures of Supersymmetry and an Lμ-Lτ Gauge Boson at Belle-II

Authors: Heerak Banerjee, Sourov Roy

Abstract:

Supersymmetry, one of the most celebrated fields of study for explaining experimental observations where the standard model (SM) falls short, is reeling from the lack of experimental vindication. At the same time, the idea of additional gauge symmetry, in particular, the gauged Lμ-Lτ symmetric models have also generated significant interest. They have been extensively proposed in order to explain the tantalizing discrepancy in the predicted and measured value of the muon anomalous magnetic moment alongside several other issues plaguing the SM. While very little parameter space within these models remain unconstrained, this work finds that the γ + Missing Energy (ME) signal at the Belle-II detector will be a smoking gun for supersymmetry (SUSY) in the presence of a gauged U(1)Lμ-Lτ symmetry. A remarkable consequence of breaking the enhanced symmetry appearing in the limit of degenerate (s)leptons is the nondecoupling of the radiative contribution of heavy charged sleptons to the γ-Z΄ kinetic mixing. The signal process, e⁺e⁻ →γZ΄→γ+ME, is an outcome of this ubiquitous feature. Taking the severe constraints on gauged Lμ-Lτ models by several low energy observables into account, it is shown that any significant excess in all but the highest photon energy bin would be an undeniable signature of such heavy scalar fields in SUSY coupling to the additional gauge boson Z΄. The number of signal events depends crucially on the logarithm of the ratio of stau to smuon mass in the presence of SUSY. In addition, the number is also inversely proportional to the e⁺e⁻ collision energy, making a low-energy, high-luminosity collider like Belle-II an ideal testing ground for this channel. This process can probe large swathes of the hitherto free slepton mass ratio vs. additional gauge coupling (gₓ) parameter space. More importantly, it can explore the narrow slice of Z΄ mass (MZ΄) vs. gₓ parameter space still allowed in gauged U(1)Lμ-Lτ models for superheavy sparticles. The spectacular finding that the signal significance is independent of individual slepton masses is an exciting prospect indeed. Further, the prospect that signatures of even superheavy SUSY particles that may have escaped detection at the LHC may show up at the Belle-II detector is an invigorating revelation.

Keywords: additional gauge symmetry, electron-positron collider, kinetic mixing, nondecoupling radiative effect, supersymmetry

Procedia PDF Downloads 105
15216 Mathematical Study of CO₂ Dispersion in Carbonated Water Injection Enhanced Oil Recovery Using Non-Equilibrium 2D Simulator

Authors: Ahmed Abdulrahman, Jalal Foroozesh

Abstract:

CO₂ based enhanced oil recovery (EOR) techniques have gained massive attention from major oil firms since they resolve the industry's two main concerns of CO₂ contribution to the greenhouse effect and the declined oil production. Carbonated water injection (CWI) is a promising EOR technique that promotes safe and economic CO₂ storage; moreover, it mitigates the pitfalls of CO₂ injection, which include low sweep efficiency, early CO₂ breakthrough, and the risk of CO₂ leakage in fractured formations. One of the main challenges that hinder the wide adoption of this EOR technique is the complexity of accurate modeling of the kinetics of CO₂ mass transfer. The mechanisms of CO₂ mass transfer during CWI include the slow and gradual cross-phase CO₂ diffusion from carbonated water (CW) to the oil phase and the CO₂ dispersion (within phase diffusion and mechanical mixing), which affects the oil physical properties and the spatial spreading of CO₂ inside the reservoir. A 2D non-equilibrium compositional simulator has been developed using a fully implicit finite difference approximation. The material balance term (k) was added to the governing equation to account for the slow cross-phase diffusion of CO₂ from CW to the oil within the gird cell. Also, longitudinal and transverse dispersion coefficients have been added to account for CO₂ spatial distribution inside the oil phase. The CO₂-oil diffusion coefficient was calculated using the Sigmund correlation, while a scale-dependent dispersivity was used to calculate CO₂ mechanical mixing. It was found that the CO₂-oil diffusion mechanism has a minor impact on oil recovery, but it tends to increase the amount of CO₂ stored inside the formation and slightly alters the residual oil properties. On the other hand, the mechanical mixing mechanism has a huge impact on CO₂ spatial spreading (accurate prediction of CO₂ production) and the noticeable change in oil physical properties tends to increase the recovery factor. A sensitivity analysis has been done to investigate the effect of formation heterogeneity (porosity, permeability) and injection rate, it was found that the formation heterogeneity tends to increase CO₂ dispersion coefficients, and a low injection rate should be implemented during CWI.

Keywords: CO₂ mass transfer, carbonated water injection, CO₂ dispersion, CO₂ diffusion, cross phase CO₂ diffusion, within phase CO2 diffusion, CO₂ mechanical mixing, non-equilibrium simulation

Procedia PDF Downloads 144
15215 Diesel Engine Performance Optimization to Reduce Fuel Consumption and Emissions Issues

Authors: hadi kargar, bahador shabani

Abstract:

In this article, 16 cylinder motor combustion CFD modeling with a diameter of 165 mm and 195 mm along the way to help the FIRE software to optimize its function to work. A three-dimensional model of the processes that formed inside the cylinder made that involves mixing the fuel and air, ignition and spraying. In this three-dimensional model, all chemical species, density of air fuel spraying and spray with full profile intended to detailed results from mixing the fuel and air, igniting the ignition advance, spray, and mixed media in different times and get fit by moving the piston. Optimal selection of the model for the shape of the piston and spraying fuel specifications (including the management of spraying, the number of azhneh hole, start time of spraying and spraying angle) to achieve the best fuel consumption and minimal pollution. The spray hole 6 and 7 in three different configurations with five spraying and gives the best geometry and various performances in the simulation. 6 hole spray angle, finally spraying 72.5 degrees and two forms of spraying a better performance in comparison with other items of their own.

Keywords: spray, FIRE, CFD, optimize, diesel engine

Procedia PDF Downloads 392
15214 Computer Simulation of Hydrogen Superfluidity through Binary Mixing

Authors: Sea Hoon Lim

Abstract:

A superfluid is a fluid of bosons that flows without resistance. In order to be a superfluid, a substance’s particles must behave like bosons, yet remain mobile enough to be considered a superfluid. Bosons are low-temperature particles that can be in all energy states at the same time. If bosons were to be cooled down, then the particles will all try to be on the lowest energy state, which is called the Bose Einstein condensation. The temperature when bosons start to matter is when the temperature has reached its critical temperature. For example, when Helium reaches its critical temperature of 2.17K, the liquid density drops and becomes a superfluid with zero viscosity. However, most materials will solidify -and thus not remain fluids- at temperatures well above the temperature at which they would otherwise become a superfluid. Only a few substances currently known to man are capable of at once remaining a fluid and manifesting boson statistics. The most well-known of these is helium and its isotopes. Because hydrogen is lighter than helium, and thus expected to manifest Bose statistics at higher temperatures than helium, one might expect hydrogen to also be a superfluid. As of today, however, no one has yet been able to produce a bulk, hydrogen superfluid. The reason why hydrogen did not form a superfluid in the past is its intermolecular interactions. As a result, hydrogen molecules are much more likely to crystallize than their helium counterparts. The key to creating a hydrogen superfluid is therefore finding a way to reduce the effect of the interactions among hydrogen molecules, postponing the solidification to lower temperature. In this work, we attempt via computer simulation to produce bulk superfluid hydrogen through binary mixing. Binary mixture is a technique of mixing two pure substances in order to avoid crystallization and enhance super fluidity. Our mixture here is KALJ H2. We then sample the partition function using this Path Integral Monte Carlo (PIMC), which is well-suited for the equilibrium properties of low-temperature bosons and captures not only the statistics but also the dynamics of Hydrogen. Via this sampling, we will then produce a time evolution of the substance and see if it exhibits superfluid properties.

Keywords: superfluidity, hydrogen, binary mixture, physics

Procedia PDF Downloads 293
15213 Computational Fluid Dynamics and Experimental Evaluation of Two Batch Type Electrocoagulation Stirred Tank Reactors Used in the Removal of Cr (VI) from Waste Water

Authors: Phanindra Prasad Thummala, Umran Tezcan Un

Abstract:

In this study, hydrodynamics analysis of two batch type electrocoagulation stirred tank reactors, used for the electrocoagulation treatment of Cr(VI) wastewater, was carried using computational fluid dynamics (CFD). The aim of the study was to evaluate the impact of mixing characteristics on overall performance of electrocoagulation reactor. The CFD simulations were performed using ANSYS FLUENT 14.4 software. The mixing performance of each reactor was evaluated by numerically modelling tracer dispersion in each reactor configuration. The uniformity in tracer dispersion was assumed when 90% of the ratio of the maximum to minimum concentration of the tracer was realized. In parallel, experimental evaluation of both the electrocoagulation reactors for removal of Cr(VI) from wastewater was also carried out. The results of CFD and experimental analysis clearly show that the reactor which can give higher uniformity in lesser time, will perform better as an electrocoagulation reactor for removal of Cr(VI) from wastewater.

Keywords: CFD, stirred tank reactors, electrocoagulation, Cr(VI) wastewater

Procedia PDF Downloads 435
15212 Carbon Based Wearable Patch Devices for Real-Time Electrocardiography Monitoring

Authors: Hachul Jung, Ahee Kim, Sanghoon Lee, Dahye Kwon, Songwoo Yoon, Jinhee Moon

Abstract:

We fabricated a wearable patch device including novel patch type flexible dry electrode based on carbon nanofibers (CNFs) and silicone-based elastomer (MED 6215) for real-time ECG monitoring. There are many methods to make flexible conductive polymer by mixing metal or carbon-based nanoparticles. In this study, CNFs are selected for conductive nanoparticles because carbon nanotubes (CNTs) are difficult to disperse uniformly in elastomer compare with CNFs and silver nanowires are relatively high cost and easily oxidized in the air. Wearable patch is composed of 2 parts that dry electrode parts for recording bio signal and sticky patch parts for mounting on the skin. Dry electrode parts were made by vortexer and baking in prepared mold. To optimize electrical performance and diffusion degree of uniformity, we developed unique mixing and baking process. Secondly, sticky patch parts were made by patterning and detaching from smooth surface substrate after spin-coating soft skin adhesive. In this process, attachable and detachable strengths of sticky patch are measured and optimized for them, using a monitoring system. Assembled patch is flexible, stretchable, easily skin mountable and connectable directly with the system. To evaluate the performance of electrical characteristics and ECG (Electrocardiography) recording, wearable patch was tested by changing concentrations of CNFs and thickness of the dry electrode. In these results, the CNF concentration and thickness of dry electrodes were important variables to obtain high-quality ECG signals without incidental distractions. Cytotoxicity test is conducted to prove biocompatibility, and long-term wearing test showed no skin reactions such as itching or erythema. To minimize noises from motion artifacts and line noise, we make the customized wireless, light-weight data acquisition system. Measured ECG Signals from this system are stable and successfully monitored simultaneously. To sum up, we could fully utilize fabricated wearable patch devices for real-time ECG monitoring easily.

Keywords: carbon nanofibers, ECG monitoring, flexible dry electrode, wearable patch

Procedia PDF Downloads 158
15211 Enhancement of Cross-Linguistic Effect with the Increase in the Multilingual Proficiency during Early Childhood: A Case Study of English Language Acquisition by a Pre-School Child

Authors: Anupama Purohit

Abstract:

The paper is a study on the inevitable cross-linguistic effect found in the early multilingual learners. The cross-linguistic behaviour like code-mixing, code-switching, foreign accent, literal translation, redundancy and syntactic manipulation effected due to other languages on the English language output of a non-native pre-school child are discussed here. A case study method is adopted in this paper to support the claim of the title. A simultaneously tetra lingual pre-school child’s (within 1;3 to 4;0) language behaviour is analysed here. The sample output data of the child is gathered from the diary entries maintained by her family, regular observations and video recordings done since her birth. She is getting the input of her mother tongue, Sambalpuri, from her grandparents only; Hindi, the local language from her play-school and the neighbourhood; English only from her mother and occasional visit of other family friends; Odia only during the reading of the Odia story book. The child is exposed to code-mixing of all the languages throughout her childhood. But code-mixing, literal translation, redundancy and duplication were absent in her initial stage of multilingual acquisition. As the child was more proficient in English in comparison to her other first languages and had never heard code-mixing in English language; it was expected from her input pattern of English (one parent, English language) that she would maintain purity in her use of English while talking to the English language interlocutor. But with gradual increase in the language proficiency in each of the languages of the child, her handling of the multiple codes becomes deft cross-linguistically. It can be deduced from the case study that after attaining certain milestone proficiency in each language, the child’s linguistic faculty can operate at a metalinguistic level. The functional use of each morpheme, their arrangement in words and in the sentences, the supra segmental features, lexical-semantic mapping, culture specific use of a language and the pragmatic skills converge to give a typical childlike multilingual output in an intelligible manner to the multilingual people (with the same set of languages in combination). The result is appealing because for expressing the same ideas which the child used to speak (may be with grammatically wrong expressions) in one language, gradually, she starts showing cross-linguistic effect in her expressions. So the paper pleads for the separatist view from the very beginning of the holophrastic phase (as the child expresses in addressee-specific language); but development of a metalinguistic ability that helps the child in communicating in a sophisticated way according to the linguistic status of the addressee is unique to the multilingual child. This metalinguistic ability is independent of the mode if input of a multilingual child.

Keywords: code-mixing, cross-linguistic effect, early multilingualism, literal translation

Procedia PDF Downloads 265
15210 Mining Diagnostic Investigation Process

Authors: Sohail Imran, Tariq Mahmood

Abstract:

In complex healthcare diagnostic investigation process, medical practitioners have to focus on ways to standardize their processes to perform high quality care and optimize the time and costs. Process mining techniques can be applied to extract process related knowledge from data without considering causal and dynamic dependencies in business domain and processes. The application of process mining is effective in diagnostic investigation. It is very helpful where a treatment gives no dispositive evidence favoring it. In this paper, we applied process mining to discover important process flow of diagnostic investigation for hepatitis patients. This approach has some benefits which can enhance the quality and efficiency of diagnostic investigation processes.

Keywords: process mining, healthcare, diagnostic investigation process, process flow

Procedia PDF Downloads 495
15209 Code Switching and Language Attitudes of Two 10-11 Years Old Bilingual Child

Authors: Kristiina Teiss

Abstract:

Estonians and children having Estonian as a one of their languages have lately become the fastest growing minority or bilingual group in Finland which underlines the importance of studying this target group. The acquisition of bilingualism by an infant is affected by many different issues like the child’s personal traits, language differences, and different environmental factors such as people´s attitudes towards languages and bilingualism. In the early years the most important factor is the children’s interaction with their parents and siblings. This poster gives an overview to the material and some preliminary findings of ongoing PhD study concerning code-mixing, code-switching and language attitudes of two bilingual 10-11 year old children. Data was collected from two different bilingual families, one of them living in Tampere, Finland and one of them moved during the study to Tallinn, Estonia. The data includes audio recordings of the families’ interactions with their children when they were aged 2-3 years old and then when they were 10-11 years old. The data also includes recorded semi-structured queries of the parents, as well as recorded semi-structured queries of the children when they were in the age of 10-11 years. The features of code-mixing can vary depending on norms or models in the families, or even according to its use by two parents in same family. The practices studied in the ongoing longitudinal case study, based on a framework of ethnography, contain parental conversational strategies and family attitudes as well as CS (code-switching and code-mixing) cases occurring both in children and adult language. The aim of this paper is to find out whether there is a connection between children’s attitudes and their daily language use. It would be also interesting to find some evidence, as to whether living in different countries has different impacts on using two languages. The results of dissertation maid give some directional suggestions on how language maintenance of Estonian-Finnish bilinguals could be supported, although generalizations on the base of case study could not be done.

Keywords: code switching, Estonian, Finnish, language attitudes

Procedia PDF Downloads 345
15208 Transport and Mixing Phenomena Developed by Vortex Formation in Flow around Airfoil Using Lagrangian Coherent Structures

Authors: Riaz Ahmad, Jiazhong Zhang, Asma Farooqi

Abstract:

In this study, mass transport between separation bubbles and the flow around a two-dimensional airfoil are numerically investigated using Lagrangian Coherent Structures (LCSs). Finite Time Lyapunov Exponent (FTLE) technique is used for the computation to identify invariant manifolds and LCSs. Moreover, the Characteristic Base Split (CBS) scheme combined with dual time stepping technique is applied to simulate such transient flow at low Reynolds number. We then investigate the evolution of vortex structures during the transport process with the aid of LCSs. To explore the vortex formation at the surface of the airfoil, the dynamics of separatrix is also taken into account which is formed by the combination of stable-unstable manifolds. The Lagrangian analysis gives a detailed understanding of vortex dynamics and separation bubbles which plays a significant role to explore the performance of the unsteady flow generated by the airfoil. Transport process and flow separation phenomena are studied extensively to analyze the flow pattern by Lagrangian point of view.

Keywords: transport phenomena, CBS Method, vortex formation, Lagrangian Coherent Structures

Procedia PDF Downloads 113
15207 Study on Novel Reburning Process for NOx Reduction by Oscillating Injection of Reburn Fuel

Authors: Changyeop Lee, Sewon Kim, Jongho Lee

Abstract:

Reburning technology has been developed to adopt various commercial combustion systems. Fuel lean reburning is an advanced reburning method to reduce NOx economically without using burnout air, however it is not easy to get high NOx reduction efficiency. In the fuel lean reburning system, the localized fuel rich eddies are used to establish partial fuel rich regions so that the NOx can react with hydrocarbon radical restrictively. In this paper, a new advanced reburning method which supplies reburn fuel with oscillatory motion is introduced to increase NOx reduction rate effectively. To clarify whether forced oscillating injection of reburn fuel can effectively reduce NOx emission, experimental tests were conducted in vertical combustion furnace. Experiments were performed in flames stabilized by a gas burner, which was mounted at the bottom of the furnace. The natural gas is used as both main and reburn fuel and total thermal input is about 40kW. The forced oscillating injection of reburn fuel is realized by electronic solenoid valve, so that fuel rich region and fuel lean region is established alternately. In the fuel rich region, NOx is converted to N2 by reburning reaction, however unburned hydrocarbon and CO is oxidized in fuel lean zone and mixing zone at downstream where slightly fuel lean region is formed by mixing of two regions. This paper reports data on flue gas emissions and temperature distribution in the furnace for a wide range of experimental conditions. All experimental data has been measured at steady state. The NOx reduction rate increases up to 41% by forced oscillating reburn motion. The CO emissions were shown to be kept at very low level. And this paper makes clear that in order to decrease NOx concentration in the exhaust when oscillating reburn fuel injection system is adopted, the control of factors such as frequency and duty ratio is very important.

Keywords: NOx, CO, reburning, pollutant

Procedia PDF Downloads 268
15206 The Effect of Mixing and Degassing Conditions on the Properties of Epoxy/Anhydride Resin System

Authors: Latha Krishnan, Andrew Cobley

Abstract:

Epoxy resin is most widely used as matrices for composites of aerospace, automotive and electronic applications due to its outstanding mechanical properties. These properties are chiefly predetermined by the chemical structure of the prepolymer and type of hardener but can also be varied by the processing conditions such as prepolymer and hardener mixing, degassing and curing conditions. In this research, the effect of degassing on the curing behaviour and the void occurrence is experimentally evaluated for epoxy /anhydride resin system. The epoxy prepolymer was mixed with an anhydride hardener and accelerator in an appropriate quantity. In order to investigate the effect of degassing on the curing behaviour and void content of the resin, the uncured resin samples were prepared using three different methods: 1) no degassing 2) degassing on prepolymer and 3) degassing on mixed solution of prepolymer and hardener with an accelerator. The uncured resins were tested in differential scanning calorimeter (DSC) to observe the changes in curing behaviour of the above three resin samples by analysing factors such as gel temperature, peak cure temperature and heat of reaction/heat flow in curing. Additionally, the completely cured samples were tested in DSC to identify the changes in the glass transition temperature (Tg) between the three samples. In order to evaluate the effect of degassing on the void content and morphology changes in the cured epoxy resin, the fractured surfaces of cured epoxy resin were examined under the scanning electron microscope (SEM). Also, the changes in the mechanical properties of the cured resin were studied by three-point bending test. It was found that degassing at different stages of resin mixing had significant effects on properties such as glass transition temperature, the void content and void size of the epoxy/anhydride resin system. For example, degassing (vacuum applied on the mixed resin) has shown higher glass transition temperature (Tg) with lower void content.

Keywords: anhydride epoxy, curing behaviour, degassing, void occurrence

Procedia PDF Downloads 318
15205 Effect of Rotation Rate on Chemical Segregation during Phase Change

Authors: Nouri Sabrina, Benzeghiba Mohamed, Ghezal Abderrahmane

Abstract:

Numerical parametric study is conducted to study the effects of ampoule rotation on the flows and the dopant segregation in vertical Bridgman (VB) crystal growth. Calculations were performed in unsteady state. The extended Darcy model, which includes the time derivative and Coriolis terms, has been employed in the momentum equation. It was found that the convection, and dopant segregation can be affected significantly by ampoule rotation, and the effect is similar to that by an axial magnetic field. Ampoule rotation decreases the intensity of convection and stretches the flow cell axially. When the convection is weak, the flow can be suppressed almost completely by moderate ampoule rotation and the dopant segregation becomes diffusion-controlled. For stronger convection, the elongated flow cell by ampoule rotation may bring dopant mixing into the bulk melt reducing axial segregation at the early stage of the growth. However, if the cellular flow cannot be suppressed completely, ampoule rotation may induce larger radial segregation due to poor mixing.

Keywords: numerical simulation, heat and mass transfer, vertical solidification, chemical segregation

Procedia PDF Downloads 327
15204 Preparation of Ceramic Membranes from Syrian Sand Loaded with Silver Nanoparticles for Water Treatment

Authors: Abdulrazzaq Hammal

Abstract:

In this study, Syrian sand was used to create ceramic membranes. The process of preparing the membranes involved several steps, starting with the purification of the studied sand using hydrochloric acid, sorting according to granular size, and mixing the sand with liquid sodium silicates as a binder. Next, the effects of binder ratio, pressure formation, treatment temperature, and sand grain size were studied. Further, nanoparticles of silver were added to the formed membranes to improve their ability to purify bacterially polluted water. Prepared membranes were quite successful in removing bacteria and chemicals from water, and the water's requirements were brought up to level with Syrian drinking water standards.

Keywords: ceramic, membrane, water, wastewater

Procedia PDF Downloads 42