Search results for: linear density of reinforcement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7262

Search results for: linear density of reinforcement

7112 Fatigue of Multiscale Nanoreinforced Composites: 3D Modelling

Authors: Leon Mishnaevsky Jr., Gaoming Dai

Abstract:

3D numerical simulations of fatigue damage of multiscale fiber reinforced polymer composites with secondary nanoclay reinforcement are carried out. Macro-micro FE models of the multiscale composites are generated automatically using Python based software. The effect of the nanoclay reinforcement (localized in the fiber/matrix interface (fiber sizing) and distributed throughout the matrix) on the crack path, damage mechanisms and fatigue behavior is investigated in numerical experiments.

Keywords: computational mechanics, fatigue, nanocomposites, composites

Procedia PDF Downloads 607
7111 Effectiveness of Reinforcement Learning (RL) for Autonomous Energy Management Solutions

Authors: Tesfaye Mengistu

Abstract:

This thesis aims to investigate the effectiveness of Reinforcement Learning (RL) for Autonomous Energy Management solutions. The study explores the potential of Model Free RL approaches, such as Monte Carlo RL and Q-learning, to improve energy management by autonomously adjusting energy management strategies to maximize efficiency. The research investigates the implementation of RL algorithms for optimizing energy consumption in a single-agent environment. The focus is on developing a framework for the implementation of RL algorithms, highlighting the importance of RL for enabling autonomous systems to adapt quickly to changing conditions and make decisions based on previous experiences. Moreover, the paper proposes RL as a novel energy management solution to address nations' CO2 emission goals. Reinforcement learning algorithms are well-suited to solving problems with sequential decision-making patterns and can provide accurate and immediate outputs to ease the planning and decision-making process. This research provides insights into the challenges and opportunities of using RL for energy management solutions and recommends further studies to explore its full potential. In conclusion, this study provides valuable insights into how RL can be used to improve the efficiency of energy management systems and supports the use of RL as a promising approach for developing autonomous energy management solutions in residential buildings.

Keywords: artificial intelligence, reinforcement learning, monte carlo, energy management, CO2 emission

Procedia PDF Downloads 84
7110 A General Approach to Define Adjoint of Linear and Non-linear Operators

Authors: Mehdi Jafari Matehkolaee

Abstract:

In this paper, we have obtained the adjoint of an arbitrary operator (linear and nonlinear) in Hilbert space by introducing an n-dimensional Riemannian manifold. This general formalism covers every linear operator (non – differential) in Hilbert space. In fact, our approach shows that instead of using the adjoint definition of an operator directly, it can be obtained directly by relying on a suitable generalized space according to the action of the operator in question. For the case of nonlinear operators, we have to change the definition of the linear operator adjoint. But here, we have obtained an adjoint of these operators with respect to the definition of the derivative of the operator. As a matter of fact, we have shown one of the straight applications of the ''Frechet derivative'' in the algebra of the operators.

Keywords: adjoint operator, non-linear operator, differentiable operator, manifold

Procedia PDF Downloads 119
7109 Effect of Bulk Density and Fiber Blend Content of Nonwoven Textiles on Flammability Properties

Authors: Klara Masnicova, Jiri Chaloupek

Abstract:

Flammability plays an important role in applications such as thermal and acoustic insulation and other technical nonwoven textiles. The study was conducted in an attempt to investigate the flammability behavior of nonwoven textiles in relation to their structural and material characteristics, with emphasis given to the blending ratios of flammable and non-flammable fibers or fibers with reduced flammability. Nonwoven structures made of blends of viscose/oxidized polyacrylonitrile (VS/oxidized PAN fibers and polyethylene terephthalate/oxidized polyacrylonitrile (PET/oxidized PAN) fibers in several bulk densities are evaluated. The VS/oxidized PAN blend is model material. The flammability was studied using a cone calorimeter. Reaction to fire was observed using the small flame test method. Interestingly, the results show some of the blending ratios do not react to the heat in linear response to bulk density. This outcome can have a huge impact on future product development in fire safety and for the general understanding of flammability behavior of nonwovens made of staple fibers.

Keywords: bulk density, cone calorimetry, flammability, nonwoven textiles

Procedia PDF Downloads 308
7108 Inversion of Gravity Data for Density Reconstruction

Authors: Arka Roy, Chandra Prakash Dubey

Abstract:

Inverse problem generally used for recovering hidden information from outside available data. Vertical component of gravity field we will be going to use for underneath density structure calculation. Ill-posing nature is main obstacle for any inverse problem. Linear regularization using Tikhonov formulation are used for appropriate choice of SVD and GSVD components. For real time data handle, signal to noise ratios should have to be less for reliable solution. In our study, 2D and 3D synthetic model with rectangular grid are used for gravity field calculation and its corresponding inversion for density reconstruction. Fine grid also we have considered to hold any irregular structure. Keeping in mind of algebraic ambiguity factor number of observation point should be more than that of number of data point. Picard plot is represented here for choosing appropriate or main controlling Eigenvalues for a regularized solution. Another important study is depth resolution plot (DRP). DRP are generally used for studying how the inversion is influenced by regularizing or discretizing. Our further study involves real time gravity data inversion of Vredeforte Dome South Africa. We apply our method to this data. The results include density structure is in good agreement with known formation in that region, which puts an additional support of our method.

Keywords: depth resolution plot, gravity inversion, Picard plot, SVD, Tikhonov formulation

Procedia PDF Downloads 213
7107 Briquetting of Metal Chips by Controlled Impact: Experimental Study

Authors: Todor Penchev, Dimitar Karastojanov, Ivan Altaparmakov

Abstract:

For briquetting of metal chips are used hydraulic and mechanical presses. The density of the briquettes in this case is about 60% - 70 % on the density of solid metal. In this work are presented the results of experimental studies for briquetting of metal chips, by using a new technology for impact briquetting. The used chips are by Armco iron, steel, cast iron, copper, aluminum and brass. It has been found that: (i) in a controlled impact the density of the briquettes can be increases up to 30%; (ii) at the same specific impact energy Es (J/sm3) the density of the briquettes increases with increasing of the impact velocity; (iii), realization of the repeated impact leads to decrease of chips density, which can be explained by distribution of elastic waves in the briquette.

Keywords: briquetting, chips briquetting, impact briquetting, controlled impact

Procedia PDF Downloads 403
7106 Deep Reinforcement Learning Model Using Parameterised Quantum Circuits

Authors: Lokes Parvatha Kumaran S., Sakthi Jay Mahenthar C., Sathyaprakash P., Jayakumar V., Shobanadevi A.

Abstract:

With the evolution of technology, the need to solve complex computational problems like machine learning and deep learning has shot up. But even the most powerful classical supercomputers find it difficult to execute these tasks. With the recent development of quantum computing, researchers and tech-giants strive for new quantum circuits for machine learning tasks, as present works on Quantum Machine Learning (QML) ensure less memory consumption and reduced model parameters. But it is strenuous to simulate classical deep learning models on existing quantum computing platforms due to the inflexibility of deep quantum circuits. As a consequence, it is essential to design viable quantum algorithms for QML for noisy intermediate-scale quantum (NISQ) devices. The proposed work aims to explore Variational Quantum Circuits (VQC) for Deep Reinforcement Learning by remodeling the experience replay and target network into a representation of VQC. In addition, to reduce the number of model parameters, quantum information encoding schemes are used to achieve better results than the classical neural networks. VQCs are employed to approximate the deep Q-value function for decision-making and policy-selection reinforcement learning with experience replay and the target network.

Keywords: quantum computing, quantum machine learning, variational quantum circuit, deep reinforcement learning, quantum information encoding scheme

Procedia PDF Downloads 135
7105 Numerical Analysis of Rainfall-Induced Roadside Slope Failures and Their Stabilizing Solution

Authors: Muhammad Suradi, Sugiarto, Abdullah Latip

Abstract:

Many roadside slope failures occur during the rainy season, particularly in the period of extreme rainfall along Connecting National Road of Salubatu-Mambi, West Sulawesi, Indonesia. These occurrences cause traffic obstacles and endanger people along and around the road. Research collaboration between P2JN (National Road Construction Board) West Sulawesi Province, who authorize to supervise the road condition, and Ujung Pandang State Polytechnic (Applied University) was established to cope with the landslide problem. This research aims to determine factors triggering roadside slope failures and their optimum stabilizing solution. To achieve this objective, site observation and soil investigation were carried out to obtain parameters for analyses of rainfall-induced slope instability and reinforcement design using the SV Flux and SV Slope software. The result of this analysis will be taken into account for the next analysis to get an optimum design of the slope reinforcement. The result indicates some factors such as steep slopes, sandy soils, and unvegetated slope surface mainly contribute to the slope failures during intense rainfall. With respect to the contributing factors as well as construction material and technology, cantilever/butressing retaining wall becomes the optimum solution for the roadside slope reinforcement.

Keywords: roadside slope, failure, rainfall, slope reinforcement, optimum solution

Procedia PDF Downloads 107
7104 A Reinforcement Learning Approach for Evaluation of Real-Time Disaster Relief Demand and Network Condition

Authors: Ali Nadi, Ali Edrissi

Abstract:

Relief demand and transportation links availability is the essential information that is needed for every natural disaster operation. This information is not in hand once a disaster strikes. Relief demand and network condition has been evaluated based on prediction method in related works. Nevertheless, prediction seems to be over or under estimated due to uncertainties and may lead to a failure operation. Therefore, in this paper a stochastic programming model is proposed to evaluate real-time relief demand and network condition at the onset of a natural disaster. To address the time sensitivity of the emergency response, the proposed model uses reinforcement learning for optimization of the total relief assessment time. The proposed model is tested on a real size network problem. The simulation results indicate that the proposed model performs well in the case of collecting real-time information.

Keywords: disaster management, real-time demand, reinforcement learning, relief demand

Procedia PDF Downloads 319
7103 Analytical Solution of Non–Autonomous Discrete Non-Linear Schrodinger Equation With Saturable Non-Linearity

Authors: Mishu Gupta, Rama Gupta

Abstract:

It has been elucidated here that non- autonomous discrete non-linear Schrödinger equation is associated with saturable non-linearity through photo-refractive media. We have investigated the localized solution of non-autonomous saturable discrete non-linear Schrödinger equations. The similarity transformation has been involved in converting non-autonomous saturable discrete non-linear Schrödinger equation to constant-coefficient saturable discrete non-linear Schrödinger equation (SDNLSE), whose exact solution is already known. By back substitution, the solution of the non-autonomous version has been obtained. We have analysed our solution for the hyperbolic and periodic form of gain/loss term, and interesting results have been obtained. The most important characteristic role is that it helps us to analyse the propagation of electromagnetic waves in glass fibres and other optical wave mediums. Also, the usage of SDNLSE has been seen in tight binding for Bose-Einstein condensates in optical mediums. Even the solutions are interrelated, and its properties are prominently used in various physical aspects like optical waveguides, Bose-Einstein (B-E) condensates in optical mediums, Non-linear optics in photonic crystals, and non-linear kerr–type non-linearity effect and photo refracting medium.

Keywords: B-E-Bose-Einstein, DNLSE-Discrete non linear schrodinger equation, NLSE-non linear schrodinger equation, SDNLSE - saturable discrete non linear Schrodinger equation

Procedia PDF Downloads 157
7102 System of Linear Equations, Gaussian Elimination

Authors: Rabia Khan, Nargis Munir, Suriya Gharib, Syeda Roshana Ali

Abstract:

In this paper linear equations are discussed in detail along with elimination method. Gaussian elimination and Gauss Jordan schemes are carried out to solve the linear system of equation. This paper comprises of matrix introduction, and the direct methods for linear equations. The goal of this research was to analyze different elimination techniques of linear equations and measure the performance of Gaussian elimination and Gauss Jordan method, in order to find their relative importance and advantage in the field of symbolic and numeric computation. The purpose of this research is to revise an introductory concept of linear equations, matrix theory and forms of Gaussian elimination through which the performance of Gauss Jordan and Gaussian elimination can be measured.

Keywords: direct, indirect, backward stage, forward stage

Procedia PDF Downloads 598
7101 Use of Linear Programming for Optimal Production in a Production Line in Saudi Food Co.

Authors: Qasim M. Kriri

Abstract:

Few Saudi Arabia production companies face financial profit issues until this moment. This work presents a linear integer programming model that solves a production problem of a Saudi Food Company in Saudi Arabia. An optimal solution to the above-mentioned problem is a Linear Programming solution. In this regard, the main purpose of this project is to maximize profit. Linear Programming Technique has been used to derive the maximum profit from production of natural juice at Saudi Food Co. The operations of production of the company were formulated and optimal results are found out by using Lindo Software that employed Sensitivity Analysis and Parametric linear programming in order develop Linear Programming. In addition, the parameter values are increased, then the values of the objective function will be increased.

Keywords: parameter linear programming, objective function, sensitivity analysis, optimize profit

Procedia PDF Downloads 206
7100 Memory Based Reinforcement Learning with Transformers for Long Horizon Timescales and Continuous Action Spaces

Authors: Shweta Singh, Sudaman Katti

Abstract:

The most well-known sequence models make use of complex recurrent neural networks in an encoder-decoder configuration. The model used in this research makes use of a transformer, which is based purely on a self-attention mechanism, without relying on recurrence at all. More specifically, encoders and decoders which make use of self-attention and operate based on a memory, are used. In this research work, results for various 3D visual and non-visual reinforcement learning tasks designed in Unity software were obtained. Convolutional neural networks, more specifically, nature CNN architecture, are used for input processing in visual tasks, and comparison with standard long short-term memory (LSTM) architecture is performed for both visual tasks based on CNNs and non-visual tasks based on coordinate inputs. This research work combines the transformer architecture with the proximal policy optimization technique used popularly in reinforcement learning for stability and better policy updates while training, especially for continuous action spaces, which are used in this research work. Certain tasks in this paper are long horizon tasks that carry on for a longer duration and require extensive use of memory-based functionalities like storage of experiences and choosing appropriate actions based on recall. The transformer, which makes use of memory and self-attention mechanism in an encoder-decoder configuration proved to have better performance when compared to LSTM in terms of exploration and rewards achieved. Such memory based architectures can be used extensively in the field of cognitive robotics and reinforcement learning.

Keywords: convolutional neural networks, reinforcement learning, self-attention, transformers, unity

Procedia PDF Downloads 137
7099 Coexistence of Superconductivity and Spin Density Wave in Ferropnictide Ba₁₋ₓKₓFe₂As₂

Authors: Tadesse Desta Gidey, Gebregziabher Kahsay, Pooran Singh

Abstract:

This work focuses on the theoretical investigation of the coexistence of superconductivity and Spin Density Wave (SDW)in Ferropnictide Ba₁₋ₓKₓFe₂As₂. By developing a model Hamiltonian for the system and by using quantum field theory Green’s function formalism, we have obtained mathematical expressions for superconducting transition temperature TC), spin density wave transition temperature (Tsdw), superconductivity order parameter (Sc), and spin density wave order parameter (sdw). By employing the experimental and theoretical values of the parameters in the obtained expressions, phase diagrams of superconducting transition temperature (TC) versus superconducting order parameter (Sc) and spin density wave transition temperature (Tsdw), versus spin density wave order parameter (sdw) have been plotted. By combining the two phase diagrams, we have demonstrated the possible coexistence of superconductivity and spin density wave (SDW) in ferropnictide Ba1−xKxFe2As2.

Keywords: Superconductivity, Spin density wave, Coexistence, Green function, Pnictides, Ba₁₋ₓKₓFe₂As₂

Procedia PDF Downloads 178
7098 Using Q-Learning to Auto-Tune PID Controller Gains for Online Quadcopter Altitude Stabilization

Authors: Y. Alrubyli

Abstract:

Unmanned Arial Vehicles (UAVs), and more specifically, quadcopters need to be stable during their flights. Altitude stability is usually achieved by using a PID controller that is built into the flight controller software. Furthermore, the PID controller has gains that need to be tuned to reach optimal altitude stabilization during the quadcopter’s flight. For that, control system engineers need to tune those gains by using extensive modeling of the environment, which might change from one environment and condition to another. As quadcopters penetrate more sectors, from the military to the consumer sectors, they have been put into complex and challenging environments more than ever before. Hence, intelligent self-stabilizing quadcopters are needed to maneuver through those complex environments and situations. Here we show that by using online reinforcement learning with minimal background knowledge, the altitude stability of the quadcopter can be achieved using a model-free approach. We found that by using background knowledge instead of letting the online reinforcement learning algorithm wander for a while to tune the PID gains, altitude stabilization can be achieved faster. In addition, using this approach will accelerate development by avoiding extensive simulations before applying the PID gains to the real-world quadcopter. Our results demonstrate the possibility of using the trial and error approach of reinforcement learning combined with background knowledge to achieve faster quadcopter altitude stabilization in different environments and conditions.

Keywords: reinforcement learning, Q-leanring, online learning, PID tuning, unmanned aerial vehicle, quadcopter

Procedia PDF Downloads 177
7097 Processing and Characterization of Aluminum Matrix Composite Reinforced with Amorphous Zr₃₇.₅Cu₁₈.₆₇Al₄₃.₉₈ Phase

Authors: P. Abachi, S. Karami, K. Purazrang

Abstract:

The amorphous reinforcements (metallic glasses) can be considered as promising options for reinforcing light-weight aluminum and its alloys. By using the proper type of reinforcement, one can overcome to drawbacks such as interfacial de-cohesion and undesirable reactions which can be created at ceramic particle and metallic matrix interface. In this work, the Zr-based amorphous phase was produced via mechanical milling of elemental powders. Based on Miedema semi-empirical Model and diagrams for formation enthalpies and/or Gibbs free energies of Zr-Cu amorphous phase in comparison with the crystalline phase, the glass formability range was predicted. The composite was produced using the powder mixture of the aluminum and metallic glass and spark plasma sintering (SPS) at the temperature slightly above the glass transition Tg of the metallic glass particles. The selected temperature and rapid sintering route were suitable for consolidation of an aluminum matrix without crystallization of amorphous phase. To characterize amorphous phase formation, X-ray diffraction (XRD) phase analyses were performed on powder mixture after specified intervals of milling. The microstructure of the composite was studied by optical and scanning electron microscope (SEM). Uniaxial compression tests were carried out on composite specimens with the dimension of 4 mm long and a cross-section of 2 ˟ 2mm2. The micrographs indicated an appropriate reinforcement distribution in the metallic matrix. The comparison of stress–strain curves of the consolidated composite and the non-reinforced Al matrix alloy in compression showed that the enhancement of yield strength and mechanical strength are combined with an appreciable plastic strain at fracture. It can be concluded that metallic glasses (amorphous phases) are alternative reinforcement material for lightweight metal matrix composites capable of producing high strength and adequate ductility. However, this is in the expense of minor density increase.

Keywords: aluminum matrix composite, amorphous phase, mechanical alloying, spark plasma sintering

Procedia PDF Downloads 365
7096 Electron Beam Processing of Ethylene-Propylene-Terpolymer-Based Rubber Mixtures

Authors: M. D. Stelescu, E. Manaila, G. Craciun, D. Ighigeanu

Abstract:

The goal of the paper is to present the results regarding the influence of the irradiation dose and amount of multifunctional monomer trimethylol-propane trimethacrylate (TMPT) on ethylene-propylene-diene terpolymer rubber (EPDM) mixtures irradiated in electron beam. Blends, molded on an electrically heated laboratory roller mill and compressed in an electrically heated hydraulic press, were irradiated using the ALID 7 of 5.5 MeV linear accelerator in the dose range of 22.6 kGy to 56.5 kGy in atmospheric conditions and at room temperature of 25 °C. The share of cross-linking and degradation reactions was evaluated by means of sol-gel analysis, cross-linking density measurements, FTIR studies and Charlesby-Pinner parameter (p0/q0) calculations. The blends containing different concentrations of TMPT (3 phr and 9 phr) and irradiated with doses in the mentioned range have present the increasing of gel content and cross-linking density. Modified and new bands in FTIR spectra have appeared, because of both cross-linking and chain scission reactions.

Keywords: electron beam irradiation, EPDM rubber, crosslinking density, gel fraction

Procedia PDF Downloads 155
7095 A Rapid Reinforcement Technique for Columns by Carbon Fiber/Epoxy Composite Materials

Authors: Faruk Elaldi

Abstract:

There are lots of concrete columns and beams around in our living cities. Those columns are mostly open to aggressive environmental conditions and earthquakes. Mostly, they are deteriorated by sand, wind, humidity and other external applications at times. After a while, these beams and columns need to be repaired. Within the scope of this study, for reinforcement of concrete columns, samples were designed and fabricated to be strengthened with carbon fiber reinforced composite materials and conventional concrete encapsulation and followed by, and they were put into the axial compression test to determine load-carrying performance before column failure. In the first stage of this study, concrete column design and mold designs were completed for a certain load-carrying capacity. Later, the columns were exposed to environmental deterioration in order to reduce load-carrying capacity. To reinforce these damaged columns, two methods were applied, “concrete encapsulation” and the other one “wrapping with carbon fiber /epoxy” material. In the second stage of the study, the reinforced columns were applied to the axial compression test and the results obtained were analyzed. Cost and load-carrying performance comparisons were made and it was found that even though the carbon fiber/epoxy reinforced method is more expensive, this method enhances higher load-carrying capacity and reduces the reinforcement processing period.

Keywords: column reinforcement, composite, earth quake, carbon fiber reinforced

Procedia PDF Downloads 184
7094 Review on Wear Behavior of Magnesium Matrix Composites

Authors: Amandeep Singh, Niraj Bala

Abstract:

In the last decades, light-weight materials such as magnesium matrix composites have become hot topic for material research due to their excellent mechanical and physical properties. However, relatively very less work has been done related to the wear behavior of these composites. Magnesium matrix composites have wide applications in automobile and aerospace sector. In this review, attempt has been done to collect the literature related to wear behavior of magnesium matrix composites fabricated through various processing techniques such as stir casting, powder metallurgy, friction stir processing etc. Effect of different reinforcements, reinforcement content, reinforcement size, wear load, sliding speed and time have been studied by different researchers in detail. Wear mechanism under different experimental condition has been reviewed in detail. The wear resistance of magnesium and its alloys can be enhanced with the addition of different reinforcements. Wear resistance can further be enhanced by increasing the percentage of added reinforcements. Increase in applied load during wear test leads to increase in wear rate of magnesium composites.

Keywords: hardness, magnesium matrix composites, reinforcement, wear

Procedia PDF Downloads 334
7093 A Look at the Quantum Theory of Atoms in Molecules from the Discrete Morse Theory

Authors: Dairo Jose Hernandez Paez

Abstract:

The quantum theory of atoms in molecules (QTAIM) allows us to obtain topological information on electronic density in quantum mechanical systems. The QTAIM starts by considering the electron density as a continuous mathematical object. On the other hand, the discretization of electron density is also a mathematical object, which, from discrete mathematics, would allow a new approach to its topological study. From this point of view, it is necessary to develop a series of steps that provide the theoretical support that guarantees its application. Some of the steps that we consider most important are mentioned below: (1) obtain good representations of the electron density through computational calculations, (2) design a methodology for the discretization of electron density, and construct the simplicial complex. (3) Make an analysis of the discrete vector field associating the simplicial complex. (4) Finally, in this research, we propose to use the discrete Morse theory as a mathematical tool to carry out studies of electron density topology.

Keywords: discrete mathematics, Discrete Morse theory, electronic density, computational calculations

Procedia PDF Downloads 104
7092 FEM Study of Different Methods of Fiber Reinforcement Polymer Strengthening of a High Strength Concrete Beam-Column Connection

Authors: Talebi Aliasghar, Ebrahimpour Komeleh Hooman, Maghsoudi Ali Akbar

Abstract:

In reinforced concrete (RC) structures, beam-column connection region has a considerable effect on the behavior of structures. Using fiber reinforcement polymer (FRP) for the strengthening of connections in RC structures can be one of the solutions to retrofitting this zone which result in the enhanced behavior of structure. In this paper, these changes in behavior by using FRP for high strength concrete beam-column connection have been studied by finite element modeling. The concrete damage plasticity (CDP) model has been used to analyze the RC. The results illustrated a considerable development in load-bearing capacity but also a noticeable reduction in ductility. The study also assesses these qualities for several modes of strengthening and suggests the most effective mode of strengthening. Using FRP in flexural zone and FRP with 45-degree oriented fibers in shear zone of joint showed the most significant change in behavior.

Keywords: HSC, beam-column connection, Fiber Reinforcement Polymer, FRP, Finite Element Modeling, FEM

Procedia PDF Downloads 159
7091 Pushover Analysis of a Typical Bridge Built in Central Zone of Mexico

Authors: Arturo Galvan, Jatziri Y. Moreno-Martinez, Daniel Arroyo-Montoya, Jose M. Gutierrez-Villalobos

Abstract:

Bridges are one of the most seismically vulnerable structures on highway transportation systems. The general process for assessing the seismic vulnerability of a bridge involves the evaluation of its overall capacity and demand. One of the most common procedures to obtain this capacity is by means of pushover analysis of the structure. Typically, the bridge capacity is assessed using non-linear static methods or non-linear dynamic analyses. The non-linear dynamic approaches use step by step numerical solutions for assessing the capacity with the consuming computer time inconvenience. In this study, a nonlinear static analysis (‘pushover analysis’) was performed to predict the collapse mechanism of a typical bridge built in the central zone of Mexico (Celaya, Guanajuato). The bridge superstructure consists of three simple supported spans with a total length of 76 m: 22 m of the length of extreme spans and 32 m of length of the central span. The deck width is of 14 m and the concrete slab depth is of 18 cm. The bridge is built by means of frames of five piers with hollow box-shaped sections. The dimensions of these piers are 7.05 m height and 1.20 m diameter. The numerical model was created using a commercial software considering linear and non-linear elements. In all cases, the piers were represented by frame type elements with geometrical properties obtained from the structural project and construction drawings of the bridge. The deck was modeled with a mesh of rectangular thin shell (plate bending and stretching) finite elements. The moment-curvature analysis was performed for the sections of the piers of the bridge considering in each pier the effect of confined concrete and its reinforcing steel. In this way, plastic hinges were defined on the base of the piers to carry out the pushover analysis. In addition, time history analyses were performed using 19 accelerograms of real earthquakes that have been registered in Guanajuato. In this way, the displacements produced by the bridge were determined. Finally, pushover analysis was applied through the control of displacements in the piers to obtain the overall capacity of the bridge before the failure occurs. It was concluded that the lateral deformation of the piers due to a critical earthquake occurred in this zone is almost imperceptible due to the geometry and reinforcement demanded by the current design standards and compared to its displacement capacity, they were excessive. According to the analysis, it was found that the frames built with five piers increase the rigidity in the transverse direction of the bridge. Hence it is proposed to reduce these frames of five piers to three piers, maintaining the same geometrical characteristics and the same reinforcement in each pier. Also, the mechanical properties of materials (concrete and reinforcing steel) were maintained. Once a pushover analysis was performed considering this configuration, it was concluded that the bridge would continue having a “correct” seismic behavior, at least for the 19 accelerograms considered in this study. In this way, costs in material, construction, time and labor would be reduced in this study case.

Keywords: collapse mechanism, moment-curvature analysis, overall capacity, push-over analysis

Procedia PDF Downloads 153
7090 Velocity Distribution in Density Currents Flowing over Rough Beds

Authors: Reza Nasrollahpour, Mohamad Hidayat Bin Jamal, Zulhilmi Bin Ismail

Abstract:

Density currents are generated when the fluid of one density is released into another fluid with a different density. These currents occur in a variety of natural and man-made environments, and this emphasises the importance of studying them. In most practical cases, the density currents flow over the surfaces which are not plane; however, there have been limited investigations in this regard. This study uses laboratory experiments to analyse the influence of bottom roughness on the velocity distribution within these dense underflows. The currents are analysed over a plane surface and three different configurations of beam-roughened beds. The velocity profiles are collected using Acoustic Doppler Velocimetry technique, and the distribution of velocity within these currents is formulated for the tested beds. The results indicate that the empirical power and Gaussian relations can describe the velocity distribution in the inner and outer regions of the profiles, respectively. Moreover, it is found that the bottom roughness is the primary controlling parameter in the inner region.

Keywords: density currents, velocity profiles, Acoustic Doppler Velocimeter, bed roughness

Procedia PDF Downloads 186
7089 The Collaboration between Resident and Non-resident Patent Applicants as a Strategy to Accelerate Technological Advance in Developing Nations

Authors: Hugo Rodríguez

Abstract:

Migrations of researchers, scientists, and inventors are a widespread phenomenon in modern times. In some cases, migrants stay linked to research groups in their countries of origin, either out of their own conviction or because of government policies. We examine different linear models of technological development (using the Ordinary Least Squares (OLS) technique) in eight selected countries and find that the collaborations between resident and nonresident patent applicants correlate with different levels of performance of the technological policies in three different scenarios. Therefore, the reinforcement of that link must be considered a powerful tool for technological development.

Keywords: development, collaboration, patents, technology

Procedia PDF Downloads 127
7088 Deep Reinforcement Learning Model for Autonomous Driving

Authors: Boumaraf Malak

Abstract:

The development of intelligent transportation systems (ITS) and artificial intelligence (AI) are spurring us to pave the way for the widespread adoption of autonomous vehicles (AVs). This is open again opportunities for smart roads, smart traffic safety, and mobility comfort. A highly intelligent decision-making system is essential for autonomous driving around dense, dynamic objects. It must be able to handle complex road geometry and topology, as well as complex multiagent interactions, and closely follow higher-level commands such as routing information. Autonomous vehicles have become a very hot research topic in recent years due to their significant ability to reduce traffic accidents and personal injuries. Using new artificial intelligence-based technologies handles important functions in scene understanding, motion planning, decision making, vehicle control, social behavior, and communication for AV. This paper focuses only on deep reinforcement learning-based methods; it does not include traditional (flat) planar techniques, which have been the subject of extensive research in the past because reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. The DRL algorithm used so far found solutions to the four main problems of autonomous driving; in our paper, we highlight the challenges and point to possible future research directions.

Keywords: deep reinforcement learning, autonomous driving, deep deterministic policy gradient, deep Q-learning

Procedia PDF Downloads 85
7087 Multiple Relaxation Times in the Gibbs Ensemble Monte Carlo Simulation of Phase Separation

Authors: Bina Kumari, Subir K. Sarkar, Pradipta Bandyopadhyay

Abstract:

The autocorrelation function of the density fluctuation is studied in each of the two phases in a Gibbs Ensemble Monte Carlo (GEMC) simulation of the problem of phase separation for a square well potential with various values of its range. We find that the normalized autocorrelation function is described very well as a linear combination of an exponential function with a time scale τ₂ and a stretched exponential function with a time scale τ₁ and an exponent α. Dependence of (α, τ₁, τ₂) on the parameters of the GEMC algorithm and the range of the square well potential is investigated and interpreted. We also analyse the issue of how to choose the parameters of the GEMC simulation optimally.

Keywords: autocorrelation function, density fluctuation, GEMC, simulation

Procedia PDF Downloads 191
7086 Studying the Influence of Stir Cast Parameters on Properties of Al6061/Al2O3 Composite

Authors: Anuj Suhag, Rahul Dayal

Abstract:

Aluminum matrix composites (AMCs) refer to the class of metal matrix composites that are lightweight but high performance aluminum centric material systems. The reinforcement in AMCs could be in the form of continuous/discontinuous fibers, whisker or particulates, in volume fractions. Properties of AMCs can be altered to the requirements of different industrial applications by suitable combinations of matrix, reinforcement and processing route. This work focuses on the fabrication of aluminum alloy (Al6061) matrix composites (AMCs) reinforced with 5 and 3 wt% Al2O3 particulates of 45µm using stir casting route. The aim of the present work is to investigate the effects of process parameters, determined by design of experiments, on microhardness, microstructure, Charpy impact strength, surface roughness and tensile properties of the AMC.

Keywords: aluminium matrix composite, Charpy impact strength test, composite materials, matrix, metal matrix composite, surface roughness, reinforcement

Procedia PDF Downloads 657
7085 Conscription or Constriction: Perception of Students on the Reinforcement of Compulsory Military Service

Authors: Krista Mae F. Ramos, Lance Micaiah C. Dauz, Gylza Nicole D. Bautista, Rua R. Galang, Jeric Xyrus G. Karganilla

Abstract:

With the recent proclamation of the possible reinforcement of Compulsory Military Service in the Philippines, debates and societal talks rose and circulated as opinions and perceptions regarding the topic continue to clash. This study aims to determine the perception of the youth on its reimplementation and identify various advantages and disadvantages based on their perspective. The responses were gathered through a virtual call interview, underwent the process of thematization, and were categorized into different themes. Results reflect that the students perceive compulsory military service as a necessity for national defense but requires a long time that can hinder their education and needs a strong foundation to be implemented and sustained. The participants acknowledged that the practice would instill discipline, patriotism, and nationalism, develop an individual’s physical abilities, provide skills and knowledge and improve a person’s self-defense. However, there are also concerns regarding the prominent military shaping and abuse, their loss of freedom of choice, and the chances of health deterioration.

Keywords: compulsory, military, service, reinforcement, perception

Procedia PDF Downloads 170
7084 Deep Reinforcement Learning Approach for Optimal Control of Industrial Smart Grids

Authors: Niklas Panten, Eberhard Abele

Abstract:

This paper presents a novel approach for real-time and near-optimal control of industrial smart grids by deep reinforcement learning (DRL). To achieve highly energy-efficient factory systems, the energetic linkage of machines, technical building equipment and the building itself is desirable. However, the increased complexity of the interacting sub-systems, multiple time-variant target values and stochastic influences by the production environment, weather and energy markets make it difficult to efficiently control the energy production, storage and consumption in the hybrid industrial smart grids. The studied deep reinforcement learning approach allows to explore the solution space for proper control policies which minimize a cost function. The deep neural network of the DRL agent is based on a multilayer perceptron (MLP), Long Short-Term Memory (LSTM) and convolutional layers. The agent is trained within multiple Modelica-based factory simulation environments by the Advantage Actor Critic algorithm (A2C). The DRL controller is evaluated by means of the simulation and then compared to a conventional, rule-based approach. Finally, the results indicate that the DRL approach is able to improve the control performance and significantly reduce energy respectively operating costs of industrial smart grids.

Keywords: industrial smart grids, energy efficiency, deep reinforcement learning, optimal control

Procedia PDF Downloads 196
7083 Personalized Email Marketing Strategy: A Reinforcement Learning Approach

Authors: Lei Zhang, Tingting Xu, Jun He, Zhenyu Yan

Abstract:

Email marketing is one of the most important segments of online marketing. It has been proved to be the most effective way to acquire and retain customers. The email content is vital to customers. Different customers may have different familiarity with a product, so a successful marketing strategy must personalize email content based on individual customers’ product affinity. In this study, we build our personalized email marketing strategy with three types of emails: nurture, promotion, and conversion. Each type of email has a different influence on customers. We investigate this difference by analyzing customers’ open rates, click rates and opt-out rates. Feature importance from response models is also analyzed. The goal of the marketing strategy is to improve the click rate on conversion-type emails. To build the personalized strategy, we formulate the problem as a reinforcement learning problem and adopt a Q-learning algorithm with variations. The simulation results show that our model-based strategy outperforms the current marketer’s strategy.

Keywords: email marketing, email content, reinforcement learning, machine learning, Q-learning

Procedia PDF Downloads 195