Search results for: hidden models of Markov (HMM)
7111 The Grit in the Glamour: A Qualitative Study of the Well-Being of Fashion Models
Authors: Emily Fortune Super, Ameerah Khadaroo, Aurore Bardey
Abstract:
Fashion models are often assumed to have a glamorous job with limited consideration for their well-being. This study aims to assess the well-being of models through semi-structured interviews with six professional fashion models and six industry professionals. Thematic analysis revealed that although models experienced improved self-confidence, they also reported heightened anxiety levels, body image issues, and the negative influence of modelling on their self-esteem. By contrast, industry professionals reported no or minimum concerns about anxious behaviours or the general well-being of fashion models. Being resilient as a model was perceived as an essential attribute to have by both models and industry professionals as they face recurrent rejection in this industry. These results demonstrate a significant gap in the current understanding of the well-being of fashion models between industry professionals and the models themselves. Findings imply that there is an inherent need for change in the modelling industry to promote and enhance their well-being.Keywords: body image, fashion industry, modelling, well-being
Procedia PDF Downloads 1737110 Optimal Bayesian Chart for Controlling Expected Number of Defects in Production Processes
Abstract:
In this paper, we develop an optimal Bayesian chart to control the expected number of defects per inspection unit in production processes with long production runs. We formulate this control problem in the optimal stopping framework. The objective is to determine the optimal stopping rule minimizing the long-run expected average cost per unit time considering partial information obtained from the process sampling at regular epochs. We prove the optimality of the control limit policy, i.e., the process is stopped and the search for assignable causes is initiated when the posterior probability that the process is out of control exceeds a control limit. An algorithm in the semi-Markov decision process framework is developed to calculate the optimal control limit and the corresponding average cost. Numerical examples are presented to illustrate the developed optimal control chart and to compare it with the traditional u-chart.Keywords: Bayesian u-chart, economic design, optimal stopping, semi-Markov decision process, statistical process control
Procedia PDF Downloads 5737109 Performance Modeling and Availability Analysis of Yarn Dyeing System of a Textile Industry
Authors: P. C. Tewari, Rajiv Kumar, Dinesh Khanduja
Abstract:
This paper discusses the performance modeling and availability analysis of Yarn Dyeing System of a Textile Industry. The Textile Industry is a complex and repairable engineering system. Yarn Dyeing System of Textile Industry consists of five subsystems arranged in series configuration. For performance modeling and analysis of availability, a performance evaluating model has been developed with the help of mathematical formulation based on Markov-Birth-Death Process. The differential equations have been developed on the basis of Probabilistic Approach using a Transition Diagram. These equations have further been solved using normalizing condition in order to develop the steady state availability, a performance measure of the system concerned. The system performance has been further analyzed with the help of decision matrices. These matrices provide various availability levels for different combinations of failure and repair rates for various subsystems. The findings of this paper are, therefore, considered to be useful for the analysis of availability and determination of the best possible maintenance strategies which can be implemented in future to enhance the system performance.Keywords: performance modeling, markov process, steady state availability, availability analysis
Procedia PDF Downloads 3377108 Stability Analysis of Green Coffee Export Markets of Ethiopia: Markov-Chain Analysis
Authors: Gabriel Woldu, Maria Sassi
Abstract:
Coffee performs a pivotal role in Ethiopia's GDP, revenue, employment, domestic demand, and export earnings. Ethiopia's coffee production and exports show high variability in the amount of production and export earnings. Despite being the continent's fifth-largest coffee producer, Ethiopia has not developed its ability to shine as a major exporter in the globe's green coffee exports. Ethiopian coffee exports were not stable and had high volume and earnings fluctuations. The main aim of this study was to analyze the dynamics of the export of coffee variation to different importing nations using a first-order Markov Chain model. 14 years of time-series data has been used to examine the direction and structural change in the export of coffee. A compound annual growth rate (CAGR) was used to determine the annual growth rate in the coffee export quantity, value, and per-unit price over the study period. The major export markets for Ethiopian coffee were Germany, Japan, and the USA, which were more stable, while countries such as France, Italy, Belgium, and Saudi Arabia were less stable and had low retention rates for Ethiopian coffee. The study, therefore, recommends that Ethiopia should again revitalize its market to France, Italy, Belgium, and Saudi Arabia, as these countries are the major coffee-consuming countries in the world to boost its export stake to the global coffee markets in the future. In order to further enhance export stability, the Ethiopian Government and other stakeholders in the coffee sector should have to work on reducing the volatility of coffee output and exports in order to improve production and quality efficiency, so that stabilize markets as well as to make the product attractive and price competitive in the importing countries.Keywords: coffee, CAGR, Markov chain, direction of trade, Ethiopia
Procedia PDF Downloads 1397107 A Bayesian Multivariate Microeconometric Model for Estimation of Price Elasticity of Demand
Authors: Jefferson Hernandez, Juan Padilla
Abstract:
Estimation of price elasticity of demand is a valuable tool for the task of price settling. Given its relevance, it is an active field for microeconomic and statistical research. Price elasticity in the industry of oil and gas, in particular for fuels sold in gas stations, has shown to be a challenging topic given the market and state restrictions, and underlying correlations structures between the types of fuels sold by the same gas station. This paper explores the Lotka-Volterra model for the problem for price elasticity estimation in the context of fuels; in addition, it is introduced multivariate random effects with the purpose of dealing with errors, e.g., measurement or missing data errors. In order to model the underlying correlation structures, the Inverse-Wishart, Hierarchical Half-t and LKJ distributions are studied. Here, the Bayesian paradigm through Markov Chain Monte Carlo (MCMC) algorithms for model estimation is considered. Simulation studies covering a wide range of situations were performed in order to evaluate parameter recovery for the proposed models and algorithms. Results revealed that the proposed algorithms recovered quite well all model parameters. Also, a real data set analysis was performed in order to illustrate the proposed approach.Keywords: price elasticity, volume, correlation structures, Bayesian models
Procedia PDF Downloads 1667106 Computerized Scoring System: A Stethoscope to Understand Consumer's Emotion through His or Her Feedback
Authors: Chen Yang, Jun Hu, Ping Li, Lili Xue
Abstract:
Most companies pay careful attention to consumer feedback collection, so it is popular to find the ‘feedback’ button of all kinds of mobile apps. Yet it is much more changeling to analyze these feedback texts and to catch the true feelings of a consumer regarding either a problem or a complimentary of consumers who hands out the feedback. Especially to the Chinese content, it is possible that; in one context the Chinese feedback expresses positive feedback, but in the other context, the same Chinese feedback may be a negative one. For example, in Chinese, the feedback 'operating with loudness' works well with both refrigerator and stereo system. Apparently, this feedback towards a refrigerator shows negative feedback; however, the same feedback is positive towards a stereo system. By introducing Bradley, M. and Lang, P.'s Affective Norms for English Text (ANET) theory and Bucci W.’s Referential Activity (RA) theory, we, usability researchers at Pingan, are able to decipher the feedback and to find the hidden feelings behind the content. We subtract 2 disciplines ‘valence’ and ‘dominance’ out of 3 of ANET and 2 disciplines ‘concreteness’ and ‘specificity’ out of 4 of RA to organize our own rating system with a scale of 1 to 5 points. This rating system enables us to judge the feelings/emotion behind each feedback, and it works well with both single word/phrase and a whole paragraph. The result of the rating reflects the strength of the feeling/emotion of the consumer when he/she is typing the feedback. In our daily work, we first require a consumer to answer the net promoter score (NPS) before writing the feedback, so we can determine the feedback is positive or negative. Secondly, we code the feedback content according to company problematic list, which contains 200 problematic items. In this way, we are able to collect the data that how many feedbacks left by the consumer belong to one typical problem. Thirdly, we rate each feedback based on the rating system mentioned above to illustrate the strength of the feeling/emotion when our consumer writes the feedback. In this way, we actually obtain two kinds of data 1) the portion, which means how many feedbacks are ascribed into one problematic item and 2) the severity, how strong the negative feeling/emotion is when the consumer is writing this feedback. By crossing these two, and introducing the portion into X-axis and severity into Y-axis, we are able to find which typical problem gets the high score in both portion and severity. The higher the score of a problem has, the more urgent a problem is supposed to be solved as it means more people write stronger negative feelings in feedbacks regarding this problem. Moreover, by introducing hidden Markov model to program our rating system, we are able to computerize the scoring system and are able to process thousands of feedback in a short period of time, which is efficient and accurate enough for the industrial purpose.Keywords: computerized scoring system, feeling/emotion of consumer feedback, referential activity, text mining
Procedia PDF Downloads 1777105 Algorithms Inspired from Human Behavior Applied to Optimization of a Complex Process
Authors: S. Curteanu, F. Leon, M. Gavrilescu, S. A. Floria
Abstract:
Optimization algorithms inspired from human behavior were applied in this approach, associated with neural networks models. The algorithms belong to human behaviors of learning and cooperation and human competitive behavior classes. For the first class, the main strategies include: random learning, individual learning, and social learning, and the selected algorithms are: simplified human learning optimization (SHLO), social learning optimization (SLO), and teaching-learning based optimization (TLBO). For the second class, the concept of learning is associated with competitiveness, and the selected algorithms are sports-inspired algorithms (with Football Game Algorithm, FGA and Volleyball Premier League, VPL) and Imperialist Competitive Algorithm (ICA). A real process, the synthesis of polyacrylamide-based multicomponent hydrogels, where some parameters are difficult to obtain experimentally, is considered as a case study. Reaction yield and swelling degree are predicted as a function of reaction conditions (acrylamide concentration, initiator concentration, crosslinking agent concentration, temperature, reaction time, and amount of inclusion polymer, which could be starch, poly(vinyl alcohol) or gelatin). The experimental results contain 175 data. Artificial neural networks are obtained in optimal form with biologically inspired algorithm; the optimization being perform at two level: structural and parametric. Feedforward neural networks with one or two hidden layers and no more than 25 neurons in intermediate layers were obtained with values of correlation coefficient in the validation phase over 0.90. The best results were obtained with TLBO algorithm, correlation coefficient being 0.94 for an MLP(6:9:20:2) – a feedforward neural network with two hidden layers and 9 and 20, respectively, intermediate neurons. Good results obtained prove the efficiency of the optimization algorithms. More than the good results, what is important in this approach is the simulation methodology, including neural networks and optimization biologically inspired algorithms, which provide satisfactory results. In addition, the methodology developed in this approach is general and has flexibility so that it can be easily adapted to other processes in association with different types of models.Keywords: artificial neural networks, human behaviors of learning and cooperation, human competitive behavior, optimization algorithms
Procedia PDF Downloads 1097104 Identifying the Hidden Curriculum Components in the Nursing Education
Authors: Alice Khachian, Shoaleh Bigdeli, Azita Shoghie, Leili Borimnejad
Abstract:
Background and aim: The hidden curriculum is crucial in nursing education and can determine professionalism and professional competence. It has a significant effect on their moral performance in relation to patients. The present study was conducted with the aim of identifying the hidden curriculum components in the nursing and midwifery faculty. Methodology: The ethnographic study was conducted over two years using the Spradley method in one of the nursing schools located in Tehran. In this focused ethnographic research, the approach of Lincoln and Goba, i.e., transferability, confirmability, and dependability, was used. To increase the validity of the data, they were collected from different sources, such as participatory observation, formal and informal interviews, and document review. Two hundred days of participatory observation, fifty informal interviews, and fifteen formal interviews from the maximum opportunities and conditions available to obtain multiple and multilateral information added to the validity of the data. Due to the situation of COVID, some interviews were conducted virtually, and the activity of professors and students in the virtual space was also monitored. Findings: The components of the hidden curriculum of the faculty are: the atmosphere (physical environment, organizational structure, rules and regulations, hospital environment), the interaction between activists, and teaching-learning activities, which ultimately lead to “A disconnection between goals, speech, behavior, and result” had revealed. Conclusion: The mutual effects of the atmosphere and various actors and activities on the process of student development, since the students have the most contact with their peers first, which leads to the most learning, and secondly with the teachers. Clinicians who have close and person-to-person contact with students can have very important effects on students. Students who meet capable and satisfied professors on their way become interested in their field and hope for their future by following the mentor of these professors. On the other hand, weak and dissatisfied professors lead students to feel abandoned, and by forming a colony of peers with different backgrounds, they distort the personality of a group of students and move away from family values, which necessitates a change in some cultural practices at the faculty level.Keywords: hidden curriculum, nursing education, ethnography, nursing
Procedia PDF Downloads 1097103 A Watermarking Signature Scheme with Hidden Watermarks and Constraint Functions in the Symmetric Key Setting
Authors: Yanmin Zhao, Siu Ming Yiu
Abstract:
To claim the ownership for an executable program is a non-trivial task. An emerging direction is to add a watermark to the program such that the watermarked program preserves the original program’s functionality and removing the watermark would heavily destroy the functionality of the watermarked program. In this paper, the first watermarking signature scheme with the watermark and the constraint function hidden in the symmetric key setting is constructed. The scheme uses well-known techniques of lattice trapdoors and a lattice evaluation. The watermarking signature scheme is unforgeable under the Short Integer Solution (SIS) assumption and satisfies other security requirements such as the unremovability security property.Keywords: short integer solution (SIS) problem, symmetric-key setting, watermarking schemes, watermarked signatures
Procedia PDF Downloads 1337102 AutoML: Comprehensive Review and Application to Engineering Datasets
Authors: Parsa Mahdavi, M. Amin Hariri-Ardebili
Abstract:
The development of accurate machine learning and deep learning models traditionally demands hands-on expertise and a solid background to fine-tune hyperparameters. With the continuous expansion of datasets in various scientific and engineering domains, researchers increasingly turn to machine learning methods to unveil hidden insights that may elude classic regression techniques. This surge in adoption raises concerns about the adequacy of the resultant meta-models and, consequently, the interpretation of the findings. In response to these challenges, automated machine learning (AutoML) emerges as a promising solution, aiming to construct machine learning models with minimal intervention or guidance from human experts. AutoML encompasses crucial stages such as data preparation, feature engineering, hyperparameter optimization, and neural architecture search. This paper provides a comprehensive overview of the principles underpinning AutoML, surveying several widely-used AutoML platforms. Additionally, the paper offers a glimpse into the application of AutoML on various engineering datasets. By comparing these results with those obtained through classical machine learning methods, the paper quantifies the uncertainties inherent in the application of a single ML model versus the holistic approach provided by AutoML. These examples showcase the efficacy of AutoML in extracting meaningful patterns and insights, emphasizing its potential to revolutionize the way we approach and analyze complex datasets.Keywords: automated machine learning, uncertainty, engineering dataset, regression
Procedia PDF Downloads 627101 Virtual Reality for Social Impact: Exploring the Potential of a 360-degree VR Documentary ‘The Hidden’ based on Bonded Laborers in India
Authors: Kannan Subramani, Twinkle Sara Joseph
Abstract:
Virtual Reality (VR) has emerged as a promising tool to create immersive experiences for social impact. This study examines the capacity of virtual reality (VR) as a means of creating social change. It does so by analyzing a 360-degree VR documentary called ‘The Hidden,’ which specifically addresses the problem of bonded labour in India. Bonded labour is a contemporary manifestation of slavery in which individuals are coerced into working to repay debts that can endure for many generations. The documentary seeks to enhance awareness and elicit empathy towards this matter. The study utilizes a combination of qualitative and quantitative methodologies to investigate the influence of ‘The Hidden’ on the audience's views and their inclination to combat bonded labour. A total of ninety-six individuals used Oculus Quest 2 VR headsets to watch the documentary and subsequently engaged in interviews to discuss their encounters. The data underwent analysis using linear regression to discover any noteworthy trends in the replies. The results indicate that virtual reality (VR) has the potential to greatly amplify viewers' emotional involvement and facilitate societal transformation by offering immersive, direct encounters with crucial social matters.Keywords: virtual reality, societal influence, indentured servitude, 360-degree virtual reality documentary, immersive media, societal transformation
Procedia PDF Downloads 127100 Metabolic Predictive Model for PMV Control Based on Deep Learning
Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon
Abstract:
In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.Keywords: deep learning, indoor quality, metabolism, predictive model
Procedia PDF Downloads 2587099 Vulnerability Assessment of Healthcare Interdependent Critical Infrastructure Coloured Petri Net Model
Authors: N. Nivedita, S. Durbha
Abstract:
Critical Infrastructure (CI) consists of services and technological networks such as healthcare, transport, water supply, electricity supply, information technology etc. These systems are necessary for the well-being and to maintain effective functioning of society. Critical Infrastructures can be represented as nodes in a network where they are connected through a set of links depicting the logical relationship among them; these nodes are interdependent on each other and interact with each at other at various levels, such that the state of each infrastructure influences or is correlated to the state of another. Disruption in the service of one infrastructure nodes of the network during a disaster would lead to cascading and escalating disruptions across other infrastructures nodes in the network. The operation of Healthcare Infrastructure is one such Critical Infrastructure that depends upon a complex interdependent network of other Critical Infrastructure, and during disasters it is very vital for the Healthcare Infrastructure to be protected, accessible and prepared for a mass casualty. To reduce the consequences of a disaster on the Critical Infrastructure and to ensure a resilient Critical Health Infrastructure network, knowledge, understanding, modeling, and analyzing the inter-dependencies between the infrastructures is required. The paper would present inter-dependencies related to Healthcare Critical Infrastructure based on Hierarchical Coloured Petri Nets modeling approach, given a flood scenario as the disaster which would disrupt the infrastructure nodes. The model properties are being analyzed for the various state changes which occur when there is a disruption or damage to any of the Critical Infrastructure. The failure probabilities for the failure risk of interconnected systems are calculated by deriving a reachability graph, which is later mapped to a Markov chain. By analytically solving and analyzing the Markov chain, the overall vulnerability of the Healthcare CI HCPN model is demonstrated. The entire model would be integrated with Geographic information-based decision support system to visualize the dynamic behavior of the interdependency of the Healthcare and related CI network in a geographically based environment.Keywords: critical infrastructure interdependency, hierarchical coloured petrinet, healthcare critical infrastructure, Petri Nets, Markov chain
Procedia PDF Downloads 5307098 Real-Time Gesture Recognition System Using Microsoft Kinect
Authors: Ankita Wadhawan, Parteek Kumar, Umesh Kumar
Abstract:
Gesture is any body movement that expresses some attitude or any sentiment. Gestures as a sign language are used by deaf people for conveying messages which helps in eliminating the communication barrier between deaf people and normal persons. Nowadays, everybody is using mobile phone and computer as a very important gadget in their life. But there are some physically challenged people who are blind/deaf and the use of mobile phone or computer like device is very difficult for them. So, there is an immense need of a system which works on body gesture or sign language as input. In this research, Microsoft Kinect Sensor, SDK V2 and Hidden Markov Toolkit (HTK) are used to recognize the object, motion of object and human body joints through Touch less NUI (Natural User Interface) in real-time. The depth data collected from Microsoft Kinect has been used to recognize gestures of Indian Sign Language (ISL). The recorded clips are analyzed using depth, IR and skeletal data at different angles and positions. The proposed system has an average accuracy of 85%. The developed Touch less NUI provides an interface to recognize gestures and controls the cursor and click operation in computer just by waving hand gesture. This research will help deaf people to make use of mobile phones, computers and socialize among other persons in the society.Keywords: gesture recognition, Indian sign language, Microsoft Kinect, natural user interface, sign language
Procedia PDF Downloads 3067097 Fast Bayesian Inference of Multivariate Block-Nearest Neighbor Gaussian Process (NNGP) Models for Large Data
Authors: Carlos Gonzales, Zaida Quiroz, Marcos Prates
Abstract:
Several spatial variables collected at the same location that share a common spatial distribution can be modeled simultaneously through a multivariate geostatistical model that takes into account the correlation between these variables and the spatial autocorrelation. The main goal of this model is to perform spatial prediction of these variables in the region of study. Here we focus on a geostatistical multivariate formulation that relies on sharing common spatial random effect terms. In particular, the first response variable can be modeled by a mean that incorporates a shared random spatial effect, while the other response variables depend on this shared spatial term, in addition to specific random spatial effects. Each spatial random effect is defined through a Gaussian process with a valid covariance function, but in order to improve the computational efficiency when the data are large, each Gaussian process is approximated to a Gaussian random Markov field (GRMF), specifically to the block nearest neighbor Gaussian process (Block-NNGP). This approach involves dividing the spatial domain into several dependent blocks under certain constraints, where the cross blocks allow capturing the spatial dependence on a large scale, while each individual block captures the spatial dependence on a smaller scale. The multivariate geostatistical model belongs to the class of Latent Gaussian Models; thus, to achieve fast Bayesian inference, it is used the integrated nested Laplace approximation (INLA) method. The good performance of the proposed model is shown through simulations and applications for massive data.Keywords: Block-NNGP, geostatistics, gaussian process, GRMF, INLA, multivariate models.
Procedia PDF Downloads 987096 A Flexible Bayesian State-Space Modelling for Population Dynamics of Wildlife and Livestock Populations
Authors: Sabyasachi Mukhopadhyay, Joseph Ogutu, Hans-Peter Piepho
Abstract:
We aim to model dynamics of wildlife or pastoral livestock population for understanding of their population change and hence for wildlife conservation and promoting human welfare. The study is motivated by an age-sex structured population counts in different regions of Serengeti-Mara during the period 1989-2003. Developing reliable and realistic models for population dynamics of large herbivore population can be a very complex and challenging exercise. However, the Bayesian statistical domain offers some flexible computational methods that enable the development and efficient implementation of complex population dynamics models. In this work, we have used a novel Bayesian state-space model to analyse the dynamics of topi and hartebeest populations in the Serengeti-Mara Ecosystem of East Africa. The state-space model involves survival probabilities of the animals which further depend on various factors like monthly rainfall, size of habitat, etc. that cause recent declines in numbers of the herbivore populations and potentially threaten their future population viability in the ecosystem. Our study shows that seasonal rainfall is the most important factors shaping the population size of animals and indicates the age-class which most severely affected by any change in weather conditions.Keywords: bayesian state-space model, Markov Chain Monte Carlo, population dynamics, conservation
Procedia PDF Downloads 2117095 Lean Models Classification: Towards a Holistic View
Authors: Y. Tiamaz, N. Souissi
Abstract:
The purpose of this paper is to present a classification of Lean models which aims to capture all the concepts related to this approach and thus facilitate its implementation. This classification allows the identification of the most relevant models according to several dimensions. From this perspective, we present a review and an analysis of Lean models literature and we propose dimensions for the classification of the current proposals while respecting among others the axes of the Lean approach, the maturity of the models as well as their application domains. This classification allowed us to conclude that researchers essentially consider the Lean approach as a toolbox also they design their models to solve problems related to a specific environment. Since Lean approach is no longer intended only for the automotive sector where it was invented, but to all fields (IT, Hospital, ...), we consider that this approach requires a generic model that is capable of being implemented in all areas.Keywords: lean approach, lean models, classification, dimensions, holistic view
Procedia PDF Downloads 4357094 The Effect of Particle Porosity in Mixed Matrix Membrane Permeation Models
Authors: Z. Sadeghi, M. R. Omidkhah, M. E. Masoomi
Abstract:
The purpose of this paper is to examine gas transport behavior of mixed matrix membranes (MMMs) combined with porous particles. Main existing models are categorized in two main groups; two-phase (ideal contact) and three-phase (non-ideal contact). A new coefficient, J, was obtained to express equations for estimating effect of the particle porosity in two-phase and three-phase models. Modified models evaluates with existing models and experimental data using Matlab software. Comparison of gas permeability of proposed modified models with existing models in different MMMs shows a better prediction of gas permeability in MMMs.Keywords: mixed matrix membrane, permeation models, porous particles, porosity
Procedia PDF Downloads 3857093 Node Insertion in Coalescence Hidden-Variable Fractal Interpolation Surface
Authors: Srijanani Anurag Prasad
Abstract:
The Coalescence Hidden-variable Fractal Interpolation Surface (CHFIS) was built by combining interpolation data from the Iterated Function System (IFS). The interpolation data in a CHFIS comprises a row and/or column of uncertain values when a single point is entered. Alternatively, a row and/or column of additional points are placed in the given interpolation data to demonstrate the node added CHFIS. There are three techniques for inserting new points that correspond to the row and/or column of nodes inserted, and each method is further classified into four types based on the values of the inserted nodes. As a result, numerous forms of node insertion can be found in a CHFIS.Keywords: fractal, interpolation, iterated function system, coalescence, node insertion, knot insertion
Procedia PDF Downloads 1017092 Joint Modeling of Longitudinal and Time-To-Event Data with Latent Variable
Authors: Xinyuan Y. Song, Kai Kang
Abstract:
Joint models for analyzing longitudinal and survival data are widely used to investigate the relationship between a failure time process and time-variant predictors. A common assumption in conventional joint models in the survival analysis literature is that all predictors are observable. However, this assumption may not always be supported because unobservable traits, namely, latent variables, which are indirectly observable and should be measured through multiple observed variables, are commonly encountered in the medical, behavioral, and financial research settings. In this study, a joint modeling approach to deal with this feature is proposed. The proposed model comprises three parts. The first part is a dynamic factor analysis model for characterizing latent variables through multiple observed indicators over time. The second part is a random coefficient trajectory model for describing the individual trajectories of latent variables. The third part is a proportional hazard model for examining the effects of time-invariant predictors and the longitudinal trajectories of time-variant latent risk factors on hazards of interest. A Bayesian approach coupled with a Markov chain Monte Carlo algorithm to perform statistical inference. An application of the proposed joint model to a study on the Alzheimer's disease neuroimaging Initiative is presented.Keywords: Bayesian analysis, joint model, longitudinal data, time-to-event data
Procedia PDF Downloads 1457091 A Survey of Feature-Based Steganalysis for JPEG Images
Authors: Syeda Mainaaz Unnisa, Deepa Suresh
Abstract:
Due to the increase in usage of public domain channels, such as the internet, and communication technology, there is a concern about the protection of intellectual property and security threats. This interest has led to growth in researching and implementing techniques for information hiding. Steganography is the art and science of hiding information in a private manner such that its existence cannot be recognized. Communication using steganographic techniques makes not only the secret message but also the presence of hidden communication, invisible. Steganalysis is the art of detecting the presence of this hidden communication. Parallel to steganography, steganalysis is also gaining prominence, since the detection of hidden messages can prevent catastrophic security incidents from occurring. Steganalysis can also be incredibly helpful in identifying and revealing holes with the current steganographic techniques, which makes them vulnerable to attacks. Through the formulation of new effective steganalysis methods, further research to improve the resistance of tested steganography techniques can be developed. Feature-based steganalysis method for JPEG images calculates the features of an image using the L1 norm of the difference between a stego image and the calibrated version of the image. This calibration can help retrieve some of the parameters of the cover image, revealing the variations between the cover and stego image and enabling a more accurate detection. Applying this method to various steganographic schemes, experimental results were compared and evaluated to derive conclusions and principles for more protected JPEG steganography.Keywords: cover image, feature-based steganalysis, information hiding, steganalysis, steganography
Procedia PDF Downloads 2177090 Exploring Students’ Visual Conception of Matter and Its Implications to Teaching and Learning Chemistry
Authors: Allen A. Espinosa, Arlyne C. Marasigan, Janir T. Datukan
Abstract:
The study explored how students visualize the states and classifications of matter using scientific models. It also identified misconceptions of students in using scientific models. In general, high percentage of students was able to use scientific models correctly and only a little misconception was identified. From the result of the study, a teaching framework was formulated wherein scientific models should be employed in classroom instruction to visualize abstract concepts in chemistry and for better conceptual understanding.Keywords: visual conception, scientific models, mental models, states of matter, classification of matter
Procedia PDF Downloads 4027089 Human Action Recognition Using Wavelets of Derived Beta Distributions
Authors: Neziha Jaouedi, Noureddine Boujnah, Mohamed Salim Bouhlel
Abstract:
In the framework of human machine interaction systems enhancement, we focus throw this paper on human behavior analysis and action recognition. Human behavior is characterized by actions and reactions duality (movements, psychological modification, verbal and emotional expression). It’s worth noting that many information is hidden behind gesture, sudden motion points trajectories and speeds, many research works reconstructed an information retrieval issues. In our work we will focus on motion extraction, tracking and action recognition using wavelet network approaches. Our contribution uses an analysis of human subtraction by Gaussian Mixture Model (GMM) and body movement through trajectory models of motion constructed from kalman filter. These models allow to remove the noise using the extraction of the main motion features and constitute a stable base to identify the evolutions of human activity. Each modality is used to recognize a human action using wavelets of derived beta distributions approach. The proposed approach has been validated successfully on a subset of KTH and UCF sports database.Keywords: feautures extraction, human action classifier, wavelet neural network, beta wavelet
Procedia PDF Downloads 4117088 The Cost of Non-Communicable Diseases in the European Union: A Projection towards the Future
Authors: Desiree Vandenberghe, Johan Albrecht
Abstract:
Non-communicable diseases (NCDs) are responsible for the vast majority of deaths in the European Union (EU) and represent a large share of total health care spending. A future increase in this health and financial burden is likely to be driven by population ageing, lifestyle changes and technological advances in medicine. Without adequate prevention measures, this burden can severely threaten population health and economic development. To tackle this challenge, a correct assessment of the current burden of NCDs is required, as well as a projection of potential increases of this burden. The contribution of this paper is to offer perspective on the evolution of the NCD burden towards the future and to give an indication of the potential of prevention policy. A Non-Homogenous, Semi-Markov model for the EU was constructed, which allowed for a projection of the cost burden for the four main NCDs (cancer, cardiovascular disease, chronic respiratory disease and diabetes mellitus) towards 2030 and 2050. This simulation is done based on multiple baseline scenarios that vary in demand and supply factors such as health status, population structure, and technological advances. Finally, in order to assess the potential of preventive measures to curb the cost explosion of NCDs, a simulation is executed which includes increased efforts for preventive health care measures. According to the Markov model, by 2030 and 2050, total costs (direct and indirect costs) in the EU could increase by 30.1% and 44.1% respectively, compared to 2015 levels. An ambitious prevention policy framework for NCDs will be required if the EU wants to meet this challenge of rising costs. To conclude, significant cost increases due to Non-Communicable Diseases are likely to occur due to demographic and lifestyle changes. Nevertheless, an ambitious prevention program throughout the EU can aid in making this cost burden manageable for future generations.Keywords: non-communicable diseases, preventive health care, health policy, Markov model, scenario analysis
Procedia PDF Downloads 1407087 Quantifying Spatiotemporal Patterns of Past and Future Urbanization Trends in El Paso, Texas and Their Impact on Electricity Consumption
Authors: Joanne Moyer
Abstract:
El Paso, Texas is a southwest border city that has experienced continuous growth within the last 15-years. Understanding the urban growth trends and patterns using data from the National Land Cover Database (NLCD) and landscape metrics, provides a quantitative description of growth. Past urban growth provided a basis to predict 2031 future land-use for El Paso using the CA-Markov model. As a consequence of growth, an increase in demand of resources follows. Using panel data analysis, an understanding of the relation between landscape metrics and electricity consumption is further analyzed. The studies’ findings indicate that past growth focused within three districts within the City of El Paso. The landscape metrics suggest as the city has grown, fragmentation has decreased. Alternatively, the landscape metrics for the projected 2031 land-use indicates possible fragmentation within one of these districts. Panel data suggests electricity consumption and mean patch area landscape metric are positively correlated. The study provides local decision makers to make informed decisions for policies and urban planning to ensure a future sustainable community.Keywords: landscape metrics, CA-Markov, El Paso, Texas, panel data
Procedia PDF Downloads 1447086 Preserving Privacy in Workflow Delegation Models
Authors: Noha Nagy, Hoda Mokhtar, Mohamed El Sherkawi
Abstract:
The popularity of workflow delegation models and the increasing number of workflow provenance-aware systems motivate the need for finding more strict delegation models. Such models combine different approaches for enhanced security and respecting workflow privacy. Although modern enterprises seek conformance to workflow constraints to ensure correctness of their work, these constraints pose a threat to security, because these constraints can be good seeds for attacking privacy even in secure models. This paper introduces a comprehensive Workflow Delegation Model (WFDM) that utilizes provenance and workflow constraints to prevent malicious delegate from attacking workflow privacy as well as extending the delegation functionalities. In addition, we argue the need for exploiting workflow constraints to improve workflow security models.Keywords: workflow delegation models, secure workflow, workflow privacy, workflow provenance
Procedia PDF Downloads 3327085 Cooperative Coevolution for Neuro-Evolution of Feed Forward Networks for Time Series Prediction Using Hidden Neuron Connections
Authors: Ravneil Nand
Abstract:
Cooperative coevolution uses problem decomposition methods to solve a larger problem. The problem decomposition deals with breaking down the larger problem into a number of smaller sub-problems depending on their method. Different problem decomposition methods have their own strengths and limitations depending on the neural network used and application problem. In this paper we are introducing a new problem decomposition method known as Hidden-Neuron Level Decomposition (HNL). The HNL method is competing with established problem decomposition method in time series prediction. The results show that the proposed approach has improved the results in some benchmark data sets when compared to the standalone method and has competitive results when compared to methods from literature.Keywords: cooperative coevaluation, feed forward network, problem decomposition, neuron, synapse
Procedia PDF Downloads 3387084 A Method to Saturation Modeling of Synchronous Machines in d-q Axes
Authors: Mohamed Arbi Khlifi, Badr M. Alshammari
Abstract:
This paper discusses the general methods to saturation in the steady-state, two axis (d & q) frame models of synchronous machines. In particular, the important role of the magnetic coupling between the d-q axes (cross-magnetizing phenomenon), is demonstrated. For that purpose, distinct methods of saturation modeling of dumper synchronous machine with cross-saturation are identified, and detailed models synthesis in d-q axes. A number of models are given in the final developed form. The procedure and the novel models are verified by a critical application to prove the validity of the method and the equivalence between all developed models is reported. Advantages of some of the models over the existing ones and their applicability are discussed.Keywords: cross-magnetizing, models synthesis, synchronous machine, saturated modeling, state-space vectors
Procedia PDF Downloads 4557083 The Determinants of Country Corruption: Unobserved Heterogeneity and Individual Choice- An empirical Application with Finite Mixture Models
Authors: Alessandra Marcelletti, Giovanni Trovato
Abstract:
Corruption in public offices is found to be the reflection of country-specific features, however, the exact magnitude and the statistical significance of its determinants effect has not yet been identified. The paper aims to propose an estimation method to measure the impact of country fundamentals on corruption, showing that covariates could differently affect the extent of corruption across countries. Thus, we exploit a model able to take into account different factors affecting the incentive to ask or to be asked for a bribe, coherently with the use of the Corruption Perception Index. We assume that discordant results achieved in literature may be explained by omitted hidden factors affecting the agents' decision process. Moreover, assuming homogeneous covariates effect may lead to unreliable conclusions since the country-specific environment is not accounted for. We apply a Finite Mixture Model with concomitant variables to 129 countries from 1995 to 2006, accounting for the impact of the initial conditions in the socio-economic structure on the corruption patterns. Our findings confirm the hypothesis of the decision process of accepting or asking for a bribe varies with specific country fundamental features.Keywords: Corruption, Finite Mixture Models, Concomitant Variables, Countries Classification
Procedia PDF Downloads 2657082 An Exploratory Study on Experiences of Menarche and Menstruation among Adolescent Girls
Authors: Bhawna Devi, Girishwar Misra, Rajni Sahni
Abstract:
Menarche and menstruation is a nearly universal experience in adolescent girls’ lives, yet based on several observations it has been found that it is rarely explicitly talked about, and remains poorly understood. By menarche, girls are likely to have been influenced not only by cultural stereotypes about menstruation, but also by information acquired through significant others. Their own expectations about menstruation are likely to influence their reports of menarcheal experience. The aim of this study is to examine how girls construct meaning around menarche and menstruation in social interactions and specific contexts along with conceptualized experiences which is ‘owned’ by individual girls. Twenty adolescent girls from New Delhi (India), between the ages of 12 to 19 years (mean age = 15.1) participated in the study. Semi-structured interviews were conducted to capture the nuances of menarche and menstrual experiences of these twenty adolescent girls. Thematic analysis was used to analyze the data. From the detailed analysis of transcribed data main themes that emerged were- Menarche: A Trammeled Sky to Fly, Menarche as Flashbulb Memory, Hidden Secret: Shame and Fear, Hallmark of Womanhood, Menarche as Illness. Therefore, the finding unfolds that menarche and menstruation were largely constructed as embarrassing, shameful and something to be hidden, specifically within the school context and in general when they are outside of their home. Menstruation was also constructed as illness that programmed ‘feeling of weaknesses’ into them. The production and perpetuation of gender-related difference narratives was also evident. Implications for individuals, as well as for the subjugation of girls and women, are discussed, and it is argued that current negative representations of, and practices in relation to, menarche and menstruation need to be challenged.Keywords: embarrassment, gender-related difference, hidden secret, illness, menarche and menstruation
Procedia PDF Downloads 146