Search results for: error estimates
2367 Automatic Speech Recognition Systems Performance Evaluation Using Word Error Rate Method
Authors: João Rato, Nuno Costa
Abstract:
The human verbal communication is a two-way process which requires a mutual understanding that will result in some considerations. This kind of communication, also called dialogue, besides the supposed human agents it can also be performed between human agents and machines. The interaction between Men and Machines, by means of a natural language, has an important role concerning the improvement of the communication between each other. Aiming at knowing the performance of some speech recognition systems, this document shows the results of the accomplished tests according to the Word Error Rate evaluation method. Besides that, it is also given a set of information linked to the systems of Man-Machine communication. After this work has been made, conclusions were drawn regarding the Speech Recognition Systems, among which it can be mentioned their poor performance concerning the voice interpretation in noisy environments.Keywords: automatic speech recognition, man-machine conversation, speech recognition, spoken dialogue systems, word error rate
Procedia PDF Downloads 3222366 Reliability and Validity of a Portable Inertial Sensor and Pressure Mat System for Measuring Dynamic Balance Parameters during Stepping
Authors: Emily Rowe
Abstract:
Introduction: Balance assessments can be used to help evaluate a person’s risk of falls, determine causes of balance deficits and inform intervention decisions. It is widely accepted that instrumented quantitative analysis can be more reliable and specific than semi-qualitative ordinal scales or itemised scoring methods. However, the uptake of quantitative methods is hindered by expense, lack of portability, and set-up requirements. During stepping, foot placement is actively coordinated with the body centre of mass (COM) kinematics during pre-initiation. Based on this, the potential to use COM velocity just prior to foot off and foot placement error as an outcome measure of dynamic balance is currently being explored using complex 3D motion capture. Inertial sensors and pressure mats might be more practical technologies for measuring these parameters in clinical settings. Objective: The aim of this study was to test the criterion validity and test-retest reliability of a synchronised inertial sensor and pressure mat-based approach to measure foot placement error and COM velocity while stepping. Methods: Trials were held with 15 healthy participants who each attended for two sessions. The trial task was to step onto one of 4 targets (2 for each foot) multiple times in a random, unpredictable order. The stepping target was cued using an auditory prompt and electroluminescent panel illumination. Data was collected using 3D motion capture and a combined inertial sensor-pressure mat system simultaneously in both sessions. To assess the reliability of each system, ICC estimates and their 95% confident intervals were calculated based on a mean-rating (k = 2), absolute-agreement, 2-way mixed-effects model. To test the criterion validity of the combined inertial sensor-pressure mat system against the motion capture system multi-factorial two-way repeated measures ANOVAs were carried out. Results: It was found that foot placement error was not reliably measured between sessions by either system (ICC 95% CIs; motion capture: 0 to >0.87 and pressure mat: <0.53 to >0.90). This could be due to genuine within-subject variability given the nature of the stepping task and brings into question the suitability of average foot placement error as an outcome measure. Additionally, results suggest the pressure mat is not a valid measure of this parameter since it was statistically significantly different from and much less precise than the motion capture system (p=0.003). The inertial sensor was found to be a moderately reliable (ICC 95% CIs >0.46 to >0.95) but not valid measure for anteroposterior and mediolateral COM velocities (AP velocity: p=0.000, ML velocity target 1 to 4: p=0.734, 0.001, 0.000 & 0.376). However, it is thought that with further development, the COM velocity measure validity could be improved. Possible options which could be investigated include whether there is an effect of inertial sensor placement with respect to pelvic marker placement or implementing more complex methods of data processing to manage inherent accelerometer and gyroscope limitations. Conclusion: The pressure mat is not a suitable alternative for measuring foot placement errors. The inertial sensors have the potential for measuring COM velocity; however, further development work is needed.Keywords: dynamic balance, inertial sensors, portable, pressure mat, reliability, stepping, validity, wearables
Procedia PDF Downloads 1532365 Statistical Tools for SFRA Diagnosis in Power Transformers
Authors: Rahul Srivastava, Priti Pundir, Y. R. Sood, Rajnish Shrivastava
Abstract:
For the interpretation of the signatures of sweep frequency response analysis(SFRA) of transformer different types of statistical techniques serves as an effective tool for doing either phase to phase comparison or sister unit comparison. In this paper with the discussion on SFRA several statistics techniques like cross correlation coefficient (CCF), root square error (RSQ), comparative standard deviation (CSD), Absolute difference, mean square error(MSE),Min-Max ratio(MM) are presented through several case studies. These methods require sample data size and spot frequencies of SFRA signatures that are being compared. The techniques used are based on power signal processing tools that can simplify result and limits can be created for the severity of the fault occurring in the transformer due to several short circuit forces or due to ageing. The advantages of using statistics techniques for analyzing of SFRA result are being indicated through several case studies and hence the results are obtained which determines the state of the transformer.Keywords: absolute difference (DABS), cross correlation coefficient (CCF), mean square error (MSE), min-max ratio (MM-ratio), root square error (RSQ), standard deviation (CSD), sweep frequency response analysis (SFRA)
Procedia PDF Downloads 6972364 There Is No Meaningful Opportunity in Meaningless Data: Why It Is Unconstitutional to Use Life Expectancy Tables in Post-Graham Sentences
Authors: Stacie Nelson Colling, Adele Cummings
Abstract:
The United States Supreme Court recently announced that it is unconstitutional to sentence a child to life without parole for non-homicide offenses, and that each child so situated must be afforded a meaningful opportunity for release from prison in his lifetime. The Court also declared that it is unconstitutional to impose a mandatory sentence of life without parole on a child for homicide offenses. Across the United States, attorneys and advocates continue to litigate issues surrounding the implementation of these legal principles. Some states have held that any sentence to a finite term of years, no matter how long, is not the same as ‘life’ and therefore does not violate the constitution. Other states have held that a sentence to a term of years that is less than the expected life of that particular child is not unconstitutional. In Colorado, the courts have routinely looked to life expectancy estimates from governmental organizations to determine how long a particular child is expected to live. They then compare that the date that the child is expected to be eligible for parole, and if the child is expected to still be living when he is eligible for parole, the sentence is deemed constitutional. This paper argues that it is inappropriate, reckless, unconstitutional and not scientifically sound to use such estimates in determining whether a child will have a meaningful opportunity for release from prison and life outside of prison before he dies. This paper argues that the opportunity for release must mean more than a probability that a child will be released before his death, and that it must include an opportunity for a meaningful life outside of prison (not just the opportunity to be released and then die on the outside). The paper further argues that life expectancy estimates cannot guide a court or a legislature in determining whether a sentence is or is not constitutional.Keywords: life without parole, life expectancy, juvenile sentencing, meaningful opportunity for release from prison
Procedia PDF Downloads 3952363 A Comparative Study of Various Control Methods for Rendezvous of a Satellite Couple
Authors: Hasan Basaran, Emre Unal
Abstract:
Formation flying of satellites is a mission that involves a relative position keeping of different satellites in the constellation. In this study, different control algorithms are compared with one another in terms of ΔV, velocity increment, and tracking error. Various control methods, covering continuous and impulsive approaches are implemented and tested for satellites flying in low Earth orbit. Feedback linearization, sliding mode control, and model predictive control are designed and compared with an impulsive feedback law, which is based on mean orbital elements. Feedback linearization and sliding mode control approaches have identical mathematical models that include second order Earth oblateness effects. The model predictive control, on the other hand, does not include any perturbations and assumes circular chief orbit. The comparison is done with 4 different initial errors and achieved with velocity increment, root mean square error, maximum steady state error, and settling time. It was observed that impulsive law consumed the least ΔV, while produced the highest maximum error in the steady state. The continuous control laws, however, consumed higher velocity increments and produced lower amounts of tracking errors. Finally, the inversely proportional relationship between tracking error and velocity increment was established.Keywords: chief-deputy satellites, feedback linearization, follower-leader satellites, formation flight, fuel consumption, model predictive control, rendezvous, sliding mode
Procedia PDF Downloads 1052362 Solar Radiation Studies for Islamabad, Pakistan
Authors: Sidra A. Shaikh, M. A. Ahmed, M. W. Akhtar
Abstract:
Global and diffuse solar radiation studies have been carried out for Islamabad (Lat: 330 43’ N, Long: 370 71’) to access the solar potential of the area using sunshine hour data. A detailed analysis of global solar radiation values measured using several methods is presented. These values are then compared with the NASA SSE model. The variation in direct and diffuse components of solar radiation is observed in summer and winter months for Islamabad along with the clearness index KT. The diffuse solar radiation is found maximum in the month of July. Direct and beam radiation is found to be high in the month of April to June. From the results it appears that with the exception of monsoon months, July and August, solar radiation for electricity generation can be utilized very efficiently throughout the year. Finally, the mean bias error (MBE), root mean square error (RMSE) and mean percent error (MPE) for global solar radiation are also presented.Keywords: solar potential, global and diffuse solar radiation, Islamabad, errors
Procedia PDF Downloads 4382361 Unit Root Tests Based On the Robust Estimator
Authors: Wararit Panichkitkosolkul
Abstract:
The unit root tests based on the robust estimator for the first-order autoregressive process are proposed and compared with the unit root tests based on the ordinary least squares (OLS) estimator. The percentiles of the null distributions of the unit root test are also reported. The empirical probabilities of Type I error and powers of the unit root tests are estimated via Monte Carlo simulation. Simulation results show that all unit root tests can control the probability of Type I error for all situations. The empirical power of the unit root tests based on the robust estimator are higher than the unit root tests based on the OLS estimator.
Keywords: autoregressive, ordinary least squares, type i error, power of the test, Monte Carlo simulation
Procedia PDF Downloads 2892360 Applications of Out-of-Sequence Thrust Movement for Earthquake Mitigation: A Review
Authors: Rajkumar Ghosh
Abstract:
The study presents an overview of the many uses and approaches for estimating out-of-sequence thrust movement in earthquake mitigation. The study investigates how knowing and forecasting thrust movement during seismic occurrences might assist to effective earthquake mitigation measures. The review begins by discussing out-of-sequence thrust movement and its importance in earthquake mitigation strategies. It explores how typical techniques of estimating thrust movement may not capture the full complexity of seismic occurrences and emphasizes the benefits of include out-of-sequence data in the analysis. A thorough review of existing research and studies on out-of-sequence thrust movement estimates for earthquake mitigation. The study demonstrates how to estimate out-of-sequence thrust movement using multiple data sources such as GPS measurements, satellite imagery, and seismic recordings. The study also examines the use of out-of-sequence thrust movement estimates in earthquake mitigation measures. It investigates how precise calculation of thrust movement may help improve structural design, analyse infrastructure risk, and develop early warning systems. The potential advantages of using out-of-sequence data in these applications to improve the efficiency of earthquake mitigation techniques. The difficulties and limits of estimating out-of-sequence thrust movement for earthquake mitigation. It addresses data quality difficulties, modelling uncertainties, and computational complications. To address these obstacles and increase the accuracy and reliability of out-of-sequence thrust movement estimates, the authors recommend topics for additional study and improvement. The study is a helpful resource for seismic monitoring and earthquake risk assessment researchers, engineers, and policymakers, supporting innovations in earthquake mitigation measures based on a better knowledge of thrust movement dynamics.Keywords: earthquake mitigation, out-of-sequence thrust, satellite imagery, seismic recordings, GPS measurements
Procedia PDF Downloads 862359 Quantification of Dispersion Effects in Arterial Spin Labelling Perfusion MRI
Authors: Rutej R. Mehta, Michael A. Chappell
Abstract:
Introduction: Arterial spin labelling (ASL) is an increasingly popular perfusion MRI technique, in which arterial blood water is magnetically labelled in the neck before flowing into the brain, providing a non-invasive measure of cerebral blood flow (CBF). The accuracy of ASL CBF measurements, however, is hampered by dispersion effects; the distortion of the ASL labelled bolus during its transit through the vasculature. In spite of this, the current recommended implementation of ASL – the white paper (Alsop et al., MRM, 73.1 (2015): 102-116) – does not account for dispersion, which leads to the introduction of errors in CBF. Given that the transport time from the labelling region to the tissue – the arterial transit time (ATT) – depends on the region of the brain and the condition of the patient, it is likely that these errors will also vary with the ATT. In this study, various dispersion models are assessed in comparison with the white paper (WP) formula for CBF quantification, enabling the errors introduced by the WP to be quantified. Additionally, this study examines the relationship between the errors associated with the WP and the ATT – and how this is influenced by dispersion. Methods: Data were simulated using the standard model for pseudo-continuous ASL, along with various dispersion models, and then quantified using the formula in the WP. The ATT was varied from 0.5s-1.3s, and the errors associated with noise artefacts were computed in order to define the concept of significant error. The instantaneous slope of the error was also computed as an indicator of the sensitivity of the error with fluctuations in ATT. Finally, a regression analysis was performed to obtain the mean error against ATT. Results: An error of 20.9% was found to be comparable to that introduced by typical measurement noise. The WP formula was shown to introduce errors exceeding 20.9% for ATTs beyond 1.25s even when dispersion effects were ignored. Using a Gaussian dispersion model, a mean error of 16% was introduced by using the WP, and a dispersion threshold of σ=0.6 was determined, beyond which the error was found to increase considerably with ATT. The mean error ranged from 44.5% to 73.5% when other physiologically plausible dispersion models were implemented, and the instantaneous slope varied from 35 to 75 as dispersion levels were varied. Conclusion: It has been shown that the WP quantification formula holds only within an ATT window of 0.5 to 1.25s, and that this window gets narrower as dispersion occurs. Provided that the dispersion levels fall below the threshold evaluated in this study, however, the WP can measure CBF with reasonable accuracy if dispersion is correctly modelled by the Gaussian model. However, substantial errors were observed with other common models for dispersion with dispersion levels similar to those that have been observed in literature.Keywords: arterial spin labelling, dispersion, MRI, perfusion
Procedia PDF Downloads 3722358 Optimizing Stormwater Sampling Design for Estimation of Pollutant Loads
Authors: Raja Umer Sajjad, Chang Hee Lee
Abstract:
Stormwater runoff is the leading contributor to pollution of receiving waters. In response, an efficient stormwater monitoring program is required to quantify and eventually reduce stormwater pollution. The overall goals of stormwater monitoring programs primarily include the identification of high-risk dischargers and the development of total maximum daily loads (TMDLs). The challenge in developing better monitoring program is to reduce the variability in flux estimates due to sampling errors; however, the success of monitoring program mainly depends on the accuracy of the estimates. Apart from sampling errors, manpower and budgetary constraints also influence the quality of the estimates. This study attempted to develop optimum stormwater monitoring design considering both cost and the quality of the estimated pollutants flux. Three years stormwater monitoring data (2012 – 2014) from a mix land use located within Geumhak watershed South Korea was evaluated. The regional climate is humid and precipitation is usually well distributed through the year. The investigation of a large number of water quality parameters is time-consuming and resource intensive. In order to identify a suite of easy-to-measure parameters to act as a surrogate, Principal Component Analysis (PCA) was applied. Means, standard deviations, coefficient of variation (CV) and other simple statistics were performed using multivariate statistical analysis software SPSS 22.0. The implication of sampling time on monitoring results, number of samples required during the storm event and impact of seasonal first flush were also identified. Based on the observations derived from the PCA biplot and the correlation matrix, total suspended solids (TSS) was identified as a potential surrogate for turbidity, total phosphorus and for heavy metals like lead, chromium, and copper whereas, Chemical Oxygen Demand (COD) was identified as surrogate for organic matter. The CV among different monitored water quality parameters were found higher (ranged from 3.8 to 15.5). It suggests that use of grab sampling design to estimate the mass emission rates in the study area can lead to errors due to large variability. TSS discharge load calculation error was found only 2 % with two different sample size approaches; i.e. 17 samples per storm event and equally distributed 6 samples per storm event. Both seasonal first flush and event first flush phenomena for most water quality parameters were observed in the study area. Samples taken at the initial stage of storm event generally overestimate the mass emissions; however, it was found that collecting a grab sample after initial hour of storm event more closely approximates the mean concentration of the event. It was concluded that site and regional climate specific interventions can be made to optimize the stormwater monitoring program in order to make it more effective and economical.Keywords: first flush, pollutant load, stormwater monitoring, surrogate parameters
Procedia PDF Downloads 2412357 Parameter Estimation with Uncertainty and Sensitivity Analysis for the SARS Outbreak in Hong Kong
Authors: Afia Naheed, Manmohan Singh, David Lucy
Abstract:
This work is based on a mathematical as well as statistical study of an SEIJTR deterministic model for the interpretation of transmission of severe acute respiratory syndrome (SARS). Based on the SARS epidemic in 2003, the parameters are estimated using Runge-Kutta (Dormand-Prince pairs) and least squares methods. Possible graphical and numerical techniques are used to validate the estimates. Then effect of the model parameters on the dynamics of the disease is examined using sensitivity and uncertainty analysis. Sensitivity and uncertainty analytical techniques are used in order to analyze the affect of the uncertainty in the obtained parameter estimates and to determine which parameters have the largest impact on controlling the disease dynamics.Keywords: infectious disease, severe acute respiratory syndrome (SARS), parameter estimation, sensitivity analysis, uncertainty analysis, Runge-Kutta methods, Levenberg-Marquardt method
Procedia PDF Downloads 3612356 Forecasting Models for Steel Demand Uncertainty Using Bayesian Methods
Authors: Watcharin Sangma, Onsiri Chanmuang, Pitsanu Tongkhow
Abstract:
A forecasting model for steel demand uncertainty in Thailand is proposed. It consists of trend, autocorrelation, and outliers in a hierarchical Bayesian frame work. The proposed model uses a cumulative Weibull distribution function, latent first-order autocorrelation, and binary selection, to account for trend, time-varying autocorrelation, and outliers, respectively. The Gibbs sampling Markov Chain Monte Carlo (MCMC) is used for parameter estimation. The proposed model is applied to steel demand index data in Thailand. The root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) criteria are used for model comparison. The study reveals that the proposed model is more appropriate than the exponential smoothing method.Keywords: forecasting model, steel demand uncertainty, hierarchical Bayesian framework, exponential smoothing method
Procedia PDF Downloads 3502355 Aerodynamic Modeling Using Flight Data at High Angle of Attack
Authors: Rakesh Kumar, A. K. Ghosh
Abstract:
The paper presents the modeling of linear and nonlinear longitudinal aerodynamics using real flight data of Hansa-3 aircraft gathered at low and high angles of attack. The Neural-Gauss-Newton (NGN) method has been applied to model the linear and nonlinear longitudinal dynamics and estimate parameters from flight data. Unsteady aerodynamics due to flow separation at high angles of attack near stall has been included in the aerodynamic model using Kirchhoff’s quasi-steady stall model. NGN method is an algorithm that utilizes Feed Forward Neural Network (FFNN) and Gauss-Newton optimization to estimate the parameters and it does not require any a priori postulation of mathematical model or solving of equations of motion. NGN method was validated on real flight data generated at moderate angles of attack before application to the data at high angles of attack. The estimates obtained from compatible flight data using NGN method were validated by comparing with wind tunnel values and the maximum likelihood estimates. Validation was also carried out by comparing the response of measured motion variables with the response generated by using estimates a different control input. Next, NGN method was applied to real flight data generated by executing a well-designed quasi-steady stall maneuver. The results obtained in terms of stall characteristics and aerodynamic parameters were encouraging and reasonably accurate to establish NGN as a method for modeling nonlinear aerodynamics from real flight data at high angles of attack.Keywords: parameter estimation, NGN method, linear and nonlinear, aerodynamic modeling
Procedia PDF Downloads 4472354 Towards an Intelligent Ontology Construction Cost Estimation System: Using BIM and New Rules of Measurement Techniques
Authors: F. H. Abanda, B. Kamsu-Foguem, J. H. M. Tah
Abstract:
Construction cost estimation is one of the most important aspects of construction project design. For generations, the process of cost estimating has been manual, time-consuming and error-prone. This has partly led to most cost estimates to be unclear and riddled with inaccuracies that at times lead to over- or under-estimation of construction cost. The development of standard set of measurement rules that are understandable by all those involved in a construction project, have not totally solved the challenges. Emerging Building Information Modelling (BIM) technologies can exploit standard measurement methods to automate cost estimation process and improves accuracies. This requires standard measurement methods to be structured in ontologically and machine readable format; so that BIM software packages can easily read them. Most standard measurement methods are still text-based in textbooks and require manual editing into tables or Spreadsheet during cost estimation. The aim of this study is to explore the development of an ontology based on New Rules of Measurement (NRM) commonly used in the UK for cost estimation. The methodology adopted is Methontology, one of the most widely used ontology engineering methodologies. The challenges in this exploratory study are also reported and recommendations for future studies proposed.Keywords: BIM, construction projects, cost estimation, NRM, ontology
Procedia PDF Downloads 5512353 Error Detection and Correction for Onboard Satellite Computers Using Hamming Code
Authors: Rafsan Al Mamun, Md. Motaharul Islam, Rabana Tajrin, Nabiha Noor, Shafinaz Qader
Abstract:
In an attempt to enrich the lives of billions of people by providing proper information, security and a way of communicating with others, the need for efficient and improved satellites is constantly growing. Thus, there is an increasing demand for better error detection and correction (EDAC) schemes, which are capable of protecting the data onboard the satellites. The paper is aimed towards detecting and correcting such errors using a special algorithm called the Hamming Code, which uses the concept of parity and parity bits to prevent single-bit errors onboard a satellite in Low Earth Orbit. This paper focuses on the study of Low Earth Orbit satellites and the process of generating the Hamming Code matrix to be used for EDAC using computer programs. The most effective version of Hamming Code generated was the Hamming (16, 11, 4) version using MATLAB, and the paper compares this particular scheme with other EDAC mechanisms, including other versions of Hamming Codes and Cyclic Redundancy Check (CRC), and the limitations of this scheme. This particular version of the Hamming Code guarantees single-bit error corrections as well as double-bit error detections. Furthermore, this version of Hamming Code has proved to be fast with a checking time of 5.669 nanoseconds, that has a relatively higher code rate and lower bit overhead compared to the other versions and can detect a greater percentage of errors per length of code than other EDAC schemes with similar capabilities. In conclusion, with the proper implementation of the system, it is quite possible to ensure a relatively uncorrupted satellite storage system.Keywords: bit-flips, Hamming code, low earth orbit, parity bits, satellite, single error upset
Procedia PDF Downloads 1302352 The Linear Combination of Kernels in the Estimation of the Cumulative Distribution Functions
Authors: Abdel-Razzaq Mugdadi, Ruqayyah Sani
Abstract:
The Kernel Distribution Function Estimator (KDFE) method is the most popular method for nonparametric estimation of the cumulative distribution function. The kernel and the bandwidth are the most important components of this estimator. In this investigation, we replace the kernel in the KDFE with a linear combination of kernels to obtain a new estimator based on the linear combination of kernels, the mean integrated squared error (MISE), asymptotic mean integrated squared error (AMISE) and the asymptotically optimal bandwidth for the new estimator are derived. We propose a new data-based method to select the bandwidth for the new estimator. The new technique is based on the Plug-in technique in density estimation. We evaluate the new estimator and the new technique using simulations and real-life data.Keywords: estimation, bandwidth, mean square error, cumulative distribution function
Procedia PDF Downloads 5812351 Estimation of Slab Depth, Column Size and Rebar Location of Concrete Specimen Using Impact Echo Method
Authors: Y. T. Lee, J. H. Na, S. H. Kim, S. U. Hong
Abstract:
In this study, an experimental research for estimation of slab depth, column size and location of rebar of concrete specimen is conducted using the Impact Echo Method (IE) based on stress wave among non-destructive test methods. Estimation of slab depth had total length of 1800×300 and 6 different depths including 150 mm, 180 mm, 210 mm, 240 mm, 270 mm and 300 mm. The concrete column specimen was manufactured by differentiating the size into 300×300×300 mm, 400×400×400 mm and 500×500×500 mm. In case of the specimen for estimation of rebar, rebar of ∅22 mm was used in a specimen of 300×370×200 and arranged at 130 mm and 150 mm from the top to the rebar top. As a result of error rate of slab depth was overall mean of 3.1%. Error rate of column size was overall mean of 1.7%. Mean error rate of rebar location was 1.72% for top, 1.19% for bottom and 1.5% for overall mean showing relative accuracy.Keywords: impact echo method, estimation, slab depth, column size, rebar location, concrete
Procedia PDF Downloads 3512350 Assisting Dating of Greek Papyri Images with Deep Learning
Authors: Asimina Paparrigopoulou, John Pavlopoulos, Maria Konstantinidou
Abstract:
Dating papyri accurately is crucial not only to editing their texts but also for our understanding of palaeography and the history of writing, ancient scholarship, material culture, networks in antiquity, etc. Most ancient manuscripts offer little evidence regarding the time of their production, forcing papyrologists to date them on palaeographical grounds, a method often criticized for its subjectivity. By experimenting with data obtained from the Collaborative Database of Dateable Greek Bookhands and the PapPal online collections of objectively dated Greek papyri, this study shows that deep learning dating models, pre-trained on generic images, can achieve accurate chronological estimates for a test subset (67,97% accuracy for book hands and 55,25% for documents). To compare the estimates of these models with those of humans, experts were asked to complete a questionnaire with samples of literary and documentary hands that had to be sorted chronologically by century. The same samples were dated by the models in question. The results are presented and analysed.Keywords: image classification, papyri images, dating
Procedia PDF Downloads 792349 High Performance of Direct Torque and Flux Control of a Double Stator Induction Motor Drive with a Fuzzy Stator Resistance Estimator
Authors: K. Kouzi
Abstract:
In order to have stable and high performance of direct torque and flux control (DTFC) of double star induction motor drive (DSIM), proper on-line adaptation of the stator resistance is very important. This is inevitably due to the variation of the stator resistance during operating conditions, which introduces error in estimated flux position and the magnitude of the stator flux. Error in the estimated stator flux deteriorates the performance of the DTFC drive. Also, the effect of error in estimation is very important especially at low speed. Due to this, our aim is to overcome the sensitivity of the DTFC to the stator resistance variation by proposing on-line fuzzy estimation stator resistance. The fuzzy estimation method is based on an on-line stator resistance correction through the variations of the stator current estimation error and its variations. The fuzzy logic controller gives the future stator resistance increment at the output. The main advantage of the suggested algorithm control is to avoid the drive instability that may occur in certain situations and ensure the tracking of the actual stator resistance. The validity of the technique and the improvement of the whole system performance are proved by the results.Keywords: direct torque control, dual stator induction motor, Fuzzy Logic estimation, stator resistance adaptation
Procedia PDF Downloads 3272348 Forecasting Container Throughput: Using Aggregate or Terminal-Specific Data?
Authors: Gu Pang, Bartosz Gebka
Abstract:
We forecast the demand of total container throughput at the Indonesia’s largest seaport, Tanjung Priok Port. We propose four univariate forecasting models, including SARIMA, the additive Seasonal Holt-Winters, the multiplicative Seasonal Holt-Winters and the Vector Error Correction Model. Our aim is to provide insights into whether forecasting the total container throughput obtained by historical aggregated port throughput time series is superior to the forecasts of the total throughput obtained by summing up the best individual terminal forecasts. We test the monthly port/individual terminal container throughput time series between 2003 and 2013. The performance of forecasting models is evaluated based on Mean Absolute Error and Root Mean Squared Error. Our results show that the multiplicative Seasonal Holt-Winters model produces the most accurate forecasts of total container throughput, whereas SARIMA generates the worst in-sample model fit. The Vector Error Correction Model provides the best model fits and forecasts for individual terminals. Our results report that the total container throughput forecasts based on modelling the total throughput time series are consistently better than those obtained by combining those forecasts generated by terminal-specific models. The forecasts of total throughput until the end of 2018 provide an essential insight into the strategic decision-making on the expansion of port's capacity and construction of new container terminals at Tanjung Priok Port.Keywords: SARIMA, Seasonal Holt-Winters, Vector Error Correction Model, container throughput
Procedia PDF Downloads 5042347 Modeling of Diurnal Pattern of Air Temperature in a Tropical Environment: Ile-Ife and Ibadan, Nigeria
Authors: Rufus Temidayo Akinnubi, M. O. Adeniyi
Abstract:
Existing diurnal air temperature models simulate night time air temperature over Nigeria with high biases. An improved parameterization is presented for modeling the diurnal pattern of air temperature (Ta) which is applicable in the calculation of turbulent heat fluxes in Global climate models, based on Nigeria Micrometeorological Experimental site (NIMEX) surface layer observations. Five diurnal Ta models for estimating hourly Ta from daily maximum, daily minimum, and daily mean air temperature were validated using root-mean-square error (RMSE), Mean Error Bias (MBE) and scatter graphs. The original Fourier series model showed better performance for unstable air temperature parameterizations while the stable Ta was strongly overestimated with a large error. The model was improved with the inclusion of the atmospheric cooling rate that accounts for the temperature inversion that occurs during the nocturnal boundary layer condition. The MBE and RMSE estimated by the modified Fourier series model reduced by 4.45 oC and 3.12 oC during the transitional period from dry to wet stable atmospheric conditions. The modified Fourier series model gave good estimation of the diurnal weather patterns of Ta when compared with other existing models for a tropical environment.Keywords: air temperature, mean bias error, Fourier series analysis, surface energy balance,
Procedia PDF Downloads 2302346 Is the Okun's Law Valid in Tunisia?
Authors: El Andari Chifaa, Bouaziz Rached
Abstract:
The central focus of this paper was to check whether the Okun’s law in Tunisia is valid or not. For this purpose, we have used quarterly time series data during the period 1990Q1-2014Q1. Firstly, we applied the error correction model instead of the difference version of Okun's Law, the Engle-Granger and Johansen test are employed to find out long run association between unemployment, production, and how error correction mechanism (ECM) is used for short run dynamic. Secondly, we used the gap version of Okun’s law where the estimation is done from three band pass filters which are mathematical tools used in macro-economic and especially in business cycles theory. The finding of the study indicates that the inverse relationship between unemployment and output is verified in the short and long term, and the Okun's law holds for the Tunisian economy, but with an Okun’s coefficient lower than required. Therefore, our empirical results have important implications for structural and cyclical policymakers in Tunisia to promote economic growth in a context of lower unemployment growth.Keywords: Okun’s law, validity, unit root, cointegration, error correction model, bandpass filters
Procedia PDF Downloads 3172345 IPO Valuation and Profitability Expectations: Evidence from the Italian Exchange
Authors: Matteo Bonaventura, Giancarlo Giudici
Abstract:
This paper analyses the valuation process of companies listed on the Italian Exchange in the period 2000-2009 at their Initial Public Offering (IPO). One the most common valuation techniques declared in the IPO prospectus to determine the offer price is the Discounted Cash Flow (DCF) method. We develop a ‘reverse engineering’ model to discover the short term profitability implied in the offer prices. We show that there is a significant optimistic bias in the estimation of future profitability compared to ex-post actual realization and the mean forecast error is substantially large. Yet we show that such error characterizes also the estimations carried out by analysts evaluating non-IPO companies. The forecast error is larger the faster has been the recent growth of the company, the higher is the leverage of the IPO firm, the more companies issued equity on the market. IPO companies generally exhibit better operating performance before the listing, with respect to comparable listed companies, while after the flotation they do not perform significantly different in term of return on invested capital. Pre-IPO book building activity plays a significant role in partially reducing the forecast error and revising expectations, while the market price of the first day of trading does not contain information for further reducing forecast errors.Keywords: initial public offerings, DCF, book building, post-IPO profitability drop
Procedia PDF Downloads 3552344 Automatic Facial Skin Segmentation Using Possibilistic C-Means Algorithm for Evaluation of Facial Surgeries
Authors: Elham Alaee, Mousa Shamsi, Hossein Ahmadi, Soroosh Nazem, Mohammad Hossein Sedaaghi
Abstract:
Human face has a fundamental role in the appearance of individuals. So the importance of facial surgeries is undeniable. Thus, there is a need for the appropriate and accurate facial skin segmentation in order to extract different features. Since Fuzzy C-Means (FCM) clustering algorithm doesn’t work appropriately for noisy images and outliers, in this paper we exploit Possibilistic C-Means (PCM) algorithm in order to segment the facial skin. For this purpose, first, we convert facial images from RGB to YCbCr color space. To evaluate performance of the proposed algorithm, the database of Sahand University of Technology, Tabriz, Iran was used. In order to have a better understanding from the proposed algorithm; FCM and Expectation-Maximization (EM) algorithms are also used for facial skin segmentation. The proposed method shows better results than the other segmentation methods. Results include misclassification error (0.032) and the region’s area error (0.045) for the proposed algorithm.Keywords: facial image, segmentation, PCM, FCM, skin error, facial surgery
Procedia PDF Downloads 5862343 Low-Cost Reversible Logic Serial Multipliers with Error Detection Capability
Authors: Mojtaba Valinataj
Abstract:
Nowadays reversible logic has received many attentions as one of the new fields for reducing the power consumption. On the other hand, the processing systems have weaknesses against different external effects. In this paper, some error detecting reversible logic serial multipliers are proposed by incorporating the parity-preserving gates. This way, the new designs are presented for signed parity-preserving serial multipliers based on the Booth's algorithm by exploiting the new arrangements of existing gates. The experimental results show that the proposed 4×4 multipliers in this paper reach up to 20%, 35%, and 41% enhancements in the number of constant inputs, quantum cost, and gate count, respectively, as the reversible logic criteria, compared to previous designs. Furthermore, all the proposed designs have been generalized for n×n multipliers with general formulations to estimate the main reversible logic criteria as the functions of the multiplier size.Keywords: Booth’s algorithm, error detection, multiplication, parity-preserving gates, quantum computers, reversible logic
Procedia PDF Downloads 2282342 Bayesian Using Markov Chain Monte Carlo and Lindley's Approximation Based on Type-I Censored Data
Authors: Al Omari Moahmmed Ahmed
Abstract:
These papers describe the Bayesian Estimator using Markov Chain Monte Carlo and Lindley’s approximation and the maximum likelihood estimation of the Weibull distribution with Type-I censored data. The maximum likelihood method can’t estimate the shape parameter in closed forms, although it can be solved by numerical methods. Moreover, the Bayesian estimates of the parameters, the survival and hazard functions cannot be solved analytically. Hence Markov Chain Monte Carlo method and Lindley’s approximation are used, where the full conditional distribution for the parameters of Weibull distribution are obtained via Gibbs sampling and Metropolis-Hastings algorithm (HM) followed by estimate the survival and hazard functions. The methods are compared to Maximum Likelihood counterparts and the comparisons are made with respect to the Mean Square Error (MSE) and absolute bias to determine the better method in scale and shape parameters, the survival and hazard functions.Keywords: weibull distribution, bayesian method, markov chain mote carlo, survival and hazard functions
Procedia PDF Downloads 4792341 Error Analysis in Academic Writing of EFL Learners: A Case Study for Undergraduate Students at Pathein University
Authors: Aye Pa Pa Myo
Abstract:
Writing in English is accounted as a complex process for English as a foreign language learners. Besides, committing errors in writing can be found as an inevitable part of language learners’ writing. Generally, academic writing is quite difficult for most of the students to manage for getting better scores. Students can commit common errors in their writings when they try to write academic writing. Error analysis deals with identifying and detecting the errors and also explains the reason for the occurrence of these errors. In this paper, the researcher has an attempt to examine the common errors of undergraduate students in their academic writings at Pathein University. The purpose of doing this research is to investigate the errors which students usually commit in academic writing and to find out the better ways for correcting these errors in EFL classrooms. In this research, fifty-third-year non-English specialization students attending Pathein University were selected as participants. This research took one month. It was conducted with a mixed methodology method. Two mini-tests were used as research tools. Data were collected with a quantitative research method. Findings from this research pointed that most of the students noticed their common errors after getting the necessary input, and they became more decreased committing these errors after taking mini-test; hence, all findings will be supportive for further researches related to error analysis in academic writing.Keywords: academic writing, error analysis, EFL learners, mini-tests, mixed methodology
Procedia PDF Downloads 1332340 Integration of Fuzzy Logic in the Representation of Knowledge: Application in the Building Domain
Authors: Hafida Bouarfa, Mohamed Abed
Abstract:
The main object of our work is the development and the validation of a system indicated Fuzzy Vulnerability. Fuzzy Vulnerability uses a fuzzy representation in order to tolerate the imprecision during the description of construction. At the the second phase, we evaluated the similarity between the vulnerability of a new construction and those of the whole of the historical cases. This similarity is evaluated on two levels: 1) individual similarity: bases on the fuzzy techniques of aggregation; 2) Global similarity: uses the increasing monotonous linguistic quantifiers (RIM) to combine the various individual similarities between two constructions. The third phase of the process of Fuzzy Vulnerability consists in using vulnerabilities of historical constructions narrowly similar to current construction to deduce its estimate vulnerability. We validated our system by using 50 cases. We evaluated the performances of Fuzzy Vulnerability on the basis of two basic criteria, the precision of the estimates and the tolerance of the imprecision along the process of estimation. The comparison was done with estimates made by tiresome and long models. The results are satisfactory.Keywords: case based reasoning, fuzzy logic, fuzzy case based reasoning, seismic vulnerability
Procedia PDF Downloads 2942339 Using the Bootstrap for Problems Statistics
Authors: Brahim Boukabcha, Amar Rebbouh
Abstract:
The bootstrap method based on the idea of exploiting all the information provided by the initial sample, allows us to study the properties of estimators. In this article we will present a theoretical study on the different methods of bootstrapping and using the technique of re-sampling in statistics inference to calculate the standard error of means of an estimator and determining a confidence interval for an estimated parameter. We apply these methods tested in the regression models and Pareto model, giving the best approximations.Keywords: bootstrap, error standard, bias, jackknife, mean, median, variance, confidence interval, regression models
Procedia PDF Downloads 3812338 Wind Power Forecast Error Simulation Model
Authors: Josip Vasilj, Petar Sarajcev, Damir Jakus
Abstract:
One of the major difficulties introduced with wind power penetration is the inherent uncertainty in production originating from uncertain wind conditions. This uncertainty impacts many different aspects of power system operation, especially the balancing power requirements. For this reason, in power system development planing, it is necessary to evaluate the potential uncertainty in future wind power generation. For this purpose, simulation models are required, reproducing the performance of wind power forecasts. This paper presents a wind power forecast error simulation models which are based on the stochastic process simulation. Proposed models capture the most important statistical parameters recognized in wind power forecast error time series. Furthermore, two distinct models are presented based on data availability. First model uses wind speed measurements on potential or existing wind power plant locations, while the seconds model uses statistical distribution of wind speeds.Keywords: wind power, uncertainty, stochastic process, Monte Carlo simulation
Procedia PDF Downloads 485