Search results for: emanation coefficient
2088 Exact Solutions of Discrete Sine-Gordon Equation
Authors: Chao-Qing Dai
Abstract:
Two families of exact travelling solutions for the discrete sine-Gordon equation are constructed based on the variable-coefficient Jacobian elliptic function method and different transformations. When the modulus of Jacobian elliptic function solutions tends to 1, soliton solutions can be obtained. Some soliton solutions degenerate into the known solutions in literatures. Moreover, dynamical properties of exact solutions are investigated. Our analysis and results may have potential values for certain applications in modern nonlinear science and textile engineering.Keywords: exact solutions, variable-coefficient Jacobian elliptic function method, discrete sine-Gordon equation, dynamical behaviors
Procedia PDF Downloads 4202087 Oxygen Transfer in Viscous Non-Newtonian Liquid in a Hybrid Bioreactor
Authors: Sérgio S. de Jesus, Aline Santana, Rubens Maciel Filho
Abstract:
Global oxygen transfer coefficient (kLa) was characterized in a mechanically agitated airlift bio reactor. The experiments were carried out in an airlift bio reactor (3.2 L) with internal re circulation (a concentric draft-tube airlift vessel device); the agitation is carried out through a turbine Rushton impeller located along with the gas sparger in the region comprised in the riser. The experiments were conducted using xanthan gum (0.6%) at 250 C and a constant rotation velocity of 0 and 800 rpm, as well as in the absence of agitation (airlift mode); the superficial gas velocity varied from 0.0157 to 0.0262 ms-1. The volumetric oxygen transfer coefficient dependence of the rotational speed revealed that the presence of agitation increased up to two times the kLa value.Keywords: aeration, mass transfer, non-Newtonian fluids, stirred airlift bioreactor
Procedia PDF Downloads 4602086 Predicting the Relationship Between the Corona Virus Anxiety and Psychological Hardiness in Staff Working at Hospital in Shiraz Iran
Authors: Gholam Reza Mirzaei, Mehran Roost
Abstract:
This research was conducted with the aim of predicting the relationship between coronavirus anxiety and psychological hardiness in employees working at Shahid Beheshti Hospital in Shiraz. The current research design was descriptive and correlational. The statistical population of the research consisted of all the employees of Shahid Beheshti Hospital in Shiraz in 2021. From among the statistical population, 220 individuals were selected and studied based on available sampling. To collect data, Kobasa's psychological hardiness questionnaire and coronavirus anxiety questionnaire were used. After collecting the data, the scores of the participants were analyzed using Pearson's correlation coefficient multiple regression analysis and SPSS-24 statistical software. The results of Pearson's correlation coefficient showed that there is a significant negative correlation between psychological hardiness and its components (challenge, commitment, and control) with coronavirus anxiety; also, psychological hardiness with a beta coefficient of 0.20 could predict coronavirus anxiety in hospital employees. Based on the results, plans can be made to enhance psychological hardiness through educational workshops to relieve the anxiety of the healthcare staff.Keywords: the corona virus, commitment, hospital employees, psychological hardiness
Procedia PDF Downloads 612085 Parametric Study and Modelling of Orthogonal Cutting Process for AISI 4340 and Ti-6Al-4V Alloy
Authors: Purnank Bhatt, Mit Shah, Pawan Nagda, Vimal Jasoliya
Abstract:
The influence of parameters like velocity and depth of cut on cutting forces is investigated for the empirical relation of the coefficient of friction derived for CRS 1018 for different materials like AISI 4340 and Ti6Al4V. For this purpose, turning tests were carried out on the above materials using coated cemented carbide tool inserts for steel grade and uncoated cemented carbide cutting tool inserts for Titanium with different chip breaker geometries. The cutting forces were measured using a Kistler dynamometer where the multiplication factor taken is 200.The effect of cutting force variation was analyzed experimentally and are compared with the analytical results.Keywords: cutting forces, coefficient of friction, carbide tool inserts, titanium
Procedia PDF Downloads 3752084 Aerodynamic Analysis of a Frontal Deflector for Vehicles
Authors: C. Malça, N. Alves, A. Mateus
Abstract:
This work was one of the tasks of the Manufacturing2Client project, whose objective was to develop a frontal deflector to be commercialized in the automotive industry, using new project and manufacturing methods. In this task, in particular, it was proposed to develop the ability to predict computationally the aerodynamic influence of flow in vehicles, in an effort to reduce fuel consumption in vehicles from class 3 to 8. With this aim, two deflector models were developed and their aerodynamic performance analyzed. The aerodynamic study was done using the Computational Fluid Dynamics (CFD) software Ansys CFX and allowed the calculation of the drag coefficient caused by the vehicle motion for the different configurations considered. Moreover, the reduction of diesel consumption and carbon dioxide (CO2) emissions associated with the optimized deflector geometry could be assessed.Keywords: erodynamic analysis, CFD, CO2 emissions, drag coefficient, frontal deflector, fuel consumption
Procedia PDF Downloads 4072083 Termite Mound Floors: Ready-to-Use Ecological Materials
Authors: Yanné Etienne
Abstract:
The current climatic conditions necessarily impose the development and use of construction materials with low or no carbon footprint. The Far North Region of Cameroon has huge deposits of termite mounds. Various tests in this work have been carried out on these soils with the aim of using them as construction materials. They are mainly geotechnical tests, physical and mechanical tests. The different tests gave the following values: uniformity coefficient (4.95), curvature coefficient (1.80), plasticity index (12.85%), optimum moisture content (6.70%), maximum dry density (2.05 g.cm-³), friction angles (14.07°), and cohesion of 100.29 kN.m2. The results obtained show that termite mound soils, which are ecological materials, are plastic and water-stable can be used for the production of load-bearing elements in construction.Keywords: termite mound soil, ecological materials, building materials, geotechnical tests, physical and mechanical tests
Procedia PDF Downloads 1842082 Study of the Kinetic of the Reduction of Alpha and Beta PbO2 in H2SO4 on the Microcavity Electrode
Authors: N. Chahmana, I. Zerroual
Abstract:
The aim of our work is the contribution to the improvement of the performances of the positive plate of the lead acid battery. For that, we synthesized two varieties of PbO2 used in industry, alpha and beta PbO2 by electrochemical way starting from the not formed industrial plates. We studied the kinetics of reduction of the alpha varieties and PbO2 beta on electrode with microcavity in sulphuric medium. The electrochemical study of the powders of α and β-PbO2 was made by cyclic voltamperometry with sweeping of potential by using a traditional assembly with three electrodes. Values of the coefficient of diffusion of the proton in α and β-PbO2 are respectively equal to 0.498*10-8cm2 /s and 0.793*10-8 cm2 /s. During the cycling of the two varieties of PbO2, we obtain a clear increase in the capacity.Keywords: lead accumulator, α and β - PbO2, synthesis, kinetics, cyclic voltametry, coefficient of diffusion
Procedia PDF Downloads 5772081 Experimental and Semi-Analytical Investigation of Wave Interaction with Double Vertical Slotted Walls
Authors: H. Ahmed, A. Schlenkhoff, R. Rousta, R. Abdelaziz
Abstract:
Vertical slotted walls can be used as permeable breakwaters to provide economical and environmental protection from undesirable waves and currents inside the port. The permeable breakwaters are partially protection and have been suggested to overcome the environmental disadvantages of fully protection breakwaters. For regular waves a semi-analytical model is based on an eigenfunction expansion method and utilizes a boundary condition at the surface of each wall are developed to detect the energy dissipation through the slots. Extensive laboratory tests are carried out to validate the semi-analytic models. The structure of the physical model contains two walls and it consists of impermeable upper and lower part, where the draft is based a decimal multiple of the total depth. The middle part is permeable with a porosity of 50%. The second barrier is located at a distant of 0.5, 1, 1.5 and 2 times of the water depth from the first one. A comparison of the theoretical results with previous studies and experimental measurements of the present study show a good agreement and that, the semi-analytical model is able to adequately reproduce most the important features of the experiment.Keywords: permeable breakwater, double vertical slotted walls, semi-analytical model, transmission coefficient, reflection coefficient, energy dissipation coefficient
Procedia PDF Downloads 3852080 Electronic, Magnetic and Optic Properties in Halide Perovskites CsPbX3 (X= F, Cl, I)
Authors: B. Bouadjemi, S. Bentata, T. Lantri, Souidi Amel, W.Bensaali, A. Zitouni, Z. Aziz
Abstract:
We performed first-principle calculations, the full-potential linearized augmented plane wave (FP-LAPW) method is used to calculate structural, optoelectronic and magnetic properties of cubic halide perovskites CsPbX3 (X= F,I). We employed for this study the GGA approach and for exchange is modeled using the modified Becke-Johnson (mBJ) potential to predicting the accurate band gap of these materials. The optical properties (namely: the real and imaginary parts of dielectric functions, optical conductivities and absorption coefficient absorption make this halide perovskites promising materials for solar cells applications.Keywords: halide perovskites, mBJ, solar cells, FP-LAPW, optoelectronic properties, absorption coefficient
Procedia PDF Downloads 3222079 The Hall Coefficient and Magnetoresistance in Rectangular Quantum Wires with Infinitely High Potential under the Influence of a Laser Radiation
Authors: Nguyen Thu Huong, Nguyen Quang Bau
Abstract:
The Hall Coefficient (HC) and the Magnetoresistance (MR) have been studied in two-dimensional systems. The HC and the MR in Rectangular Quantum Wire (RQW) subjected to a crossed DC electric field and magnetic field in the presence of a Strong Electromagnetic Wave (EMW) characterized by electric field are studied in this work. Using the quantum kinetic equation for electrons interacting with optical phonons, we obtain the analytic expressions for the HC and the MR with a dependence on magnetic field, EMW frequency, temperatures of systems and the length characteristic parameters of RQW. These expressions are different from those obtained for bulk semiconductors and cylindrical quantum wires. The analytical results are applied to GaAs/GaAs/Al. For this material, MR depends on the ratio of the EMW frequency to the cyclotron frequency. Indeed, MR reaches a minimum at the ratio 5/4, and when this ratio increases, it tends towards a saturation value. The HC can take negative or positive values. Each curve has one maximum and one minimum. When magnetic field increases, the HC is negative, achieves a minimum value and then increases suddenly to a maximum with a positive value. This phenomenon differs from the one observed in cylindrical quantum wire, which does not have maximum and minimum values.Keywords: hall coefficient, rectangular quantum wires, electron-optical phonon interaction, quantum kinetic equation
Procedia PDF Downloads 4882078 Qsar Studies of Certain Novel Heterocycles Derived From bis-1, 2, 4 Triazoles as Anti-Tumor Agents
Authors: Madhusudan Purohit, Stephen Philip, Bharathkumar Inturi
Abstract:
In this paper we report the quantitative structure activity relationship of novel bis-triazole derivatives for predicting the activity profile. The full model encompassed a dataset of 46 Bis- triazoles. Tripos Sybyl X 2.0 program was used to conduct CoMSIA QSAR modeling. The Partial Least-Squares (PLS) analysis method was used to conduct statistical analysis and to derive a QSAR model based on the field values of CoMSIA descriptor. The compounds were divided into test and training set. The compounds were evaluated by various CoMSIA parameters to predict the best QSAR model. An optimum numbers of components were first determined separately by cross-validation regression for CoMSIA model, which were then applied in the final analysis. A series of parameters were used for the study and the best fit model was obtained using donor, partition coefficient and steric parameters. The CoMSIA models demonstrated good statistical results with regression coefficient (r2) and the cross-validated coefficient (q2) of 0.575 and 0.830 respectively. The standard error for the predicted model was 0.16322. In the CoMSIA model, the steric descriptors make a marginally larger contribution than the electrostatic descriptors. The finding that the steric descriptor is the largest contributor for the CoMSIA QSAR models is consistent with the observation that more than half of the binding site area is occupied by steric regions.Keywords: 3D QSAR, CoMSIA, triazoles, novel heterocycles
Procedia PDF Downloads 4442077 Tribological Properties of Non-Stick Coatings Used in Bread Baking Process
Authors: Maurice Brogly, Edwige Privas, Rajesh K. Gajendran, Sophie Bistac
Abstract:
Anti-sticky coatings based on perfluoroalkoxy (PFA) coatings are widely used in food processing industry especially for bread making. Their tribological performance, such as low friction coefficient, low surface energy and high heat resistance, make them an appropriate choice for anti-sticky coating application in moulds for food processing industry. This study is dedicated to evidence the transfer of contaminants from the coating due to wear and thermal ageing of the mould. The risk of contamination is induced by the damage of the coating by bread crust during the demoulding stage. The study focuses on the wear resistance and potential transfer of perfluorinated polymer from the anti-sticky coating. Friction between perfluorinated coating and bread crust is modeled by a tribological pin-on-disc test. The cellular nature of the bread crust is modeled by a polymer foam. FTIR analysis of the polymer foam after friction allow the evaluation of the transfer from the perfluorinated coating to polymer foam. Influence of thermal ageing on the physical, chemical and wear properties of the coating are also investigated. FTIR spectroscopic results show that the increase of PFA transfer onto the foam counterface is associated to the decrease of the friction coefficient. Increasing lubrication by film transfer results in the decrease of the friction coefficient. Moreover increasing the friction test parameters conditions (load, speed and sliding distance) also increase the film transfer onto the counterface. Thermal ageing increases the hydrophobic character of the PFA coating and thus also decreases the friction coefficient.Keywords: fluorobased polymer coatings, FTIR spectroscopy, non-stick food moulds, wear and friction
Procedia PDF Downloads 3302076 Production of Ultra-Low Temperature by the Vapor Compression Refrigeration Cycles with Environment Friendly Working Fluids
Authors: Sameh Frikha, Mohamed Salah Abid
Abstract:
We investigate the performance of an integrated cascade (IC) refrigeration system which uses environment friendly zeotropic mixtures. Computational calculation has been carried out by varying pressure level at the evaporator and the condenser of the system. Effects of mass flow rate of the refrigerant on the coefficient of performance (COP) are presented. We show that the integrated cascade system produces ultra-low temperatures in the evaporator by using environment friendly zeotropic mixture.Keywords: coefficient of performance, environment friendly zeotropic mixture, integrated cascade, ultra low temperature, vapor compression refrigeration cycles
Procedia PDF Downloads 2612075 Seasonal Variation in Aerosols Characteristics over Ahmedabad
Authors: Devansh Desai, Chamandeep Kaur, Nirmal Kullu, George Christopher
Abstract:
Study of aerosols has become very important tool in assuming the climatic changes over a region.Spectral and temporal variability’s in aerosol optical depth(AOD) and size distribution are investigated using ground base measurements over Ahmedabad during the months of January(2013) to may (2013). Angstrom coefficient (ἁ) was found to be higher in winter season (January to march) indicating the dominance of fine mode aerosol concentration over Ahmedabad, and the Angstrom coefficient (ἁ) was found to be lower indicating the dominance of coarse mode aerosol concentration over Ahmedabad. The different values of alpha are observed when calculated over different wavelength ranges indicating bimodal aerosol size distribution. Discrimination of aerosol size during different seasons is made using the coefficient of polynomial fit (ἁ1 and ἁ2) which shows the presence of changing dominant aerosol types as a function of season over Ahmedabad. The ἁ2- ἁ1 value is used to get the confirmation on the dominant aerosol mode over Ahmedabad in both seasons. During pre-monsoon about 90% of AOD spectra is dominated by coarse mode aerosols and during winter about 60% of AOD spectra is dominated by fine mode aerosols. This characterization of aerosols is important in assessing the response of different aerosols type in radiative forcing and over climate of Ahmedabad.Keywords: radiative forcing, aerosol optical depth, fine mode, coarse mode
Procedia PDF Downloads 5002074 Radionuclide Contents and Exhalation Studies in Soil Samples from Sub-Mountainous Region of Jammu and Kashmir
Authors: Manpreet Kaur
Abstract:
The effect of external and internal exposure in outdoor and indoor environment can be significantly gauged by natural radionuclides. Therefore, it is a consequential to approximate the level of radionuclide contents in soil samples of any area and the risks associated with it. Rate of radon emerging from soil is also one of the prominent parameters for the assessment of radon levels in environmental. In present study, natural radionuclide contents viz. ²³²Th, ²³⁸U and ⁴⁰K and radon/thoron exhalation rates were evaluated operating thallium doped sodium iodide gamma radiation detector and advanced Smart Rn Duo technique in the soil samples from 30 villages of Jammu district, Jammu and Kashmir, India. Radon flux rate was also measured by using surface chamber technique. Results obtained with two different methods were compared to investigate the cause of emanation factor in the soil profile. The radon mass exhalation rate in the soil samples has been found varying from 15 ± 0.4 to 38 ± 0.8 mBq kg⁻¹ h⁻¹ while thoron surface exhalation rate has been found varying from 90 ± 22 to 4880 ± 280 Bq m⁻² h⁻¹. The mean value of radium equivalent activity (99 ± 27 Bq kg⁻¹) was appeared to be well within the admissible limit of 370 Bq kg⁻¹ suggested by Organization for Economic Cooperation and Development (2009) report. The values of various parameters related to radiological hazards were also calculated and all parameters have been found to be well below the safe limits given by various organizations. The outcomes pointed out that region was protected from danger as per health risks effects associated with these radionuclide contents is concerned.Keywords: absorbed dose rate, exhalation rate, human health, radionuclide
Procedia PDF Downloads 1362073 Hall Coefficient in the Presence of Strong Electromagnetic Waves Caused by Confined Electrons and Phonons in a Rectangular Quantum Wire
Authors: Nguyen Quang Bau, Nguyen Thu Huong, Dang Thi Thanh Thuy
Abstract:
The analytic expression for the Hall Coefficient (HC) caused by the confined electrons in the presence of a strong electromagnetic wave (EMW) including the effect of phonon confinement in rectangular quantum wires (RQWs) is calculated by using the quantum kinetic equation for electrons in the case of electron - optical phonon scattering. It is because the expression of the HC for the confined phonon case contains indexes m, m’ which are specific to the phonon confinement. The expression in a RQW is different from that for the case of unconfined phonons in a RQW or in 2D. The results are numerically calculated and discussed for a GaAs/GaAsAl RQW. The numerical results show that HC in a RQW can have both negative and positive values. This is different from the case of the absence of EMW and the case presence of EMW including the effect of phonon unconfinement in a RQW. These results are also compared with those in the case of unconfined phonons in a RQW and confined phonons in a quantum well. The conductivity in the case of confined phonon has more resonance peaks compared with that in case of unconfined phonons in a RQW. This new property is the same in quantum well. All results are compared with the case of unconfined phonons to see differences.Keywords: Hall coefficient, rectangular quantum wires, electron-optical phonon interaction, quantum kinetic equation, confined phonons
Procedia PDF Downloads 2802072 Experimental Analysis on Heat Transfer Enhancement in Double Pipe Heat Exchanger Using Al2O3/Water Nanofluid and Baffled Twisted Tape Inserts
Authors: Ratheesh Radhakrishnan, P. C. Sreekumar, K. Krishnamoorthy
Abstract:
Heat transfer augmentation techniques ultimately results in the reduction of thermal resistance in a conventional heat exchanger by generating higher convective heat transfer coefficient. It also results in reduction of size, increase in heat duty, decrease in approach temperature difference and reduction in pumping power requirements for heat exchangers. Present study deals with compound augmentation technique, which is not widely used. The study deals with the use of Alumina (Al2O3)/water nanofluid and baffled twisted tape inserts in double pipe heat exchanger as compound augmentation technique. Experiments were conducted to evaluate the heat transfer coefficient and friction factor for the flow through the inner tube of heat exchanger in turbulent flow range (80002071 Effects of Electric Field on Diffusion Coefficients and Share Viscosity in Dusty Plasmas
Authors: Muhammad Asif ShakoorI, Maogang He, Aamir Shahzad
Abstract:
Dusty (complex) plasmas contained micro-sized charged dust particles in addition to ions, electrons, and neutrals. It is typically low-temperature plasma and exists in a wide variety of physical systems. In this work, the effects of an external electric field on the diffusion coefficient and share viscosity are investigated through equilibrium molecular dynamics (EMD) simulations in three-dimensional (3D) strongly coupled (SC) dusty plasmas (DPs). The effects of constant and varying normalized electric field strength (E*) have been computed along with different combinations of plasma states on the diffusion of dust particles using EMD simulations. Diffusion coefficient (D) and share viscosity (η) along with varied system sizes, in the limit of varying E* values, is accounted for an appropriate range of plasma coupling (Γ) and screening strength (κ) parameters. At varying E* values, it is revealed that the 3D diffusion coefficient increases with increasing E* and κ; however, it decreases with an increase of Γ but within statistical limits. The share viscosity increases with increasing E*and Γ and decreases with increasing κ. New simulation results are outstanding that the combined effects of electric field and screening strengths give well-matched values of Dandη at low-intermediate to large Γ with varying small-intermediate to large N. The current EMD simulation outcomes under varying electric field strengths are in satisfactory well-matched with previous known simulation data of EMD simulations of the SC-DPs. It has been shown that the present EMD simulation data enlarged the range of E* strength up to 0.1 ≤ E*≤ 1.0 in order to find the linear range of the DPs system and to demonstrate the fundamental nature of electric field linearity of 3D SC-DPs.Keywords: strongly coupled dusty plasma, diffusion coefficient, share viscosity, molecular dynamics simulation, electric field strength
Procedia PDF Downloads 1872070 Quintic Spline Solution of Fourth-Order Parabolic Equations Arising in Beam Theory
Authors: Reza Mohammadi, Mahdieh Sahebi
Abstract:
We develop a method based on polynomial quintic spline for numerical solution of fourth-order non-homogeneous parabolic partial differential equation with variable coefficient. By using polynomial quintic spline in off-step points in space and finite difference in time directions, we obtained two three level implicit methods. Stability analysis of the presented method has been carried out. We solve four test problems numerically to validate the derived method. Numerical comparison with other methods shows the superiority of presented scheme.Keywords: fourth-order parabolic equation, variable coefficient, polynomial quintic spline, off-step points
Procedia PDF Downloads 3522069 Mathematical Anxiety and Misconceptions in Algebra of Grade Vii Students in General Emilio Aguinaldo National High School
Authors: Nessa-Amie T. Peñaflor, Antonio Cinto
Abstract:
This is a descriptive research on the level of math anxiety and mathematics misconceptions in algebra. This research is composed of four parts: (1) analysis of the level of anxiety of the respondents; (2) analysis of the common mathematical misconceptions in algebra; (3) relationship of socio-demographic profile in math anxiety and mathematical misconceptions and (4) analysis of the relationship of math anxiety and misconceptions in algebra. Through the demographic profile questionnaire it was found out that most of the respondents were female. Majority had ages that ranged from 13-15. Most of them had parents who finished secondary education. The biggest portion of Grade Seven students where from families with annual family income ranging from PhP 100, 000 to PhP 299, 999. Most of them came from public school. Mathematics Anxiety Scale for Secondary and Senior Secondary School Students (MAS) and set of 10 open-ended algebraic expressions and polynomials were also administered to determine the anxiety level and the common misconceptions in algebra. Data analysis revealed that respondents had high anxiety in mathematics. Likewise, the common mathematical misconceptions of the Grade Seven students were: combining unlike terms; multiplying the base and exponents; regarding the variable x as 0; squaring the first and second terms only in product of two binomials; wrong meaning attached to brackets; writing the terms next to each other but not simplifying in using the FOIL Method; writing the literal coefficient even if the numerical coefficient is 0; and dividing the denominator by the numerator when the numerical coefficient in the numerator is smaller than the numerical coefficient of the denominator. Results of the study show that the socio-demographic characteristics were not related to mathematics anxiety and misconceptions. Furthermore, students from higher section had high anxiety than those students on the lower section. Thus, belonging to higher or lower section may affect the mathematical misconceptions of the respondents.Keywords: algebra, grade 7 math, math anxiety, math misconceptions
Procedia PDF Downloads 4112068 Job Resource, Personal Resource, Engagement and Performance with Balanced Score Card in the Integrated Textile Companies in Indonesia
Authors: Nurlaila Effendy
Abstract:
Companies in Asia face a number of constraints in tight competitiveness in ASEAN Economic Community 2015 and globalization. An economic capitalism system as an integral part of globalization processing brings broad impacts. They need to improve business performance in globalization and ASEAN Economic Community. Organizational development has quite clearly demonstrated that aligning individual’s personal goals with the goals of the organization translates into measurable and sustained performance improvement. Human capital is a key to achieve company performance. Employee Engagement (EE) creates and expresses themselves physically, cognitively and emotionally to achieve company goals and individual goals. One will experience a total involvement when they undertake their jobs and feel a self integration to their job and organization. A leader plays key role in attaining the goals and objectives of a company/organization. Any Manager in a company needs to have leadership competence and global mindset. As one the of positive organizational behavior developments, psychological capital (PsyCap) is assumed to be one of the most important capitals in the global mindset, in addition to intellectual capital and social capital. Textile companies also need to face a number of constraints in tight competitiveness in regional and global. This research involved 42 managers in two textiles and a spinning companies in a group, in Central Java, Indonesia. It is a quantitative research with Partial Least Squares (PLS) studying job resource (Social Support & Organizational Climate) and Personal Resource (4 dimensions of Psychological Capital & Leadership Competence) as prediction of Employee Engagement, also Employee Engagement and leadership competence as prediction of leader’s performance. The performance of a leader is measured by means of achievement on objective strategies in terms of 4 perspectives (financial and non-financial perspectives) in a Balanced Score Card (BSC). It took one year during a business plan of year 2014, from January to December 2014. The result of this research is there is correlation between Job Resource (coefficient value of Social Support is 0.036 & coefficient value of organizational climate is 0.220) and Personal Resource (coefficient value of PsyCap is 0.513 & coefficient value of Leadership Competence is 0.249) with employee engagement. There is correlation between employee engagement (coefficient value is 0.279) and leadership competence (coefficient value is 0.581) with performance.Keywords: organizational climate, social support, psychological capital leadership competence, employee engagement, performance, integrated textile companies
Procedia PDF Downloads 4332067 Resistance to Chloride Penetration of High Strength Self-Compacting Concretes: Pumice and Zeolite Effect
Authors: Kianoosh Samimi, Siham Kamali-Bernard, Ali Akbar Maghsoudi
Abstract:
This paper aims to contribute to the characterization and the understanding of fresh state, compressive strength and chloride penetration tendency of high strength self-compacting concretes (HSSCCs) where Portland cement type II is partially substituted by 10% and 15% of natural pumice and zeolite. First, five concrete mixtures with a control mixture without any pozzolan are prepared and tested in both fresh and hardened states. Then, resistance to chloride penetration for all formulation is investigated in non-steady state and steady state by measurement of chloride penetration and diffusion coefficient. In non-steady state, the correlation between initial current and chloride penetration with diffusion coefficient is studied. Moreover, the relationship between diffusion coefficient in non-steady state and electrical resistivity is determined. The concentration of free chloride ions is also measured in steady state. Finally, chloride penetration for all formulation is studied in immersion and tidal condition. The result shows that, the resistance to chloride penetration for HSSCC in immersion and tidal condition increases by incorporating pumice and zeolite. However, concrete with zeolite displays a better resistance. This paper shows that the HSSCC with 15% pumice and 10% zeolite is suitable in fresh, hardened, and durability characteristics.Keywords: Chloride penetration, immersion, pumice, HSSCC, tidal, zeolite
Procedia PDF Downloads 2472066 Analysis of Attention to the Confucius Institute from Domestic and Foreign Mainstream Media
Authors: Wei Yang, Xiaohui Cui, Weiping Zhu, Liqun Liu
Abstract:
The rapid development of the Confucius Institute is attracting more and more attention from mainstream media around the world. Mainstream media plays a large role in public information dissemination and public opinion. This study presents efforts to analyze the correlation and functional relationship between domestic and foreign mainstream media by analyzing the amount of reports on the Confucius Institute. Three kinds of correlation calculation methods, the Pearson correlation coefficient (PCC), the Spearman correlation coefficient (SCC), and the Kendall rank correlation coefficient (KCC), were applied to analyze the correlations among mainstream media from three regions: mainland of China; Hong Kong and Macao (the two special administration regions of China denoted as SARs); and overseas countries excluding China, such as the United States, England, and Canada. Further, the paper measures the functional relationships among the regions using a regression model. The experimental analyses found high correlations among mainstream media from the different regions. Additionally, we found that there is a linear relationship between the mainstream media of overseas countries and those of the SARs by analyzing the amount of reports on the Confucius Institute based on a data set obtained by crawling the websites of 106 mainstream media during the years 2004 to 2014.Keywords: mainstream media, Confucius institute, correlation analysis, regression model
Procedia PDF Downloads 3182065 Effect of Base Coarse Layer on Load-Settlement Characteristics of Sandy Subgrade Using Plate Load Test
Authors: A. Nazeri, R. Ziaie Moayed, H. Ghiasinejad
Abstract:
The present research has been performed to investigate the effect of base course application on load-settlement characteristics of sandy subgrade using plate load test. The main parameter investigated in this study was the subgrade reaction coefficient. The model tests were conducted in a 1.35 m long, 1 m wide, and 1 m deep steel test box of Imam Khomeini International University (IKIU Calibration Chamber). The base courses used in this research were in three different thicknesses of 15 cm, 20 cm, and 30 cm. The test results indicated that in the case of using base course over loose sandy subgrade, the values of subgrade reaction coefficient can be increased from 7 to 132 , 224 , and 396 in presence of 15 cm, 20 cm, and 30 cm base course, respectively.Keywords: modulus of subgrade reaction, plate load test, base course, sandy subgrade
Procedia PDF Downloads 2472064 Exergy Analysis of a Vapor Absorption Refrigeration System Using Carbon Dioxide as Refrigerant
Authors: Samsher Gautam, Apoorva Roy, Bhuvan Aggarwal
Abstract:
Vapor absorption refrigeration systems can replace vapor compression systems in many applications as they can operate on a low-grade heat source and are environment-friendly. Widely used refrigerants such as CFCs and HFCs cause significant global warming. Natural refrigerants can be an alternative to them, among which carbon dioxide is promising for use in automotive air conditioning systems. Its inherent safety, ability to withstand high pressure and high heat transfer coefficient coupled with easy availability make it a likely choice for refrigerant. Various properties of the ionic liquid [bmim][PF₆], such as non-toxicity, stability over a wide temperature range and ability to dissolve gases like carbon dioxide, make it a suitable absorbent for a vapor absorption refrigeration system. In this paper, an absorption chiller consisting of a generator, condenser, evaporator and absorber was studied at an operating temperature of 70⁰C. A thermodynamic model was set up using the Peng-Robinson equations of state to predict the behavior of the refrigerant and absorbent pair at different points in the system. A MATLAB code was used to obtain the values of enthalpy and entropy at selected points in the system. The exergy destruction in each component and exergetic coefficient of performance (ECOP) of the system were calculated by performing an exergy analysis based on the second law of thermodynamics. Graphs were plotted between varying operating conditions and the ECOP obtained in each case. The effect of every component on the ECOP was examined. The exergetic coefficient of performance was found to be lesser than the coefficient of performance based on the first law of thermodynamics.Keywords: [bmim][PF₆] as absorbent, carbon dioxide as refrigerant, exergy analysis, Peng-Robinson equations of state, vapor absorption refrigeration
Procedia PDF Downloads 2872063 Aerodynamics and Aeroelastics Studies of Hanger Bridge with H-Beam Profile Using Wind Tunnel
Authors: Matza Gusto Andika, Malinda Sabrina, Syarie Fatunnisa
Abstract:
Aerodynamic and aeroelastics studies on the hanger bridge profile are important to analyze the aerodynamic phenomenon and Aeroelastics stability of hanger. Wind tunnel tests were conducted on a model of H-beam profile from hanger bridge. The purpose of this study is to investigate steady aerodynamic characteristics such as lift coefficient (Cl), drag coefficient (Cd), and moment coefficient (Cm) under the different angle of attack for preliminary prediction of aeroelastics stability problems. After investigation the steady aerodynamics characteristics from the model, dynamic testing is also conducted in wind tunnel to know the aeroelastics phenomenon which occurs at the H-beam hanger bridge profile. The studies show that the torsional vortex induced vibration occur when the wind speed is 7.32 m/s until 9.19 m/s with maximum amplitude occur when the wind speed is 8.41 m/s. The result of wind tunnel testing is matching to hanger vibration where occur in the field, so wind tunnel studies has successful to model the problem. In order that the H-beam profile is not good enough for the hanger bridge and need to be modified to minimize the Aeroelastics problem. The modification can be done with structure dynamics modification or aerodynamics modification.Keywords: aerodynamics, aeroelastic, hanger bridge, h-beam profile, vortex induced vibration, wind tunnel
Procedia PDF Downloads 3502062 Evaluation of PTFE Composites with Mineral Tailing Considering Friction, Wear and Cost
Authors: Antônio P. de Araújo Neto, Ruy D. A. da Silva Neto, Juliana R. de Souza, Salete K. P. de Medeiros, João T. N. de Medeiros
Abstract:
The tribological test with Pin-On-Disc configuration measures friction and wear properties in dry or lubricated sliding surfaces of a variety of materials and coatings. Polymeric matrix composites loaded with mineral filler were used, 1%, 3%, 10%, 30%, and 50% mass percentage of filler, to reduce the material cost by using mineral tailings. Using a pin-on-disc tribometer to quantify coefficient of friction and wear resistance of the specimens. The parameters known to performing the test were 300 rpm rotation, normal load of 16N and duration of 33.5 minutes. The composite with 10% mineral filler performed better, considering that the wear resistance was good when compared to the other compositions and an average low coefficient of friction, in the order of μ ≤ 0.15.Keywords: microcomposites, microparticles tailings of scheelite, PTFE, tribology
Procedia PDF Downloads 3692061 Seismic Active Earth Pressure on Retaining Walls with Reinforced Backfill
Authors: Jagdish Prasad Sahoo
Abstract:
The increase in active earth pressure during the event of an earthquake results sliding, overturning and tilting of earth retaining structures. In order to improve upon the stability of structures, the soil mass is often reinforced with various types of reinforcements such as metal strips, geotextiles, and geogrids etc. The stresses generated in the soil mass are transferred to the reinforcements through the interface friction between the earth and the reinforcement, which in turn reduces the lateral earth pressure on the retaining walls. Hence, the evaluation of earth pressure in the presence of seismic forces with an inclusion of reinforcements is important for the design retaining walls in the seismically active zones. In the present analysis, the effect of reinforcing horizontal layers of reinforcements in the form of sheets (Geotextiles and Geogrids) in sand used as backfill, on reducing the active earth pressure due to earthquake body forces has been studied. For carrying out the analysis, pseudo-static approach has been adopted by employing upper bound theorem of limit analysis in combination with finite elements and linear optimization. The computations have been performed with and out reinforcements for different internal friction angle of sand varying from 30 ° to 45 °. The effectiveness of the reinforcement in reducing the active earth pressure on the retaining walls is examined in terms of active earth pressure coefficient for presenting the solutions in a non-dimensional form. The active earth pressure coefficient is expressed as functions of internal friction angle of sand, interface friction angle between sand and reinforcement, soil-wall interface roughness conditions, and coefficient of horizontal seismic acceleration. It has been found that (i) there always exists a certain optimum depth of the reinforcement layers corresponding to which the value of active earth pressure coefficient becomes always the minimum, and (ii) the active earth pressure coefficient decreases significantly with an increase in length of reinforcements only up to a certain length beyond which a further increase in length hardly causes any reduction in the values active earth pressure. The optimum depth of the reinforcement layers and the required length of reinforcements corresponding to the optimum depth of reinforcements have been established. The numerical results developed in this analysis are expected to be useful for purpose of design of retaining walls.Keywords: active, finite elements, limit analysis, presudo-static, reinforcement
Procedia PDF Downloads 3652060 Application of Co-Flow Jet Concept to Aircraft Lift Increase
Authors: Sai Likitha Siddanathi
Abstract:
Present project is aimed at increasing the amount of lift produced by typical airfoil. This is achieved by its modification into the co-flow jet structure where a new internal flow is created inside the airfoil from well-designed apertures on its surface. The limit where produced excess lift overcomes the weight of pumping system inserted in airfoil upper portion, and drag force is converted into thrust is discussed in terms of airfoil velocity and angle of attack. Two normal and co-flow jet models are numerically designed and experimental results for both fabricated normal airfoil and CFJ model have been tested in low subsonic wind tunnel. Application has been made to subsonic NACA 652-415 airfoil. Produced lift in CFJ airfoil indicates a maximum value up to a factor of 5 above normal airfoil nearby flow separation ie in relatively weak flow distribution.Keywords: flow Jet, lift coefficient, drag coefficient, airfoil performance
Procedia PDF Downloads 3562059 Quality Control Assessment of X-Ray Equipment in Hospitals of Katsina State, Nigeria
Authors: Aminu Yakubu Umar
Abstract:
X-ray is the major contributor to the effective dose of both the patient and the personnel. Because of the radiological risks involved, it is usually recommended that dose to patient from X-ray be kept as low as reasonably achievable (ALARA) with adequate image quality. The implementation of quality assurance in diagnostic radiology can help greatly in achieving that, as it is a technique designed to reduce X-ray doses to patients undergoing radiological examination. In this study, quality control was carried out in six hospitals, which involved KVp test, evaluation of total filtration, test for constancy of radiation output, and check for mA linearity. Equipment used include KVp meter, Rad-check meter, aluminum sheets (0.1–1.0 mm) etc. The results of this study indicate that, the age of the X-ray machines in the hospitals ranges from 3-13 years, GHI and GH2 being the oldest and FMC being the newest. In the evaluation of total filtration, the HVL of the X-ray machines in the hospitals varied, ranging from 2.3-5.2 mm. The HVL was found to be highest in AHC (5.2 mm), while it was lowest in GH3 (2.3 mm). All HVL measurements were done at 80 KVp. The variation in voltage accuracy in the hospitals ranges from 0.3%-127.5%. It was only in GH1 that the % variation was below the allowed limit. The test for constancy of radiation output showed that, the coefficient of variation ranges from 0.005–0.550. In GH3, FMC and AHC, the coefficient of linearity were less than the allowed limit, while in GH1, GH2 and GH4 the coefficient of linearity had exceeded the allowed limit. As regard to mA linearity, FMC and AHC had their coefficients of linearity as 0.12 and 0.10 respectively, which were within the accepted limit, while GH1, GH3 and GH4 had their coefficients as 0.16, 0.69 and 0.98 respectively, which exceeded the allowed limit.Keywords: radiation, X-ray output, quality control, half-value layer, mA linearity, KVp variation
Procedia PDF Downloads 609