Search results for: decision forest (DF)
4711 A Machine Learning Approach to Detecting Evasive PDF Malware
Authors: Vareesha Masood, Ammara Gul, Nabeeha Areej, Muhammad Asif Masood, Hamna Imran
Abstract:
The universal use of PDF files has prompted hackers to use them for malicious intent by hiding malicious codes in their victim’s PDF machines. Machine learning has proven to be the most efficient in identifying benign files and detecting files with PDF malware. This paper has proposed an approach using a decision tree classifier with parameters. A modern, inclusive dataset CIC-Evasive-PDFMal2022, produced by Lockheed Martin’s Cyber Security wing is used. It is one of the most reliable datasets to use in this field. We designed a PDF malware detection system that achieved 99.2%. Comparing the suggested model to other cutting-edge models in the same study field, it has a great performance in detecting PDF malware. Accordingly, we provide the fastest, most reliable, and most efficient PDF Malware detection approach in this paper.Keywords: PDF, PDF malware, decision tree classifier, random forest classifier
Procedia PDF Downloads 964710 Production, Utilization and Marketing of Non-Timber Forest Products (NTFPs) in Ikwuano Local Government Area of Abia State, Nigeria
Authors: Nneka M. Chidieber-Mark, Roseline D. Ejike
Abstract:
Non-Timber Forest Products (NTFPs) have been described as all biological materials, other than timber extracted from natural and managed forests for human subsistence and economic activities. This study focused on the production, utilization and marketing of Non-Timber Forest Products (NTFPs) in Ikwuano Local Government Area of Abia State, Nigeria. A multistage sampling technique was adopted in the selection of respondents for the study. Data were from primary sources only. Data collected were analysed using descriptive statistical tools as well as Net Income Analysis. Results show that a vast number of plant based and animal based NTFPs exist in the study area. They are harvested and used for multiple purposes. NTFPs are a source of income for the indigenes that depend on it for their livelihood. Unsustainable production and harvesting as well as poor marketing information was among the constraints impeding the growth and development of NTFPs sub-sector in the study area.Keywords: non-timber forest products, production, utilization, marketing
Procedia PDF Downloads 4544709 Historic Fire Occurrence in Hemi-Boreal Forests: Exploring Natural and Cultural Scots Pine Multi-Cohort Fire Regimes in Lithuania
Authors: Charles Ruffner, Michael Manton, Gintautas Kibirkstis, Gediminas Brazaitas, Vitas Marozas, Ekaterine Makrickiene, Rutile Pukiene, Per Angelstam
Abstract:
In dynamic boreal forests, fire is an important natural disturbance, which drives regeneration and mortality of living and dead trees, and thus successional trajectories. However, current forest management practices focusing on wood production only have effectively eliminated fire as a stand-level disturbance. While this is generally well studied across much of Europe, in Lithuania, little is known about the historic fire regime and the role fire plays as a management tool towards the sustainable management of future landscapes. Focusing on Scots pine forests, we explore; i) the relevance of fire disturbance regimes on forestlands of Lithuania; ii) fire occurrence in the Dzukija landscape for dry upland and peatland forest sites, and iii) correlate tree-ring data with climate variables to ascertain climatic influences on growth and fire occurrence. We sampled and cross-dated 132 Scots pine samples with fire scars from 4 dry pine forest stands and 4 peatland forest stands, respectively. The fire history of each sample was analyzed using standard dendrochronological methods and presented in FHAES format. Analyses of soil moisture and nutrient conditions revealed a strong probability of finding forests that have a high fire frequency in Scots pine forests (59%), which cover 34.5% of Lithuania’s current forestland. The fire history analysis revealed 455 fire scars and 213 fire events during the period 1742-2019. Within the Dzukija landscape, the mean fire interval was 4.3 years for the dry Scots pine forest and 8.7 years for the peatland Scots pine forest. However, our comparison of fire frequency before and after 1950 shows a marked decrease in mean fire interval. Our data suggest that hemi-boreal forest landscapes of Lithuania provide strong evidence that fire, both human and lightning-ignited fires, has been and should be a natural phenomenon and that the examination of biological archives can be used to guide sustainable forest management into the future. Currently, fire use is prohibited by law as a tool for forest management in Lithuania. We recommend introducing trials that use low-intensity prescribed burning of Scots pine stands as a regeneration tool towards mimicking natural forest disturbance regimes.Keywords: biodiversity conservation, cultural burning, dendrochronology, forest dynamics, forest management, succession
Procedia PDF Downloads 2064708 Land Use Dynamics of Ikere Forest Reserve, Nigeria Using Geographic Information System
Authors: Akintunde Alo
Abstract:
The incessant encroachments into the forest ecosystem by the farmers and local contractors constitute a major threat to the conservation of genetic resources and biodiversity in Nigeria. To propose a viable monitoring system, this study employed Geographic Information System (GIS) technology to assess the changes that occurred for a period of five years (between 2011 and 2016) in Ikere forest reserve. Landsat imagery of the forest reserve was obtained. For the purpose of geo-referencing the acquired satellite imagery, ground-truth coordinates of some benchmark places within the forest reserve was relied on. Supervised classification algorithm, image processing, vectorization and map production were realized using ArcGIS. Various land use systems within the forest ecosystem were digitized into polygons of different types and colours for 2011 and 2016, roads were represented with lines of different thickness and colours. Of the six land-use delineated, the grassland increased from 26.50 % in 2011 to 45.53% in 2016 of the total land area with a percentage change of 71.81 %. Plantations of Gmelina arborea and Tectona grandis on the other hand reduced from 62.16 % in 2011 to 27.41% in 2016. The farmland and degraded land recorded percentage change of about 176.80 % and 8.70 % respectively from 2011 to 2016. Overall, the rate of deforestation in the study area is on the increase and becoming severe. About 72.59% of the total land area has been converted to non-forestry uses while the remnant 27.41% is occupied by plantations of Gmelina arborea and Tectona grandis. Interestingly, over 55 % of the plantation area in 2011 has changed to grassland, or converted to farmland and degraded land in 2016. The rate of change over time was about 9.79 % annually. Based on the results, rapid actions to prevail on the encroachers to stop deforestation and encouraged re-afforestation in the study area are recommended.Keywords: land use change, forest reserve, satellite imagery, geographical information system
Procedia PDF Downloads 3614707 Machine Learning for Aiding Meningitis Diagnosis in Pediatric Patients
Authors: Karina Zaccari, Ernesto Cordeiro Marujo
Abstract:
This paper presents a Machine Learning (ML) approach to support Meningitis diagnosis in patients at a children’s hospital in Sao Paulo, Brazil. The aim is to use ML techniques to reduce the use of invasive procedures, such as cerebrospinal fluid (CSF) collection, as much as possible. In this study, we focus on predicting the probability of Meningitis given the results of a blood and urine laboratory tests, together with the analysis of pain or other complaints from the patient. We tested a number of different ML algorithms, including: Adaptative Boosting (AdaBoost), Decision Tree, Gradient Boosting, K-Nearest Neighbors (KNN), Logistic Regression, Random Forest and Support Vector Machines (SVM). Decision Tree algorithm performed best, with 94.56% and 96.18% accuracy for training and testing data, respectively. These results represent a significant aid to doctors in diagnosing Meningitis as early as possible and in preventing expensive and painful procedures on some children.Keywords: machine learning, medical diagnosis, meningitis detection, pediatric research
Procedia PDF Downloads 1524706 Spatio-Temporal Analysis of Land Use and Land Cover Change in the Cocoa Belt of Ondo State, southwestern Nigeria
Authors: Emmanuel Dada, Adebayo-Victoria Tobi Dada
Abstract:
The study evaluates land use and land cover changes in the cocoa belt of Ondo state to quantify its effect on the expanse of land occupied by cocoa plantation as the most suitable region for cocoa raisin in Nigeria. Time series of satellite imagery from Landsat-7 ETM+ and Landsat-8 TIRS covering years 2000 and 2015 respectively were used. The study area was classified into six land use themes of cocoa plantation, settlement, water body, light forest and grassland, forest, and bar surface and rock outcrop. The analyses revealed that out of total land area of 997714 hectares of land of the study area, cocoa plantation land use increased by 10.3% in 2015 from 312260.6 ha in 2000. Forest land use also increased by 6.3% in 2015 from 152144.1 ha in the year 2000, water body reduced from 2954.5 ha in the year 2000 by 0.1% in 2015, settlement land use increased by 3% in 2015 from 15194.6 ha in 2000, light forest and grassland area reduced by 10.4% between 2000 and 2015 and 9.1% reduction in bar surface and rock outcrop land use between the year 2000 and 2015 respectively. The reasons for different ranges in the changes observed in the land use and land cover in the study area could be due to increase in the incentive to cocoa farmers from both government and non-governmental organizations, developed new cocoa breed that thrive better in the light forest, rapid increased in the population of cocoa farmers’ settlements, and government promulgation of forest reserve law.Keywords: satellite imagery, land use and land cover change, area of land
Procedia PDF Downloads 2384705 Carbon Pool Assessment in Two Community Forest in Nepal
Authors: Khemnath Kharel
Abstract:
Forest itself is a factory as well as product. It supplies tangible and intangible goods and services. It supplies timber, fuel wood, fodder, grass leaf litter as well as non timber edible goods and medicinal and aromatic products additionally provides environmental services. These environmental services are of local, national, or even global importance. In Nepal more than 19 thousands community forests are providing environmental service in less economic benefit than actual efficiency. There is a risk of cost of management of those forest exceeds benefits and forests get converted to open access resources in future. Most of the environmental goods and services don’t have markets which mean no prices at which they are available to the consumers therefore the valuation of these services goods and services establishment of paying mechanism for such services and insure the benefit to community is more relevant in local as well as global scale. There are few examples of carbon trading in domestic level to meet the country wide emission goal. In this contest the study aims to explore the public attitude towards carbon offsetting and their responsibility over service providers. This study helps in promotion of environment service awareness among general people and service provider; community forest. The research helps to unveil the carbon pool scenario in community forest and willingness to pay for carbon offsetting of people who are consuming more energy than general people and emitting relatively more carbon in atmosphere. The study has assessed the carbon pool status in two community forest. In the study in two community forests carbon pools were assessed following the guideline “Forest Carbon Inventory Guideline 2010” prescribed by Ministry of Forest and soil Conservation, Nepal. Final out comes of analysis in intensively managed area of Hokse CF recorded as 103.58 tons C /ha with 6173.30 tons carbon stock. Similarly in Hariyali CF carbon density was recorded 251.72 mg C /ha. The total carbon stock of intensively managed blocks in Hariyali CF is 35839.62 tons carbon.Keywords: carbon, offsetting, sequestration, valuation
Procedia PDF Downloads 3274704 Evaluation of a Personalized Online Decision Aid for Colorectal Cancer Screening: A Randomized Controlled Trial
Authors: Linda P. M. Pluymen, Mariska M. G. Leeflang, I. Stegeman, Henock G. Yebyo, Anne E. M. Brabers, Patrick M. Bossuyt, E. Dekker, Anke J. Woudstra, Mirjam P. Fransen
Abstract:
Weighing the benefits and harms of colorectal cancer screening can be difficult for individuals. An existing online decision aid was expanded with a benefit-harm analysis to help people make an informed decision about participating in colorectal cancer screening. In a randomized controlled trial, we investigated whether those in the intervention group who used the decision aid with benefit-harm analysis were more certain about their decision than those in the control group who used the decision aid without benefit-harm analysis. Participants were 623 (39% of those invited) men and women aged 45 until 75 years old. Analyses were performed in those 386 participants (62%) who reported to have completed the entire decision aid. No statistically significant differences were observed between intervention and control group in decisional conflict score (mean difference 2.4, 95% CI -0.9, 5.6), clarity of values (mean difference 1.0, 95% CI -4.4, 6.6), deliberation score (mean difference 0.5, 95% CI -0.6, 1.7), anxiety score (mean difference 0.0, 95% CI -0.3, 0.3) and risk perception score (mean difference 0.1, -0.1, 0.3). Adding a benefit-harm analysis to an online decision aid did not improve informed decision making about participating in colorectal cancer screening.Keywords: benefit-harm analysis, decision aid, informed decision making, personalized decision making
Procedia PDF Downloads 1774703 The Quotation-Based Algorithm for Distributed Decision Making
Authors: Gennady P. Ginkul, Sergey Yu. Soloviov
Abstract:
The article proposes to use so-called "quotation-based algorithm" for simulation of decision making process in distributed expert systems and multi-agent systems. The idea was adopted from the techniques for group decision-making. It is based on the assumption that one expert system to perform its logical inference may use rules from another expert system. The application of the algorithm was demonstrated on the example in which the consolidated decision is the decision that requires minimal quotation.Keywords: backward chaining inference, distributed expert systems, group decision making, multi-agent systems
Procedia PDF Downloads 3794702 Preliminary Study of Human Reliability of Control in Case of Fire Based on the Decision Processes and Stress Model of Human in a Fire
Authors: Seung-Un Chae, Heung-Yul Kim, Sa-Kil Kim
Abstract:
This paper presents the findings of preliminary study on human control performance in case of fire. The relationship between human control and human decision is studied in decision processes and stress model of human in a fire. Human behavior aspects involved in the decision process during a fire incident. The decision processes appear that six of individual perceptual processes: recognition, validation, definition, evaluation, commitment, and reassessment. Then, human may be stressed in order to get an optimal decision for their activity. This paper explores problems in human control processes and stresses in a catastrophic situation. Thus, the future approach will be concerned to reduce stresses and ambiguous irrelevant information.Keywords: human reliability, decision processes, stress model, fire
Procedia PDF Downloads 9904701 Accumulation and Distribution of Soil Organic Carbon in Oxisols, Tshivhase Estate, Limpopo Province
Authors: M. Rose Ntsewa, P. E. Dlamini, V. E. Mbanjwa, R. Chauke
Abstract:
Land-use change from undisturbed forest to tea plantation may lead to accumulation or loss of soil organic carbon (SOC). So far, the factors controlling the vertical distribution of SOC under the long-term establishment of tea plantation remain poorly understood, especially in oxisols. In this study, we quantified the vertical distribution of SOC under tea plantation compared to adjacent undisturbed forest Oxisols sited at different topographic positions and also determined controlling edaphic factors. SOC was greater in the 30-year-old tea plantation compared to undisturbed forest oxisols and declined with depth across all topographic positions. Most of the SOC was found in the downslope position due to erosion and deposition. In the topsoil, SOC was positively correlated with heavy metals; manganese (r=0.62-0.83; P<0.05) and copper (r=0.45-0.69), effective cation exchange capacity (ECEC) (r=0.72) and mean weight diameter (MWD) (r=0.72-0.73), while in the subsoil SOC was positively correlated with copper (r=0.89-0.92) and zinc (r=0.86), ECEC (r=0.56-0.69) and MWD (r=0.48). These relationships suggest that SOC in the tea plantation, oxisols is chemically stabilized via complexation with heavy metals, and physically stabilized by soil aggregates.Keywords: oxisols, tea plantation, topography, undisturbed forest
Procedia PDF Downloads 1534700 Driving Forces of Net Carbon Emissions in a Tropical Dry Forest, Oaxaca, México
Authors: Rogelio Omar Corona-Núñez, Alma Mendoza-Ponce
Abstract:
The Tropical Dry Forest not only is one of the most important tropical ecosystems in terms of area, but also it is one of the most degraded ecosystems. However, little is known about the degradation impacts on carbon stocks, therefore in carbon emissions. There are different studies which explain its deforestation dynamics, but there is still a lack of understanding of how they correlate to carbon losses. Recently different authors have built current biomass maps for the tropics and Mexico. However, it is not clear how well they predict at the local scale, and how they can be used to estimate carbon emissions. This study quantifies the forest net carbon losses by comparing the potential carbon stocks and the different current biomass maps in the Southern Pacific coast in Oaxaca, Mexico. The results show important differences in the current biomass estimates with not a clear agreement. However, by the aggregation of the information, it is possible to infer the general patterns of biomass distribution and it can identify the driving forces of the carbon emissions. This study estimated that currently ~44% of the potential carbon stock estimated for the region is still present. A total of 6,764 GgC has been emitted due to deforestation and degradation of the forest at a rate of above ground biomass loss of 66.4 Mg ha-1. Which, ~62% of the total carbon emissions can be regarded as being due to forest degradation. Most of carbon losses were identified in places suitable for agriculture, close to rural areas and to roads while the lowest losses were accounted in places with high water stress and within the boundaries of the National Protected Area. Moreover, places not suitable for agriculture, but close to the coast showed carbon losses as a result of urban settlements.Keywords: above ground biomass, deforestation, degradation, driving forces, tropical deciduous forest
Procedia PDF Downloads 1874699 Employing Operations Research at Universities to Build Management Systems
Authors: Abdallah A. Hlayel
Abstract:
Operations research science (OR) deals with good success in developing and applying scientific methods for problem solving and decision-making. However, by using OR techniques, we can enhance the use of computer decision support systems to achieve optimal management for institutions. OR applies comprehensive analysis including all factors that affect on it and builds mathematical modeling to solve business or organizational problems. In addition, it improves decision-making and uses available resources efficiently. The adoption of OR by universities would definitely contributes to the development and enhancement of the performance of OR techniques. This paper provides an understanding of the structures, approaches and models of OR in problem solving and decision-making.Keywords: best candidates' method, decision making, decision support system, operations research
Procedia PDF Downloads 4504698 Impacts of Urbanization on Forest and Agriculture Areas in Savannakhet Province, Lao People's Democratic Republic
Authors: Chittana Phompila
Abstract:
The current increased population pushes increasing demands for natural resources and living space. In Laos, urban areas have been expanding rapidly in recent years. The rapid urbanization can have negative impacts on landscapes, including forest and agriculture lands. The primary objective of this research were to map current urban areas in a large city in Savannakhet province, in Laos, 2) to compare changes in urbanization between 1990 and 2018, and 3) to estimate forest and agriculture areas lost due to expansions of urban areas during the last over twenty years within study area. Landsat 8 data was used and existing GIS data was collected including spatial data on rivers, lakes, roads, vegetated areas and other land use/land covers). GIS data was obtained from the government sectors. Object based classification (OBC) approach was applied in ECognition for image processing and analysis of urban area using. Historical data from other Landsat instruments (Landsat 5 and 7) were used to allow us comparing changes in urbanization in 1990, 2000, 2010 and 2018 in this study area. Only three main land cover classes were focused and classified, namely forest, agriculture and urban areas. Change detection approach was applied to illustrate changes in built-up areas in these periods. Our study shows that the overall accuracy of map was 95% assessed, kappa~ 0.8. It is found that that there is an ineffective control over forest and land-use conversions from forests and agriculture to urban areas in many main cities across the province. A large area of agriculture and forest has been decreased due to this conversion. Uncontrolled urban expansion and inappropriate land use planning can lead to creating a pressure in our resource utilisation. As consequence, it can lead to food insecurity and national economic downturn in a long term.Keywords: urbanisation, forest cover, agriculture areas, Landsat 8 imagery
Procedia PDF Downloads 1624697 Monitoring of Forest Cover Dynamics in the High Atlas of Morocco (Zaouit Ahansal) Using Remote Sensing Techniques and GIS
Authors: Abdelaziz Moujane, Abedelali Boulli, Abdellah Ouigmane
Abstract:
The present work focuses on the assessment of forestlandscape changes in the region of ZaouitAhansal, usingmultitemporal satellite images at high spatial resolution.Severalremotesensingmethodswereappliednamely: The supervised classification algorithm and NDVI whichwerecombined in a GIS environment to quantify the extent and change in density of forest stands (holmoak, juniper, thya, Aleppo pine, crops, and others).The resultsobtainedshowedthat the forest of ZaouitAhansal has undergonesignificantdegradationresulting in a decrease in the area of juniper, cedar, and zeenoak, as well as an increase in the area of baresoil and agricultural land. The remotesensing data providedsatisfactoryresults for identifying and quantifying changes in forestcover. In addition, thisstudycould serve as a reference for the development of management strategies and restoration programs.Keywords: remote sensing, GIS, satellite image, NDVI, deforestation, zaouit ahansal
Procedia PDF Downloads 1564696 Using Geographic Information System and Analytic Hierarchy Process for Detecting Forest Degradation in Benslimane Forest, Morocco
Authors: Loubna Khalile, Hicham Lahlaoi, Hassan Rhinane, A. Kaoukaya, S. Fal
Abstract:
Green spaces is an essential element, they contribute to improving the quality of lives of the towns around them. They are a place of relaxation, walk and rest a playground for sport and youths. According to United Nations Organization Forests cover 31% of the land. In Morocco in 2013 that cover 12.65 % of the total land area, still, a small proportion compared to the natural needs of forests as a green lung of our planet. The Benslimane Forest is a large green area It belongs to Chaouia-Ouardigha Region and Greater Casablanca Region, it is located geographically between Casablanca is considered the economic and business Capital of Morocco and Rabat the national political capital, with an area of 12261.80 Hectares. The essential problem usually encountered in suburban forests, is visitation and tourism pressure it is anthropogenic actions, as well as other ecological and environmental factors. In recent decades, Morocco has experienced a drought year that has influenced the forest with increasing human pressure and every day it suffers heavy losses, as well as over-exploitation. The Moroccan forest ecosystems are weak with intense ecological variation, domanial and imposed usage rights granted to the population; forests are experiencing a significant deterioration due to forgetfulness and immoderate use of forest resources which can influence the destruction of animal habitats, vegetation, water cycle and climate. The purpose of this study is to make a model of the degree of degradation of the forest and know the causes for prevention by using remote sensing and geographic information systems by introducing climate and ancillary data. Analytic hierarchy process was used to find out the degree of influence and the weight of each parameter, in this case, it is found that anthropogenic activities have a fairly significant impact has thus influenced the climate.Keywords: analytic hierarchy process, degradation, forest, geographic information system
Procedia PDF Downloads 3314695 Seasonal and Monthly Field Soil Respiration Rate and Litter Fall Amounts of Kasuga-Yama Hill Primeval Forest
Authors: Ayuko Itsuki, Sachiyo Aburatani
Abstract:
The seasonal (January, April, July and October) and monthly soil respiration rate and the monthly litter fall amounts were examined in the laurel-leaved (B_B-1) and Cryptomeria japonica (B_B-2 and PW) forests in the Kasugayama Hill Primeval Forest (Nara, Japan). The change of the seasonal soil respiration rate corresponded to that of the soil temperature. The soil respiration rate was higher in October when fresh organic matter was supplied in the forest floor than in April in spite of the same temperature. The seasonal soil respiration rate of B_B-1 was higher than that of B_B-2, which corresponded to more numbers of bacteria and fungi counted by the dilution plate method and by the direct count method by microscopy in B_B-1 than that of B_B-2. The seasonal soil respiration rate of B_B-2 was higher than that of PW, which corresponded to more microbial biomass by the direct count method by microscopy in B_B-2 than that of PW. The correlation coefficient with the seasonal soil respiration and the soil temperature was higher than that of the monthly soil respiration. The soil respiration carbon was more than the litter fall carbon. It was suggested that the soil respiration included in the carbon dioxide which was emitted by the plant root and soil animal, or that the litter fall supplied to the forest floor included in animal and plant litter.Keywords: field soil respiration rate, forest soil, litter fall, mineralization rate
Procedia PDF Downloads 2964694 Geospatial Analysis of Hydrological Response to Forest Fires in Small Mediterranean Catchments
Authors: Bojana Horvat, Barbara Karleusa, Goran Volf, Nevenka Ozanic, Ivica Kisic
Abstract:
Forest fire is a major threat in many regions in Croatia, especially in coastal areas. Although they are often caused by natural processes, the most common cause is the human factor, intentional or unintentional. Forest fires drastically transform landscapes and influence natural processes. The main goal of the presented research is to analyse and quantify the impact of the forest fire on hydrological processes and propose the model that best describes changes in hydrological patterns in the analysed catchments. Keeping in mind the spatial component of the processes, geospatial analysis is performed to gain better insight into the spatial variability of the hydrological response to disastrous events. In that respect, two catchments that experienced severe forest fire were delineated, and various hydrological and meteorological data were collected both attribute and spatial. The major drawback is certainly the lack of hydrological data, common in small torrential karstic streams; hence modelling results should be validated with the data collected in the catchment that has similar characteristics and established hydrological monitoring. The event chosen for the modelling is the forest fire that occurred in July 2019 and burned nearly 10% of the analysed area. Surface (land use/land cover) conditions before and after the event were derived from the two Sentinel-2 images. The mapping of the burnt area is based on a comparison of the Normalized Burn Index (NBR) computed from both images. To estimate and compare hydrological behaviour before and after the event, curve number (CN) values are assigned to the land use/land cover classes derived from the satellite images. Hydrological modelling resulted in surface runoff generation and hence prediction of hydrological responses in the catchments to a forest fire event. The research was supported by the Croatian Science Foundation through the project 'Influence of Open Fires on Water and Soil Quality' (IP-2018-01-1645).Keywords: Croatia, forest fire, geospatial analysis, hydrological response
Procedia PDF Downloads 1414693 Natural Regeneration Dynamics in Different Microsites within Gaps of Different Sizes
Authors: M. E. Hammond, R. Pokorny
Abstract:
Not much research has gone into the dynamics of natural regeneration of trees species in tropical forest regions. This study seeks to investigate the impact of gap sizes and light distribution in forest floors on the regeneration of Celtis mildbraedii (CEM), Nesogordonia papaverine (NES) and Terminalia superba (TES). These are selected economically important tree species with different shade tolerance attributes. The spatial distribution patterns and the potential regeneration competition index (RCI) among species using height to diameter ratio (HDR) have been assessed. Gap sizes ranging between 287 – 971 m² were selected at the Bia Tano forest reserve, a tropical moist semi-deciduous forest in Ghana. Four (4) transects in the cardinal directions were constructed from the center of each gap. Along each transect, ten 1 m² sampling zones at 2 m spacing were established. Then, three gap microsites (labeled ecozones I, II, III) were delineated within these sampling zones based on the varying temporal light distribution on the forest floor. Data on height (H), root collar diameter (RCD) and regeneration census were gathered from each of the ten sampling zones. CEM and NES seedlings (≤ 50 cm) and saplings (≥ 51 cm) were present in all ecozones of the large gaps. Seedlings of TES were observed in all ecozones of large and small gaps. Regression analysis showed a significant negative linear relationship between independent RCD and H growth variables on dependent HDR index in ecozones II and III of both large and small gaps. There was a correlation between RCD and H in both large and small gaps. A strong regeneration competition was observed among species in ecozone II in large (df 2, F=3.6, p=0.035) and small (df 2, F=17.9, p=0.000) gaps. These results contribute to the understanding of the natural regeneration of different species with regards to light regimes in forest floors.Keywords: Celtis mildbraedii, ecozones, gaps, Nesogordonia papaverifera, regeneration, Terminalia superba
Procedia PDF Downloads 1454692 Model for Introducing Products to New Customers through Decision Tree Using Algorithm C4.5 (J-48)
Authors: Komol Phaisarn, Anuphan Suttimarn, Vitchanan Keawtong, Kittisak Thongyoun, Chaiyos Jamsawang
Abstract:
This article is intended to analyze insurance information which contains information on the customer decision when purchasing life insurance pay package. The data were analyzed in order to present new customers with Life Insurance Perfect Pay package to meet new customers’ needs as much as possible. The basic data of insurance pay package were collect to get data mining; thus, reducing the scattering of information. The data were then classified in order to get decision model or decision tree using Algorithm C4.5 (J-48). In the classification, WEKA tools are used to form the model and testing datasets are used to test the decision tree for the accurate decision. The validation of this model in classifying showed that the accurate prediction was 68.43% while 31.25% were errors. The same set of data were then tested with other models, i.e. Naive Bayes and Zero R. The results showed that J-48 method could predict more accurately. So, the researcher applied the decision tree in writing the program used to introduce the product to new customers to persuade customers’ decision making in purchasing the insurance package that meets the new customers’ needs as much as possible.Keywords: decision tree, data mining, customers, life insurance pay package
Procedia PDF Downloads 4334691 Localization of Pyrolysis and Burning of Ground Forest Fires
Authors: Pavel A. Strizhak, Geniy V. Kuznetsov, Ivan S. Voytkov, Dmitri V. Antonov
Abstract:
This paper presents the results of experiments carried out at a specialized test site for establishing macroscopic patterns of heat and mass transfer processes at localizing model combustion sources of ground forest fires with the use of barrier lines in the form of a wetted lay of material in front of the zone of flame burning and thermal decomposition. The experiments were performed using needles, leaves, twigs, and mixtures thereof. The dimensions of the model combustion source and the ranges of heat release correspond well to the real conditions of ground forest fires. The main attention is paid to the complex analysis of the effect of dispersion of water aerosol (concentration and size of droplets) used to form the barrier line. It is shown that effective conditions for localization and subsequent suppression of flame combustion and thermal decomposition of forest fuel can be achieved by creating a group of barrier lines with different wetting width and depth of the material. Relative indicators of the effectiveness of one and combined barrier lines were established, taking into account all the main characteristics of the processes of suppressing burning and thermal decomposition of forest combustible materials. We performed the prediction of the necessary and sufficient parameters of barrier lines (water volume, width, and depth of the wetted lay of the material, specific irrigation density) for combustion sources with different dimensions, corresponding to the real fire extinguishing practice.Keywords: forest fire, barrier water lines, pyrolysis front, flame front
Procedia PDF Downloads 1404690 Reduce the Impact of Wildfires by Identifying Them Early from Space and Sending Location Directly to Closest First Responders
Authors: Gregory Sullivan
Abstract:
The evolution of global warming has escalated the number and complexity of forest fires around the world. As an example, the United States and Brazil combined generated more than 30,000 forest fires last year. The impact to our environment, structures and individuals is incalculable. The world has learned to try to take this in stride, trying multiple ways to contain fires. Some countries are trying to use cameras in limited areas. There are discussions of using hundreds of low earth orbit satellites and linking them together, and, interfacing them through ground networks. These are all truly noble attempts to defeat the forest fire phenomenon. But there is a better, simpler answer. A bigger piece of the solutions puzzle is to see the fires while they are small, soon after initiation. The approach is to see the fires while they are very small and report their location (latitude and longitude) to local first responders. This is done by placing a sensor at geostationary orbit (GEO: 26,000 miles above the earth). By placing this small satellite in GEO, we can “stare” at the earth, and sense temperature changes. We do not “see” fires, but “measure” temperature changes. This has already been demonstrated on an experimental scale. Fires were seen at close to initiation, and info forwarded to first responders. it were the first to identify the fires 7 out of 8 times. The goal is to have a small independent satellite at GEO orbit focused only on forest fire initiation. Thus, with one small satellite, focused only on forest fire initiation, we hope to greatly decrease the impact to persons, property and the environment.Keywords: space detection, wildfire early warning, demonstration wildfire detection and action from space, space detection to first responders
Procedia PDF Downloads 774689 Forecasting the Fluctuation of Currency Exchange Rate Using Random Forest
Authors: Lule Basha, Eralda Gjika
Abstract:
The exchange rate is one of the most important economic variables, especially for a small, open economy such as Albania. Its effect is noticeable in one country's competitiveness, trade and current account, inflation, wages, domestic economic activity, and bank stability. This study investigates the fluctuation of Albania’s exchange rates using monthly average foreign currency, Euro (Eur) to Albanian Lek (ALL) exchange rate with a time span from January 2008 to June 2021, and the macroeconomic factors that have a significant effect on the exchange rate. Initially, the Random Forest Regression algorithm is constructed to understand the impact of economic variables on the behavior of monthly average foreign currencies exchange rates. Then the forecast of macro-economic indicators for 12 months was performed using time series models. The predicted values received are placed in the random forest model in order to obtain the average monthly forecast of the Euro to Albanian Lek (ALL) exchange rate for the period July 2021 to June 2022.Keywords: exchange rate, random forest, time series, machine learning, prediction
Procedia PDF Downloads 1084688 Application of Random Forest Model in The Prediction of River Water Quality
Authors: Turuganti Venkateswarlu, Jagadeesh Anmala
Abstract:
Excessive runoffs from various non-point source land uses, and other point sources are rapidly contaminating the water quality of streams in the Upper Green River watershed, Kentucky, USA. It is essential to maintain the stream water quality as the river basin is one of the major freshwater sources in this province. It is also important to understand the water quality parameters (WQPs) quantitatively and qualitatively along with their important features as stream water is sensitive to climatic events and land-use practices. In this paper, a model was developed for predicting one of the significant WQPs, Fecal Coliform (FC) from precipitation, temperature, urban land use factor (ULUF), agricultural land use factor (ALUF), and forest land-use factor (FLUF) using Random Forest (RF) algorithm. The RF model, a novel ensemble learning algorithm, can even find out advanced feature importance characteristics from the given model inputs for different combinations. This model’s outcomes showed a good correlation between FC and climate events and land use factors (R2 = 0.94) and precipitation and temperature are the primary influencing factors for FC.Keywords: water quality, land use factors, random forest, fecal coliform
Procedia PDF Downloads 2014687 Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite
Authors: F. Lazzeri, I. Reiter
Abstract:
Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.
Keywords: time-series, features engineering methods for forecasting, energy demand forecasting, Azure Machine Learning
Procedia PDF Downloads 3034686 Conception of a Predictive Maintenance System for Forest Harvesters from Multiple Data Sources
Authors: Lazlo Fauth, Andreas Ligocki
Abstract:
For cost-effective use of harvesters, expensive repairs and unplanned downtimes must be reduced as far as possible. The predictive detection of failing systems and the calculation of intelligent service intervals, necessary to avoid these factors, require in-depth knowledge of the machines' behavior. Such know-how needs permanent monitoring of the machine state from different technical perspectives. In this paper, three approaches will be presented as they are currently pursued in the publicly funded project PreForst at Ostfalia University of Applied Sciences. These include the intelligent linking of workshop and service data, sensors on the harvester, and a special online hydraulic oil condition monitoring system. Furthermore the paper shows potentials as well as challenges for the use of these data in the conception of a predictive maintenance system.Keywords: predictive maintenance, condition monitoring, forest harvesting, forest engineering, oil data, hydraulic data
Procedia PDF Downloads 1544685 Current Status of Nitrogen Saturation in the Upper Reaches of the Kanna River, Japan
Authors: Sakura Yoshii, Masakazu Abe, Akihiro Iijima
Abstract:
Nitrogen saturation has become one of the serious issues in the field of forest environment. The watershed protection forests located in the downwind hinterland of Tokyo Metropolitan Area are believed to be facing nitrogen saturation. In this study, we carefully focus on the balance of nitrogen between load and runoff. Annual nitrogen load via atmospheric deposition was estimated to 461.1 t-N/year in the upper reaches of the Kanna River. Annual nitrogen runoff to the forested headwater stream of the Kanna River was determined to 184.9 t-N/year, corresponding to 40.1% of the total nitrogen load. Clear seasonal change in NO3-N concentration was still observed. Therefore, watershed protection forest of the Kanna River is most likely to be in Stage-1 on the status of nitrogen saturation.Keywords: atmospheric deposition, nitrogen accumulation, denitrification, forest ecosystems
Procedia PDF Downloads 2824684 Career Decision-Making Difficulty and Emotional Quotient: Basis for a Career Guidance Intervention for City College of Angeles
Authors: Rhenan D. Estacio
Abstract:
This research presents the career decision making difficulty and emotional quotient of one hundred fifty (150) college students of City College of Angeles, Academic Year 2016-2017. Independent sample T-test and Pearson r correlation were done to shifter and non-shifter in terms of their career decision making difficulty and emotional quotient. A significant positive correlation revealed (r=.302) on career decision making difficulty and emotional quotient. Also, a significant negative correlation revealed (r=-.329) on career decision making difficulty and a moderating variable which is age. The finding significantly shows that emotional quotient was associated and adds a significant incremental variance with career decision making difficulty. Moreover, age shows a moderating effect on career decision making difficulty by having a significant decline and increment on variables. Furthermore, categorization of career decision making difficulty and emotional quotient of said participants are described in this study. In addition, career guidance interventions were suggested based on the results of this study.Keywords: career, decision-making, difficulty, emotional, quotient
Procedia PDF Downloads 4344683 Classification of Forest Types Using Remote Sensing and Self-Organizing Maps
Authors: Wanderson Goncalves e Goncalves, José Alberto Silva de Sá
Abstract:
Human actions are a threat to the balance and conservation of the Amazon forest. Therefore the environmental monitoring services play an important role as the preservation and maintenance of this environment. This study classified forest types using data from a forest inventory provided by the 'Florestal e da Biodiversidade do Estado do Pará' (IDEFLOR-BIO), located between the municipalities of Santarém, Juruti and Aveiro, in the state of Pará, Brazil, covering an area approximately of 600,000 hectares, Bands 3, 4 and 5 of the TM-Landsat satellite image, and Self - Organizing Maps. The information from the satellite images was extracted using QGIS software 2.8.1 Wien and was used as a database for training the neural network. The midpoints of each sample of forest inventory have been linked to images. Later the Digital Numbers of the pixels have been extracted, composing the database that fed the training process and testing of the classifier. The neural network was trained to classify two forest types: Rain Forest of Lowland Emerging Canopy (Dbe) and Rain Forest of Lowland Emerging Canopy plus Open with palm trees (Dbe + Abp) in the Mamuru Arapiuns glebes of Pará State, and the number of examples in the training data set was 400, 200 examples for each class (Dbe and Dbe + Abp), and the size of the test data set was 100, with 50 examples for each class (Dbe and Dbe + Abp). Therefore, total mass of data consisted of 500 examples. The classifier was compiled in Orange Data Mining 2.7 Software and was evaluated in terms of the confusion matrix indicators. The results of the classifier were considered satisfactory, and being obtained values of the global accuracy equal to 89% and Kappa coefficient equal to 78% and F1 score equal to 0,88. It evaluated also the efficiency of the classifier by the ROC plot (receiver operating characteristics), obtaining results close to ideal ratings, showing it to be a very good classifier, and demonstrating the potential of this methodology to provide ecosystem services, particularly in anthropogenic areas in the Amazon.Keywords: artificial neural network, computational intelligence, pattern recognition, unsupervised learning
Procedia PDF Downloads 3684682 Wildland Fire in Terai Arc Landscape of Lesser Himalayas Threatning the Tiger Habitat
Authors: Amit Kumar Verma
Abstract:
The present study deals with fire prediction model in Terai Arc Landscape, one of the most dramatic ecosystems in Asia where large, wide-ranging species such as tiger, rhinos, and elephant will thrive while bringing economic benefits to the local people. Forest fires cause huge economic and ecological losses and release considerable quantities of carbon into the air and is an important factor inflating the global burden of carbon emissions. Forest fire is an important factor of behavioral cum ecological habit of tiger in wild. Post fire changes i.e. micro and macro habitat directly affect the tiger habitat or land. Vulnerability of fire depicts the changes in microhabitat (humus, soil profile, litter, vegetation, grassland ecosystem). Microorganism like spider, annelids, arthropods and other favorable microorganism directly affect by the forest fire and indirectly these entire microorganisms are responsible for the development of tiger (Panthera tigris) habitat. On the other hand, fire brings depletion in prey species and negative movement of tiger from wild to human- dominated areas, which may leads the conflict i.e. dangerous for both tiger & human beings. Early forest fire prediction through mapping the risk zones can help minimize the fire frequency and manage forest fires thereby minimizing losses. Satellite data plays a vital role in identifying and mapping forest fire and recording the frequency with which different vegetation types are affected. Thematic hazard maps have been generated by using IDW technique. A prediction model for fire occurrence is developed for TAL. The fire occurrence records were collected from state forest department from 2000 to 2014. Disciminant function models was used for developing a prediction model for forest fires in TAL, random points for non-occurrence of fire have been generated. Based on the attributes of points of occurrence and non-occurrence, the model developed predicts the fire occurrence. The map of predicted probabilities classified the study area into five classes very high (12.94%), high (23.63%), moderate (25.87%), low(27.46%) and no fire (10.1%) based upon the intensity of hazard. model is able to classify 78.73 percent of points correctly and hence can be used for the purpose with confidence. Overall, also the model works correctly with almost 69% of points. This study exemplifies the usefulness of prediction model of forest fire and offers a more effective way for management of forest fire. Overall, this study depicts the model for conservation of tiger’s natural habitat and forest conservation which is beneficial for the wild and human beings for future prospective.Keywords: fire prediction model, forest fire hazard, GIS, landsat, MODIS, TAL
Procedia PDF Downloads 355