Search results for: crop recommendation
1443 Analysis of Weather Variability Impact on Yields of Some Crops in Southwest, Nigeria
Authors: Olumuyiwa Idowu Ojo, Oluwatobi Peter Olowo
Abstract:
The study developed a Geographical Information Systems (GIS) database and mapped inter-annual changes in crop yields of cassava, cowpea, maize, rice, melon and yam as a response to inter-annual rainfall and temperature variability in Southwest, Nigeria. The aim of this project is to study the comparative analysis of the weather variability impact of six crops yield (Rice, melon, yam, cassava, Maize and cowpea) in South Western States of Nigeria (Oyo, Osun, Ekiti, Ondo, Ogun and Lagos) from 1991 – 2007. The data was imported and analysed in the Arch GIS 9 – 3 software environment. The various parameters (temperature, rainfall, crop yields) were interpolated using the kriging method. The results generated through interpolation were clipped to the study area. Geographically weighted regression was chosen from the spatial statistics toolbox in Arch GIS 9.3 software to analyse and predict the relationship between temperature, rainfall and the different crops (Cowpea, maize, rice, melon, yam, and cassava).Keywords: GIS, crop yields, comparative analysis, temperature, rainfall, weather variability
Procedia PDF Downloads 3241442 Design and Implementation of a Software Platform Based on Artificial Intelligence for Product Recommendation
Authors: Giuseppina Settanni, Antonio Panarese, Raffaele Vaira, Maurizio Galiano
Abstract:
Nowdays, artificial intelligence is used successfully in academia and industry for its ability to learn from a large amount of data. In particular, in recent years the use of machine learning algorithms in the field of e-commerce has spread worldwide. In this research study, a prototype software platform was designed and implemented in order to suggest to users the most suitable products for their needs. The platform includes a chatbot and a recommender system based on artificial intelligence algorithms that provide suggestions and decision support to the customer. The recommendation systems perform the important function of automatically filtering and personalizing information, thus allowing to manage with the IT overload to which the user is exposed on a daily basis. Recently, international research has experimented with the use of machine learning technologies with the aim to increase the potential of traditional recommendation systems. Specifically, support vector machine algorithms have been implemented combined with natural language processing techniques that allow the user to interact with the system, express their requests and receive suggestions. The interested user can access the web platform on the internet using a computer, tablet or mobile phone, register, provide the necessary information and view the products that the system deems them most appropriate. The platform also integrates a dashboard that allows the use of the various functions, which the platform is equipped with, in an intuitive and simple way. Artificial intelligence algorithms have been implemented and trained on historical data collected from user browsing. Finally, the testing phase allowed to validate the implemented model, which will be further tested by letting customers use it.Keywords: machine learning, recommender system, software platform, support vector machine
Procedia PDF Downloads 1331441 An Investigation of the Compliance of Kermanian College Students' Diet with Who/Fao Nutrition Targets
Authors: Farideh Doostan, Sahar Mohseni Taklloo, Mohammad Nosrati
Abstract:
Chronic diseases are non-communicable and largely preventable by lifestyle changes including healthy diet consumption. They are the most common cause of death in the world and projected to increase by 15% globally between 2010 and 2020.The hazardous effects of behavioral and dietary risk factors on chronic disease have been established in prospective cohort studies and randomized trials. Because of some changes occur in college students’ lifestyle, assessment of dietary risk factors is important in these populations. Objective: This research was the first study that conducted to evaluate dietary intakes of Kermanian college students with WHO/FAO nutritional objectives. Material and Methods: In this descriptive cross-sectional study, 229 healthy college students of health faculty in Kerman University of Medical Sciences that do not intake any medical drugs were recruited using multistage sampling in 2013.Usual dietary intake was collected using a valid Food Frequency Questionnaire (FFQ) and diet quality was calculated based on WHO nutrient goals. To analysis of data between two groups, independent sample t. test and man whitney were applied. Results: Two hundred and twenty-nine college students; 151 females (65.9%) and 78 males (34.1%), the mean age of 21.9 years were studied. The mean of the Body Mass Index (Kg/m2) and Waist Circumference (cm) in males were 22.34 ±3.52 and 80.76±11.16 and in females were 21.19±2.62 and 73.67±7.65 respectively. Mean of daily cholesterol intake in males was significantly more than females (305±101 VS 268±98; P=0.008) and more than WHO/FAO recommendation (less than 300 mg/day). The mean of daily sodium intake in men and women were 10.4±1 and 10.9±5.3 respectively. These amounts were more than WHO/FAO recommendation (less than 2g/day). In addition, women were consumed fruit and vegetables more than men (839±336 VS 638±281; p ‹ 0.001) and these amounts were more than WHO/FAO recommendation (more than 400g/day) in both groups. Other intake indices were in the range of WHO/FAO recommendations, So that Percent of calories intake from total fat, saturated fatty acids, polyunsaturated fatty acids and added sugar were in compliance with WHO/FAO recommendations. Conclusion: Cholesterol intake in men and sodium intake in all participants were more than WHO/FAO recommendation. These dietary components are the most important causes of cardiovascular disease (one of the main causes of death in our population). These results indicated that proper nutritional education and interventions are needed in this population.Keywords: college students, food intake, WHO /FAO nutrient intake goals, Kerman
Procedia PDF Downloads 4041440 SVM-RBN Model with Attentive Feature Culling Method for Early Detection of Fruit Plant Diseases
Authors: Piyush Sharma, Devi Prasad Sharma, Sulabh Bansal
Abstract:
Diseases are fairly common in fruits and vegetables because of the changing climatic and environmental circumstances. Crop diseases, which are frequently difficult to control, interfere with the growth and output of the crops. Accurate disease detection and timely disease control measures are required to guarantee high production standards and good quality. In India, apples are a common crop that may be afflicted by a variety of diseases on the fruit, stem, and leaves. It is fungi, bacteria, and viruses that trigger the early symptoms of leaf diseases. In order to assist farmers and take the appropriate action, it is important to develop an automated system that can be used to detect the type of illnesses. Machine learning-based image processing can be used to: this research suggested a system that can automatically identify diseases in apple fruit and apple plants. Hence, this research utilizes the hybrid SVM-RBN model. As a consequence, the model may produce results that are more effective in terms of accuracy, precision, recall, and F1 Score, with respective values of 96%, 99%, 94%, and 93%.Keywords: fruit plant disease, crop disease, machine learning, image processing, SVM-RBN
Procedia PDF Downloads 631439 Depletion Behavior of Potassium by Continuous Cropping Using Rice as a Test Crop
Authors: Rafeza Begum, Mohammad Mokhlesur Rahman, Safikul Moula, Rafiqul Islam
Abstract:
Potassium (K) is crucial for healthy soil and plant growth. However, K fertilization is either disregarded or poorly underutilized in Bangladesh agriculture, despite the great demand for crops. This could eventually result in a significant depletion of the soil's potassium reserves, irreversible alteration of the minerals that contain potassium, and detrimental effects on crop productivity. Soil K mining in Bangladesh is a worrying problem, and we need to evaluate it thoroughly and find remedies. A pot culture experiment was conducted in the greenhouse of Bangladesh Institute of Nuclear Agriculture (BINA) using eleven soil series of Bangladesh in order to see the depletion behaviour of potassium (K) by continuous cropping using rice (var. Iratom-24) as the test crop. The soil series were Ranishankhail, Kaonia. Sonatala, Silmondi, Gopalpur, Ishurdi, Sara, Kongsha, Nunni, Lauta and Amnura on which four successive rice plants (45 days duration) were raised with (100 ppm K) or without addition of potassium. Nitrogen, phosphorus, sulfur and zinc were applied as basal to all pots. Potassium application resulted in higher dry matter yield, increased K concentration and uptake in all the soils compared with no K treatment; which gradually decreased in the subsequent harvests. Furthermore, plant takes up K not only from exchangeable pool but also from non-exchangeable sites and a minimum replenishment of K from the soil reserve was observed. Continuous cropping has resulted in the depletion of available K of the soil. The result indicated that in order to sustain higher crop yield under intensive cultivation, the addition of potash fertilizer is necessary.Keywords: potassium, exchangeable pool, depletion behavior., Soil series
Procedia PDF Downloads 1251438 Creating Risk Maps on the Spatiotemporal Occurrence of Agricultural Insecticides in Sub-Saharan Africa
Authors: Chantal Hendriks, Harry Gibson, Anna Trett, Penny Hancock, Catherine Moyes
Abstract:
The use of modern inputs for crop protection, such as insecticides, is strongly underestimated in Sub-Saharan Africa. Several studies measured toxic concentrations of insecticides in fruits, vegetables and fish that were cultivated in Sub-Saharan Africa. The use of agricultural insecticides has impact on human and environmental health, but it also has the potential to impact on insecticide resistance in malaria transmitting mosquitos. To analyse associations between historic use of agricultural insecticides and the distribution of insecticide resistance through space and time, the use and environmental fate of agricultural insecticides needs to be mapped through the same time period. However, data on the use and environmental fate of agricultural insecticides in Africa are limited and therefore risk maps on the spatiotemporal occurrence of agricultural insecticides are created using environmental data. Environmental data on crop density and crop type were used to select the areas that most likely receive insecticides. These areas were verified by a literature review and expert knowledge. Pesticide fate models were compared to select most dominant processes that are involved in the environmental fate of insecticides and that can be mapped at a continental scale. The selected processes include: surface runoff, erosion, infiltration, volatilization and the storing and filtering capacity of soils. The processes indicate the risk for insecticide accumulation in soil, water, sediment and air. A compilation of all available data for traces of insecticides in the environment was used to validate the maps. The risk maps can result in space and time specific measures that reduce the risk of insecticide exposure to non-target organisms.Keywords: crop protection, pesticide fate, tropics, insecticide resistance
Procedia PDF Downloads 1411437 Monitoring of Rice Phenology and Agricultural Practices from Sentinel 2 Images
Authors: D. Courault, L. Hossard, V. Demarez, E. Ndikumana, D. Ho Tong Minh, N. Baghdadi, F. Ruget
Abstract:
In the global change context, efficient management of the available resources has become one of the most important topics, particularly for sustainable crop development. Timely assessment with high precision is crucial for water resource and pest management. Rice cultivated in Southern France in the Camargue region must face a challenge, reduction of the soil salinity by flooding and at the same time reduce the number of herbicides impacting negatively the environment. This context has lead farmers to diversify crop rotation and their agricultural practices. The objective of this study was to evaluate this crop diversity both in crop systems and in agricultural practices applied to rice paddy in order to quantify the impact on the environment and on the crop production. The proposed method is based on the combined use of crop models and multispectral data acquired from the recent Sentinel 2 satellite sensors launched by the European Space Agency (ESA) within the homework of the Copernicus program. More than 40 images at fine spatial resolution (10m in the optical range) were processed for 2016 and 2017 (with a revisit time of 5 days) to map crop types using random forest method and to estimate biophysical variables (LAI) retrieved by inversion of the PROSAIL canopy radiative transfer model. Thanks to the high revisit time of Sentinel 2 data, it was possible to monitor the soil labor before flooding and the second sowing made by some farmers to better control weeds. The temporal trajectories of remote sensing data were analyzed for various rice cultivars for defining the main parameters describing the phenological stages useful to calibrate two crop models (STICS and SAFY). Results were compared to surveys conducted with 10 farms. A large variability of LAI has been observed at farm scale (up to 2-3m²/m²) which induced a significant variability in the yields simulated (up to 2 ton/ha). Observations on more than 300 fields have also been collected on land use. Various maps were elaborated, land use, LAI, flooding and sowing, and harvest dates. All these maps allow proposing a new typology to classify these paddy crop systems. Key phenological dates can be estimated from inverse procedures and were validated against ground surveys. The proposed approach allowed to compare the years and to detect anomalies. The methods proposed here can be applied at different crops in various contexts and confirm the potential of remote sensing acquired at fine resolution such as the Sentinel2 system for agriculture applications and environment monitoring. This study was supported by the French national center of spatial studies (CNES, funded by the TOSCA).Keywords: agricultural practices, remote sensing, rice, yield
Procedia PDF Downloads 2741436 Productivity and Household Welfare Impact of Technology Adoption: A Microeconometric Analysis
Authors: Tigist Mekonnen Melesse
Abstract:
Since rural households are basically entitled to food through own production, improving productivity might lead to enhance the welfare of rural population through higher food availability at the household level and lowering the price of agricultural products. Increasing agricultural productivity through the use of improved technology is one of the desired outcomes from sensible food security and agricultural policy. The ultimate objective of this study was to evaluate the potential impact of improved agricultural technology adoption on smallholders’ crop productivity and welfare. The study is conducted in Ethiopia covering 1500 rural households drawn from four regions and 15 rural villages based on data collected by Ethiopian Rural Household Survey. Endogenous treatment effect model is employed in order to account for the selection bias on adoption decision that is expected from the self-selection of households in technology adoption. The treatment indicator, technology adoption is a binary variable indicating whether the household used improved seeds and chemical fertilizer or not. The outcome variables were cereal crop productivity, measured in real value of production and welfare of households, measured in real per capita consumption expenditure. Results of the analysis indicate that there is positive and significant effect of improved technology use on rural households’ crop productivity and welfare in Ethiopia. Adoption of improved seeds and chemical fertilizer alone will increase the crop productivity by 7.38 and 6.32 percent per year of each. Adoption of such technologies is also found to improve households’ welfare by 1.17 and 0.25 percent per month of each. The combined effect of both technologies when adopted jointly is increasing crop productivity by 5.82 percent and improving welfare by 0.42 percent. Besides, educational level of household head, farm size, labor use, participation in extension program, expenditure for input and number of oxen positively affect crop productivity and household welfare, while large household size negatively affect welfare of households. In our estimation, the average treatment effect of technology adoption (average treatment effect on the treated, ATET) is the same as the average treatment effect (ATE). This implies that the average predicted outcome for the treatment group is similar to the average predicted outcome for the whole population.Keywords: Endogenous treatment effect, technologies, productivity, welfare, Ethiopia
Procedia PDF Downloads 6531435 Point-of-Interest Recommender Systems for Location-Based Social Network Services
Authors: Hoyeon Park, Yunhwan Keon, Kyoung-Jae Kim
Abstract:
Location Based Social Network services (LBSNs) is a new term that combines location based service and social network service (SNS). Unlike traditional SNS, LBSNs emphasizes empirical elements in the user's actual physical location. Point-of-Interest (POI) is the most important factor to implement LBSNs recommendation system. POI information is the most popular spot in the area. In this study, we would like to recommend POI to users in a specific area through recommendation system using collaborative filtering. The process is as follows: first, we will use different data sets based on Seoul and New York to find interesting results on human behavior. Secondly, based on the location-based activity information obtained from the personalized LBSNs, we have devised a new rating that defines the user's preference for the area. Finally, we have developed an automated rating algorithm from massive raw data using distributed systems to reduce advertising costs of LBSNs.Keywords: location-based social network services, point-of-interest, recommender systems, business analytics
Procedia PDF Downloads 2291434 Assessing the Impact of Quinoa Cultivation Adopted to Produce a Secure Food Crop and Poverty Reduction by Farmers in Rural Pakistan
Authors: Ejaz Ashraf, Raheel Babar, Muhammad Yaseen, Hafiz Khurram Shurjeel, Nosheen Fatima
Abstract:
Main purpose of this study was to assess adoption level of farmers for quinoa cultivation after they had been taught through training and visit extension approach. At this time of the 21st century, population structure, climate change, food requirements and eating habits of people are changing rapidly. In this scenario, farmers must play their key role in sustainable crop development and production through adoption of new crops that may also be helpful to overcome the issue of food insecurity as well as reducing poverty in rural areas. Its cultivation in Pakistan is at the early stages and there is a need to raise awareness among farmers to grow quinoa crops. In the middle of the 2015, a training and visit extension approach was used to raise awareness and convince farmers to grow quinoa in the area. During training and visit extension program, 80 farmers were randomly selected for the training of quinoa cultivation. Later on, these farmers trained 60 more farmers living into their neighborhood. After six months, a survey was conducted with all 140 farmers to assess the impact of the training and visit program on adoption level of respondents for the quinoa crop. The survey instrument was developed with the help of literature review and other experts of the crop. Validity and reliability of the instrument were checked before complete data collection. The data were analyzed by using SPSS. Multiple regression analysis was used for interpretation of the results from the survey, which indicated that factors like information/ training, change in agronomic and plant protection practices play a key role in the adoption of quinoa cultivation by respondents. In addition, the model explains more than 50% of variation in the adoption level of respondents. It is concluded that farmers need timely information for improved knowledge of agronomic and plant protection practices to adopt cultivation of the quinoa crop in the area.Keywords: farmers, quinoa, adoption, contact, training and visit
Procedia PDF Downloads 3551433 The Role of Land Consolidation to Reduce Soil Degradation in the Czech Republic
Authors: Miroslav Dumbrovsky
Abstract:
The paper deals with positive impacts of land consolidation on decreasing soil degradation with the main emphasis on soil and water conservation in the landscape. The importance of land degradation is very high because of its impact on crop productivity and many other adverse effects. Soil degradation through soil erosion is causing losses in crop productivity and quality of the environment, through decreasing quality of soil and water (especially water resources). Negative effects of conventional farming practices are increased water erosion, as well as crusting and compaction of the topsoil and subsoil. Soil erosion caused by water destructs the soil’s structure, reduces crop productivity due to deterioration in soil physical and chemical properties such as infiltration rate, water holding capacity, loss of nutrients needed for crop production, and loss of soil carbon. Recently, a new process of complex land consolidation in the Czech Republic has provided a unique opportunity for improving the quality of the environment and sustainability of the crop production by means a better soil and water conservation. The present process of the complex land consolidation is not only a reallocation of plots, but this system consists of a new layout of plots within a certain territory, aimed at establishing the integrated land-use economic units, based on the needs of individual landowners and land users. On the other hand, the interests of the general public and the environmental protection have to be solved, too. From the general point of view, a large part of the Czech landscape shall be reconstructed in the course of complex land consolidation projects. These projects will be based on new integrated soil-economic units, spatially arranged in a designed multifunctional system of soil and water conservation measures, such as path network and a territorial system of ecological stability, according to structural changes in agriculture. This new approach will be the basis of a rational economic utilization of the region which will comply with the present ecological and aesthetic demands at present.Keywords: soil degradation, land consolidation, soil erosion, soil conservation
Procedia PDF Downloads 3561432 Crop Breeding for Low Input Farming Systems and Appropriate Breeding Strategies
Authors: Baye Berihun Getahun, Mulugeta Atnaf Tiruneh, Richard G. F. Visser
Abstract:
Resource-poor farmers practice low-input farming systems, and yet, most breeding programs give less attention to this huge farming system, which serves as a source of food and income for several people in developing countries. The high-input conventional breeding system appears to have failed to adequately meet the needs and requirements of 'difficult' environments operating under this system. Moreover, the unavailability of resources for crop production is getting for their peaks, the environment is maltreated by excessive use of agrochemicals, crop productivity reaches its plateau stage, particularly in the developed nations, the world population is increasing, and food shortage sustained to persist for poor societies. In various parts of the world, genetic gain at the farmers' level remains low which could be associated with low adoption of crop varieties, which have been developed under high input systems. Farmers usually use their local varieties and apply minimum inputs as a risk-avoiding and cost-minimizing strategy. This evidence indicates that the conventional high-input plant breeding system has failed to feed the world population, and the world is moving further away from the United Nations' goals of ending hunger, food insecurity, and malnutrition. In this review, we discussed the rationality of focused breeding programs for low-input farming systems and, the technical aspect of crop breeding that accommodates future food needs and its significance for developing countries in the decreasing scenario of resources required for crop production. To this end, the application of exotic introgression techniques like polyploidization, pan-genomics, comparative genomics, and De novo domestication as a pre-breeding technique has been discussed in the review to exploit the untapped genetic diversity of the crop wild relatives (CWRs). Desired recombinants developed at the pre-breeding stage are exploited through appropriate breeding approaches such as evolutionary plant breeding (EPB), rhizosphere-related traits breeding, and participatory plant breeding approaches. Populations advanced through evolutionary breeding like composite cross populations (CCPs) and rhizosphere-associated traits breeding approach that provides opportunities for improving abiotic and biotic soil stress, nutrient acquisition capacity, and crop microbe interaction in improved varieties have been reviewed. Overall, we conclude that low input farming system is a huge farming system that requires distinctive breeding approaches, and the exotic pre-breeding introgression techniques and the appropriate breeding approaches which deploy the skills and knowledge of both breeders and farmers are vital to develop heterogeneous landrace populations, which are effective for farmers practicing low input farming across the world.Keywords: low input farming, evolutionary plant breeding, composite cross population, participatory plant breeding
Procedia PDF Downloads 491431 Leveraging Sentiment Analysis for Quality Improvement in Digital Healthcare Services
Authors: Naman Jain, Shaun Fernandes
Abstract:
With the increasing prevalence of online healthcare services, selecting the most suitable doctor has become a complex task, requiring careful consideration of both public sentiment and personal preferences. This paper proposes a sentiment analysis-driven method that integrates public reviews with user-specific criteria and correlated attributes to recommend online doctors. By leveraging Natural Language Processing (NLP) techniques, public sentiment is extracted from online reviews, which is then combined with user-defined preferences such as specialty, years of experience, location, and consultation fees. Additionally, correlated attributes like education and certifications are incorporated to enhance the recommendation accuracy. Experimental results demonstrate that the proposed system significantly improves user satisfaction by providing personalized doctor recommendations that align with both public opinion and individual needs.Keywords: sentiment analysis, online doctors, personal preferences, correlated attributes, recommendation system, healthcare, natural language processing
Procedia PDF Downloads 31430 Strategies Used by the Saffron Producers of Taliouine (Morocco) to Adapt to Climate Change
Authors: Aziz Larbi, Widad Sadok
Abstract:
In Morocco, the mountainous regions extend over about 26% of the national territory where 30% of the total population live. They contain opportunities for agriculture, forestry, pastureland and mining. The production systems in these zones are characterised by crop diversification. However, these areas have become vulnerable to the effects of climate change. To understand these effects in relation to the population living in these areas, a study was carried out in the zone of Taliouine, in the Anti-Atlas. The vulnerability of crop productions to climate change was analysed and the different ways of adaptation adopted by farmers were identified. The work was done on saffron, the most profitable crop in the target area even though it requires much water. Our results show that the majority of the farmers surveyed had noticed variations in the climate of the region: irregularity of precipitation leading to a decrease in quantity and an uneven distribution throughout the year; rise in temperature; reduction in the cold period and less snow. These variations had impacts on the cropping system of saffron and its productivity. To cope with these effects, the farmers adopted various strategies: better management and use of water; diversification of agricultural activities; increase in the contribution of non-agricultural activities to their gross income; and seasonal migration.Keywords: climate change, Taliouine, saffron, perceptions, adaptation strategies
Procedia PDF Downloads 581429 Image Processing-Based Maize Disease Detection Using Mobile Application
Authors: Nathenal Thomas
Abstract:
In the food chain and in many other agricultural products, corn, also known as maize, which goes by the scientific name Zea mays subsp, is a widely produced agricultural product. Corn has the highest adaptability. It comes in many different types, is employed in many different industrial processes, and is more adaptable to different agro-climatic situations. In Ethiopia, maize is among the most widely grown crop. Small-scale corn farming may be a household's only source of food in developing nations like Ethiopia. The aforementioned data demonstrates that the country's requirement for this crop is excessively high, and conversely, the crop's productivity is very low for a variety of reasons. The most damaging disease that greatly contributes to this imbalance between the crop's supply and demand is the corn disease. The failure to diagnose diseases in maize plant until they are too late is one of the most important factors influencing crop output in Ethiopia. This study will aid in the early detection of such diseases and support farmers during the cultivation process, directly affecting the amount of maize produced. The diseases in maize plants, such as northern leaf blight and cercospora leaf spot, have distinct symptoms that are visible. This study aims to detect the most frequent and degrading maize diseases using the most efficiently used subset of machine learning technology, deep learning so, called Image Processing. Deep learning uses networks that can be trained from unlabeled data without supervision (unsupervised). It is a feature that simulates the exercises the human brain goes through when digesting data. Its applications include speech recognition, language translation, object classification, and decision-making. Convolutional Neural Network (CNN) for Image Processing, also known as convent, is a deep learning class that is widely used for image classification, image detection, face recognition, and other problems. it will also use this algorithm as the state-of-the-art for my research to detect maize diseases by photographing maize leaves using a mobile phone.Keywords: CNN, zea mays subsp, leaf blight, cercospora leaf spot
Procedia PDF Downloads 741428 Mining Coupled to Agriculture: Systems Thinking in Scalable Food Production
Authors: Jason West
Abstract:
Low profitability in agriculture production along with increasing scrutiny over environmental effects is limiting food production at scale. In contrast, the mining sector offers access to resources including energy, water, transport and chemicals for food production at low marginal cost. Scalable agricultural production can benefit from the nexus of resources (water, energy, transport) offered by mining activity in remote locations. A decision support bioeconomic model for controlled environment vertical farms was used. Four submodels were used: crop structure, nutrient requirements, resource-crop integration, and economic. They escalate to a macro mathematical model. A demonstrable dynamic systems framework is needed to prove productive outcomes are feasible. We demonstrate a generalized bioeconomic macro model for controlled environment production systems in minesites using systems dynamics modeling methodology. Despite the complexity of bioeconomic modelling of resource-agricultural dynamic processes and interactions, the economic potential greater than general economic models would assume. Scalability of production as an input becomes a key success feature.Keywords: crop production systems, mathematical model, mining, agriculture, dynamic systems
Procedia PDF Downloads 771427 Farm Diversification and the Corresponding Policy for Its Implementation in Georgia
Authors: E. Kharaishvili
Abstract:
The paper shows the necessity of farm diversification in accordance with the current trends in agricultural sector of Georgia. The possibilities for the diversification and the corresponding economic policy are suggested. The causes that hinder diversification of farms are revealed, possibilities of diversification are suggested and the ability of increasing employment through diversification is proved. Index of harvest diversification is calculated based on the areas used for cereals and legumes, potatoes and vegetables and other food crops. Crop and livestock production indexes are analyzed, correlation between crop capacity index and value-added per one worker and one ha is studied. Based on the research farm diversification strategies and priorities of corresponding economic policy are presented. Based on the conclusions relevant recommendations are suggested.Keywords: farm diversification, diversification index, agricultural development policy
Procedia PDF Downloads 4621426 Transformer-Driven Multi-Category Classification for an Automated Academic Strand Recommendation Framework
Authors: Ma Cecilia Siva
Abstract:
This study introduces a Bidirectional Encoder Representations from Transformers (BERT)-based machine learning model aimed at improving educational counseling by automating the process of recommending academic strands for students. The framework is designed to streamline and enhance the strand selection process by analyzing students' profiles and suggesting suitable academic paths based on their interests, strengths, and goals. Data was gathered from a sample of 200 grade 10 students, which included personal essays and survey responses relevant to strand alignment. After thorough preprocessing, the text data was tokenized, label-encoded, and input into a fine-tuned BERT model set up for multi-label classification. The model was optimized for balanced accuracy and computational efficiency, featuring a multi-category classification layer with sigmoid activation for independent strand predictions. Performance metrics showed an F1 score of 88%, indicating a well-balanced model with precision at 80% and recall at 100%, demonstrating its effectiveness in providing reliable recommendations while reducing irrelevant strand suggestions. To facilitate practical use, the final deployment phase created a recommendation framework that processes new student data through the trained model and generates personalized academic strand suggestions. This automated recommendation system presents a scalable solution for academic guidance, potentially enhancing student satisfaction and alignment with educational objectives. The study's findings indicate that expanding the data set, integrating additional features, and refining the model iteratively could improve the framework's accuracy and broaden its applicability in various educational contexts.Keywords: tokenized, sigmoid activation, transformer, multi category classification
Procedia PDF Downloads 71425 Response of Wheat (Triticum aestivum L.) to Deficit Irrigation Management in the Semi-Arid Awash Basin of Ethiopia
Authors: Gobena D. Bayisa, A. Mekonen, Megersa O. Dinka, Tilahun H. Nebi, M. Boja
Abstract:
Crop production in arid and semi-arid regions of Ethiopia is largely limited by water availability. Changing climate conditions and declining water resources increase the need for appropriate approaches to improve water use and find ways to increase production through reduced and more reliable water supply. In the years 2021/22 and 2022/23, a field experiment was conducted to evaluate the effect of limited irrigation water use on bread wheat (Triticum aestivum L.) production, water use efficiency, and financial benefits. Five irrigation treatments, i.e., full irrigation (100% ETc/ control), 85% ETc, 70% ETc, 55% ETc, and 40% ETc, were evaluated using a randomized complete block design (RCBD) with four replicates in the semi-arid climate condition of Awash basin of Ethiopia. Statistical analysis showed a significant effect of irrigation levels on wheat grain yield, water use efficiency, crop water response factor, economic profit, wheat grain quality, aboveground biomass, and yield index. The highest grain yield (5085 kg ha⁻¹) was obtained with 100% ETc irrigation (417.2 mm), and the lowest grain yield with 40% ETc (223.7 mm). Of the treatments, 70% ETc produced the higher wheat grain yield (4555 kg ha⁻¹), the highest water use efficiency (1.42 kg m⁻³), and the highest yield index (0.43). Using the saved water, wheat could be produced 23.4% more with a 70% ETc deficit than full irrigation on 1.38 ha of land, and it could get the highest profit (US$2563.9) and higher MRR (137%). The yield response factor and crop-water production function showed potential reductions associated with increased irrigation deficits. However, a 70% ETc deficit is optimal for increasing wheat grain yield, water use efficiency, and economic benefits of irrigated wheat production. The result indicates that deficit irrigation of wheat under the typical arid and semi-arid climatic conditions of the Awash Basin can be a viable irrigation management approach for enhancing water use efficiency while minimizing the decrease in crop yield could be considered effective.Keywords: crop-water response factor, deficit irrigation, water use efficiency, wheat production
Procedia PDF Downloads 691424 Comparative Evaluation of Root Uptake Models for Developing Moisture Uptake Based Irrigation Schedules for Crops
Authors: Vijay Shankar
Abstract:
In the era of water scarcity, effective use of water via irrigation requires good methods for determining crop water needs. Implementation of irrigation scheduling programs requires an accurate estimate of water use by the crop. Moisture depletion from the root zone represents the consequent crop evapotranspiration (ET). A numerical model for simulating soil water depletion in the root zone has been developed by taking into consideration soil physical properties, crop and climatic parameters. The governing differential equation for unsaturated flow of water in the soil is solved numerically using the fully implicit finite difference technique. The water uptake by plants is simulated by using three different sink functions. The non-linear model predictions are in good agreement with field data and thus it is possible to schedule irrigations more effectively. The present paper describes irrigation scheduling based on moisture depletion from the different layers of the root zone, obtained using different sink functions for three cash, oil and forage crops: cotton, safflower and barley, respectively. The soil is considered at a moisture level equal to field capacity prior to planting. Two soil moisture regimes are then imposed for irrigated treatment, one wherein irrigation is applied whenever soil moisture content is reduced to 50% of available soil water; and other wherein irrigation is applied whenever soil moisture content is reduced to 75% of available soil water. For both the soil moisture regimes it has been found that the model incorporating a non-linear sink function which provides best agreement of computed root zone moisture depletion with field data, is most effective in scheduling irrigations. Simulation runs with this moisture uptake function result in saving 27.3 to 45.5% & 18.7 to 37.5%, 12.5 to 25% % &16.7 to 33.3% and 16.7 to 33.3% & 20 to 40% irrigation water for cotton, safflower and barley respectively, under 50 & 75% moisture depletion regimes over other moisture uptake functions considered in the study. Simulation developed can be used for an optimized irrigation planning for different crops, choosing a suitable soil moisture regime depending upon the irrigation water availability and crop requirements.Keywords: irrigation water, evapotranspiration, root uptake models, water scarcity
Procedia PDF Downloads 3301423 Factors Associated with Uptake of Influenza and Pertussis Vaccination in Pregnant Women
Authors: Hassen Mohammed, Michelle Clarke, Helen Marshall
Abstract:
Maternal immunization is an effective strategy to protect pregnant women and their offspring from vaccine-preventable diseases. Despite the recommendation of maternal influenza and more recently pertussis immunization in Australia, uptake of these vaccines has been suboptimal. Monitoring the impact of the current funded vaccine programs for pregnant women is limited. The study aimed to assess the impact of the funded program and determine factors associated with vaccine uptake in pregnant women. This observational prospective study was undertaken between November 2014 and July 2016 at the Women’s and Children’s Hospital in South Australia (WCH). Demographic details and vaccination history from South Australian pregnant women who attended the WCH were reviewed. A standardized self-reported survey was conducted in antenatal care with a follow up telephone interview at 8-10 weeks post-delivery. A midwife delivered immunization program for pregnant women in antenatal clinic commenced in April 2015. Of the 180 pregnant women who completed the survey questionnaire, 75.5% and 80.5 % received maternal influenza and pertussis vaccines respectively. First-time mothers had twice the odds of having received influenza vaccine during pregnancy than multiparous women (OR 2.4; CI 1.14 - 4.94; p= 0.021). The proportion of women who received pertussis vaccine during pregnancy, following the introduction of the midwife delivered pertussis vaccination program (140/155, 90.3%) was significantly higher compared with women who received maternal pertussis vaccination prior to the introduction of the program (5/22, 23.7%, p < 0.001). The odds of women receiving maternal pertussis vaccine following the implementation of the midwife delivered program were 31 times higher than women who delivered babies prior to the program (OR 31.7, CI 10.24- 98.27; p < 0.001). High uptake of influenza and pertussis vaccines during pregnancy can be attained with health care provider recommendation and inclusion of maternal immunization as part of standard antenatal care.Keywords: influenza, maternal immunization, pertussis, provider recommendation
Procedia PDF Downloads 2721422 Characterization of Fungal Endophytes in Leaves, Stems and Roots of African Yam Bean (Sphenostylis sternocarpa Hochst ex. A. Rich Harms)
Authors: Iyabode A. Kehinde, Joshua O. Oyekanmi, Jumoke T. Abimbola, Olajumoke E. Ayanda
Abstract:
African yam bean (AYB), (Sphenostylis stenocarpa) is a leguminous crop that provides nutritionally rich seeds, tubers and leaves for human consumption. AYB potentials as an important food security crop is yet to be realized and thus classified as underutilized crop. Underutilization of the crop has been partly associated with scarce information on the incidence and characterization of fungal endophytes infecting vascular parts of AYB. Accurate and robust detection of these endophytic fungi is essential for diagnosis, modeling, surveillance and protection of germplasm (seed) health. This work aimed at isolating and identifying fungal endophytes associated with leaves, stems and roots of AYB in Ogun State, Nigeria. This study investigated both cultural and molecular properties of endophytic fungi in AYB for its characterization and diversity. Fungal endophytes were isolated and culturally identified. DNA extraction, PCR amplification using ITS primers and analyses of nucleotide sequences of ribosomal DNA fragments were conducted on selected isolates. BLAST analysis was conducted on consensus nucleotide sequences of 28 out of 30 isolates and results showed similar homology with genera of Rhizopus, Cunninghamella, Fusarium, Aspergillus, Penicillium, Alternaria, Diaporthe, Nigrospora, Purpureocillium, Corynespora, Magnaporthe, Macrophomina, Curvularia, Acrocalymma, Talaromyces and Simplicillium. Slight similarity was found with endophytes associated with soybean. Phylogenetic analysis by maximum likelihood method showed high diversity among the general. These organisms have high economic importance in crop improvement. For an instance, Purpureocillium lilacinum showed high potential in control of root rot caused by nematodes in tomatoes. Though some can be pathogens, but many of the fungal endophytes have beneficial attributes to plant in host health, uptake of nutrients, disease suppression, and host immunity.Keywords: molecular characterization, African Yam Bean, fungal endophyte, plant parts
Procedia PDF Downloads 2131421 Humic Acid and Azadirachtin Derivatives for the Management of Crop Pests
Authors: R. S. Giraddi, C. M. Poleshi
Abstract:
Organic cultivation of crops is gaining importance consumer awareness towards pesticide residue free foodstuffs is increasing globally. This is also because of high costs of synthetic fertilizers and pesticides, making the conventional farming non-remunerative. In India, organic manures (such as vermicompost) are an important input in organic agriculture. Though vermicompost obtained through earthworm and microbe-mediated processes is known to comprise most of the crop nutrients, but they are in small amounts thus necessitating enrichment of nutrients so that crop nourishment is complete. Another characteristic of organic manures is that the pest infestations are kept under check due to induced resistance put up by the crop plants. In the present investigation, deoiled neem cake containing azadirachtin, copper ore tailings (COT), a source of micro-nutrients and microbial consortia were added for enrichment of vermicompost. Neem cake is a by-product obtained during the process of oil extraction from neem plant seeds. Three enriched vermicompost blends were prepared using vermicompost (at 70, 65 and 60%), deoiled neem cake (25, 30 and 35%), microbial consortia and COTwastes (5%). Enriched vermicompost was thoroughly mixed, moistened (25+5%), packed and incubated for 15 days at room temperature. In the crop response studies, the field trials on chili (Capsicum annum var. longum) and soybean, (Glycine max cv JS 335) were conducted during Kharif 2015 at the Main Agricultural Research Station, UAS, Dharwad-Karnataka, India. The vermicompost blend enriched with neem cake (known to possess higher amounts of nutrients) and vermicompost were applied to the crops and at two dosages and at two intervals of crop cycle (at sowing and 30 days after sowing) as per the treatment plan along with 50% recommended dose of fertilizer (RDF). 10 plants selected randomly in each plot were studied for pest density and plant damage. At maturity, crops were harvested, and the yields were recorded as per the treatments, and the data were analyzed using appropriate statistical tools and procedures. In the crops, chili and soybean, crop nourishment with neem enriched vermicompost reduced insect density and plant damage significantly compared to other treatments. These treatments registered as much yield (16.7 to 19.9 q/ha) as that realized in conventional chemical control (18.2 q/ha) in soybean, while 72 to 77 q/ha of green chili was harvested in the same treatments, being comparable to the chemical control (74 q/ha). The yield superiority of the treatments was of the order neem enriched vermicompost>conventional chemical control>neem cake>vermicompost>untreated control. The significant features of the result are that it reduces use of inorganic manures by 50% and synthetic chemical insecticides by 100%.Keywords: humic acid, azadirachtin, vermicompost, insect-pest
Procedia PDF Downloads 2771420 Decision Tree Model for the Recommendation of Digital and Alternate Payment Methods for SMEs
Authors: Arturo J. Anci Alméstar, Jose D. Fernandez Huapaya, David Mauricio
Abstract:
Companies make erroneous decisions by not evaluating the inherent difficulties of entering electronic commerce without a prior review of current digital and alternate means of payment. For this reason, it is very important for businesses to have reliable, complete and integrated information on the means of current digital and alternate payments that allow decisions to be made about which of these to use. However, there is no such consolidated information or criteria that companies use to make decisions about the means of payment according to their needs. In this paper, we propose a decision tree model based on a taxonomy that presents us with a categorization of digital and alternative means of payment, as well as the visualization of the flow of information at a high level from the company to obtain a recommendation. This will allow the company to make the most appropriate decision about the implementation of the digital means of payment or alternative ideal for their needs, which allows a reduction in costs and complexity of the payment process. Likewise, the efficiency of the proposed model was evaluated through a satisfaction survey presented to company personnel, confirming the satisfactory quality level of the recommendations obtained by the model.Keywords: digital payment medium, decision tree, decision making, digital payments taxonomy
Procedia PDF Downloads 1781419 Artificial Neural Network and Satellite Derived Chlorophyll Indices for Estimation of Wheat Chlorophyll Content under Rainfed Condition
Authors: Muhammad Naveed Tahir, Wang Yingkuan, Huang Wenjiang, Raheel Osman
Abstract:
Numerous models used in prediction and decision-making process but most of them are linear in natural environment, and linear models reach their limitations with non-linearity in data. Therefore accurate estimation is difficult. Artificial Neural Networks (ANN) found extensive acceptance to address the modeling of the complex real world for the non-linear environment. ANN’s have more general and flexible functional forms than traditional statistical methods can effectively deal with. The link between information technology and agriculture will become more firm in the near future. Monitoring crop biophysical properties non-destructively can provide a rapid and accurate understanding of its response to various environmental influences. Crop chlorophyll content is an important indicator of crop health and therefore the estimation of crop yield. In recent years, remote sensing has been accepted as a robust tool for site-specific management by detecting crop parameters at both local and large scales. The present research combined the ANN model with satellite-derived chlorophyll indices from LANDSAT 8 imagery for predicting real-time wheat chlorophyll estimation. The cloud-free scenes of LANDSAT 8 were acquired (Feb-March 2016-17) at the same time when ground-truthing campaign was performed for chlorophyll estimation by using SPAD-502. Different vegetation indices were derived from LANDSAT 8 imagery using ERADAS Imagine (v.2014) software for chlorophyll determination. The vegetation indices were including Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Chlorophyll Absorbed Ratio Index (CARI), Modified Chlorophyll Absorbed Ratio Index (MCARI) and Transformed Chlorophyll Absorbed Ratio index (TCARI). For ANN modeling, MATLAB and SPSS (ANN) tools were used. Multilayer Perceptron (MLP) in MATLAB provided very satisfactory results. For training purpose of MLP 61.7% of the data, for validation purpose 28.3% of data and rest 10% of data were used to evaluate and validate the ANN model results. For error evaluation, sum of squares error and relative error were used. ANN model summery showed that sum of squares error of 10.786, the average overall relative error was .099. The MCARI and NDVI were revealed to be more sensitive indices for assessing wheat chlorophyll content with the highest coefficient of determination R²=0.93 and 0.90 respectively. The results suggested that use of high spatial resolution satellite imagery for the retrieval of crop chlorophyll content by using ANN model provides accurate, reliable assessment of crop health status at a larger scale which can help in managing crop nutrition requirement in real time.Keywords: ANN, chlorophyll content, chlorophyll indices, satellite images, wheat
Procedia PDF Downloads 1461418 Effect of Phaseolus vulgaris Inoculation on P. vulgaris and Zea mays Growth and Yield Cultivated in Intercropping
Authors: Nour Elhouda Abed, Bedj Mimi, Wahid Slimani, Mourad Atif, Abdelhakim Ouzzane, Hocine Irekti, Abdelkader Bekki
Abstract:
The most frequent system of cereal production in Algeria is fallow-wheat. This is an extensive system that meets only the half needs some cereals and fodder demand. Resorption of fallow has become a strategic necessity to ensure food security in response to the instability of supply and the persistence of higher food prices on the world market. Despite several attempts to replace the fallow by crop cultures, choosing the best crop remains. Today, the agronomic and economic interests of legumes are demonstrated. However, their crop culture remains marginalized because of the weakness and instability of their performance. In the context of improving legumes and cereals crops as well as fallow resorption, we undertook to test, in the field, the effect of rhizobial inoculation of Phaseolus vulgaris in association with Zea Mays. We firstly studied the genetic diversity of rhizobial strains that nodulate P.vulgaris isolated from fifteen (15) different regions. ARDRA had shown 18 different genetic profiles. Symbiotic characterization highlighted a strain that highly significantly improved the fresh and dry weight of the host plant, in comparison to the negative control (un-inoculated) and the positive control (inoculated with the reference strain CIAT 899). In the field, the selected strain increased significantly the growth and yield of P.vulgaris and Zea Mays comparing to the non-inoculated control. However, the mix inoculation (selected strain+ Ciat 899) had not given the best parameters showing, thus, no synergy between the strains. These results indicate the replacing fallow by a crop legume in intercropping with cereals crops.Keywords: fallow, intercropping, inoculation, legumes-cereals
Procedia PDF Downloads 3661417 An Empirical Analysis of Farmers Field Schools and Effect on Tomato Productivity in District Malakand Khyber Pakhtunkhwa-Pakistan
Authors: Mahmood Iqbal, Khalid Nawab, Tachibana Satoshi
Abstract:
Farmer Field School (FFS) is constantly aims to assist farmers to determine and learn about field ecology and integrated crop management. The study was conducted to examine the change in productivity of tomato crop in the study area; to determine increase in per acre yield of the crop, and find out reduction in per acre input cost. A study of tomato crop was conducted in ten villages namely Jabban, Bijligar Colony, Palonow, Heroshah, Zara Maira, Deghar Ghar, Sidra Jour, Anar Thangi, Miangano Korona and Wartair of district Malakand. From each village 15 respondents were selected randomly on the basis of identical allocation making sample size of 150 respondents. The research was based on primary as well as secondary data. Primary data was collected from farmers while secondary data were taken from Agriculture Extension Department Dargai, District Malakand. Interview schedule was planned and each farmer was interviewed personally. The study was based on comparison of cost, yield and income of tomato before and after FFS. Paired t-test and Statistical Package for Social Sciences (SPSS) was used for analysis; outcome of the study show that integrated pest management project has brought a positive change in the attitude of farmers of the project area through FFS approach. In district Malakand 66.0% of the respondents were between the age group of 31-50 years, 11.3% of respondents had primary level of education, 12.7% of middle level, 28.7% metric level, 3.3% of intermediate level and 2.0% of graduate level of education while 42.0% of respondents were illiterate and have no education. Average land holding size of farmers was 6.47 acres, cost of seed, crop protection from insect pest and crop protection from diseases was reduced by Rs. 210.67, Rs. 2584.43 and Rs. 3044.16 respectively, the cost of fertilizers and cost of farm yard manure was increased by Rs.1548.87 and Rs. 1151.40 respectively while tomato yield was increased by 1585.03 kg/acre from 7663.87 to 9248.90 kg/acre. The role of FFS initiate by integrated pest management project through department of agriculture extension for the development of agriculture was worth mentioning. It has brought enhancement in crop yield of tomato and their income through FFS approach. On the basis of results of the research studies, integrated pest management project should spread their developmental activities for maximum participation of the complete rural masses through participatory FFS approach.Keywords: agriculture, Farmers field schools, extension education, tomato
Procedia PDF Downloads 6121416 Artificial Intelligence Models for Detecting Spatiotemporal Crop Water Stress in Automating Irrigation Scheduling: A Review
Authors: Elham Koohi, Silvio Jose Gumiere, Hossein Bonakdari, Saeid Homayouni
Abstract:
Water used in agricultural crops can be managed by irrigation scheduling based on soil moisture levels and plant water stress thresholds. Automated irrigation scheduling limits crop physiological damage and yield reduction. Knowledge of crop water stress monitoring approaches can be effective in optimizing the use of agricultural water. Understanding the physiological mechanisms of crop responding and adapting to water deficit ensures sustainable agricultural management and food supply. This aim could be achieved by analyzing and diagnosing crop characteristics and their interlinkage with the surrounding environment. Assessments of plant functional types (e.g., leaf area and structure, tree height, rate of evapotranspiration, rate of photosynthesis), controlling changes, and irrigated areas mapping. Calculating thresholds of soil water content parameters, crop water use efficiency, and Nitrogen status make irrigation scheduling decisions more accurate by preventing water limitations between irrigations. Combining Remote Sensing (RS), the Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning Algorithms (MLAs) can improve measurement accuracies and automate irrigation scheduling. This paper is a review structured by surveying about 100 recent research studies to analyze varied approaches in terms of providing high spatial and temporal resolution mapping, sensor-based Variable Rate Application (VRA) mapping, the relation between spectral and thermal reflectance and different features of crop and soil. The other objective is to assess RS indices formed by choosing specific reflectance bands and identifying the correct spectral band to optimize classification techniques and analyze Proximal Optical Sensors (POSs) to control changes. The innovation of this paper can be defined as categorizing evaluation methodologies of precision irrigation (applying the right practice, at the right place, at the right time, with the right quantity) controlled by soil moisture levels and sensitiveness of crops to water stress, into pre-processing, processing (retrieval algorithms), and post-processing parts. Then, the main idea of this research is to analyze the error reasons and/or values in employing different approaches in three proposed parts reported by recent studies. Additionally, as an overview conclusion tried to decompose different approaches to optimizing indices, calibration methods for the sensors, thresholding and prediction models prone to errors, and improvements in classification accuracy for mapping changes.Keywords: agricultural crops, crop water stress detection, irrigation scheduling, precision agriculture, remote sensing
Procedia PDF Downloads 701415 Data-Driven Strategies for Enhancing Food Security in Vulnerable Regions: A Multi-Dimensional Analysis of Crop Yield Predictions, Supply Chain Optimization, and Food Distribution Networks
Authors: Sulemana Ibrahim
Abstract:
Food security remains a paramount global challenge, with vulnerable regions grappling with issues of hunger and malnutrition. This study embarks on a comprehensive exploration of data-driven strategies aimed at ameliorating food security in such regions. Our research employs a multifaceted approach, integrating data analytics to predict crop yields, optimizing supply chains, and enhancing food distribution networks. The study unfolds as a multi-dimensional analysis, commencing with the development of robust machine learning models harnessing remote sensing data, historical crop yield records, and meteorological data to foresee crop yields. These predictive models, underpinned by convolutional and recurrent neural networks, furnish critical insights into anticipated harvests, empowering proactive measures to confront food insecurity. Subsequently, the research scrutinizes supply chain optimization to address food security challenges, capitalizing on linear programming and network optimization techniques. These strategies intend to mitigate loss and wastage while streamlining the distribution of agricultural produce from field to fork. In conjunction, the study investigates food distribution networks with a particular focus on network efficiency, accessibility, and equitable food resource allocation. Network analysis tools, complemented by data-driven simulation methodologies, unveil opportunities for augmenting the efficacy of these critical lifelines. This study also considers the ethical implications and privacy concerns associated with the extensive use of data in the realm of food security. The proposed methodology outlines guidelines for responsible data acquisition, storage, and usage. The ultimate aspiration of this research is to forge a nexus between data science and food security policy, bestowing actionable insights to mitigate the ordeal of food insecurity. The holistic approach converging data-driven crop yield forecasts, optimized supply chains, and improved distribution networks aspire to revitalize food security in the most vulnerable regions, elevating the quality of life for millions worldwide.Keywords: data-driven strategies, crop yield prediction, supply chain optimization, food distribution networks
Procedia PDF Downloads 621414 HBTOnto: An Ontology Model for Analyzing Human Behavior Trajectories
Authors: Heba M. Wagih, Hoda M. O. Mokhtar
Abstract:
Social Network has recently played a significant role in both scientific and social communities. The growing adoption of social network applications has been a relevant source of information nowadays. Due to its popularity, several research trends are emerged to service the huge volume of users including, Location-Based Social Networks (LBSN), Recommendation Systems, Sentiment Analysis Applications, and many others. LBSNs applications are among the highly demanded applications that do not focus only on analyzing the spatiotemporal positions in a given raw trajectory but also on understanding the semantics behind the dynamics of the moving object. LBSNs are possible means of predicting human mobility based on users social ties as well as their spatial preferences. LBSNs rely on the efficient representation of users’ trajectories. Hence, traditional raw trajectory information is no longer convenient. In our research, we focus on studying human behavior trajectory which is the major pillar in location recommendation systems. In this paper, we propose an ontology design patterns with their underlying description logics to efficiently annotate human behavior trajectories.Keywords: human behavior trajectory, location-based social network, ontology, social network
Procedia PDF Downloads 451