Search results for: clinical trial optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7524

Search results for: clinical trial optimization

7374 Improving Effectiveness of Students' Learning during Clinical Rotations at a Teaching Hospital in Rwanda

Authors: Nanyombi Lubimbi, Josette Niyokindi

Abstract:

Background: As in many other developing countries in Africa, Rwanda suffers from a chronic shortage of skilled Health Care professionals including Clinical Instructors. This shortage negatively affects the clinical instruction quality therefore impacting student-learning outcomes. Due to poor clinical supervision, it is often noted that students have no structure or consistent guidance in their learning process. The Clinical Educators and the Rwandan counterparts identified the need to create a favorable environment for learning. Description: During orientation the expectations of the student learning process, collaboration of the clinical instructors with the nurses and Clinical Educators is outlined. The ward managers facilitate structured learning by helping the students identify a maximum of two patients using the school’s objectives to guide the appropriate selection of patients. Throughout the day, Clinical Educators with collaboration of Clinical Instructors when present conduct an ongoing assessment of learning and provide feedback to the students. Post-conference is provided once or twice a week to practice critical thinking skills of patient cases that they have been taking care of during the day. Lessons Learned: The students are found to be more confident with knowledge and skills gained during rotations. Clinical facility evaluations completed by students at the end of their rotations highlight the student’s satisfaction and recommendation for continuation of structured learning. Conclusion: Based on the satisfaction of both students and Clinical Instructors, we have identified need for structured learning during clinical rotations. We acknowledge that more evidence-based practice is necessary to effectively address the needs of nursing and midwifery students throughout the country.

Keywords: Rwanda, clinical rotation, structured learning, critical thinking skills, post-conference

Procedia PDF Downloads 239
7373 The Effect of Exercise Therapy and Electroacupuncture on Some Clinical Outcomes in People with Post Total Hip Arthroplasty

Authors: Marzieh Yassin, Masoud Rashed, Soheil Mansour Sohani, Reza Salehi

Abstract:

Background: Hip arthroplasty is one of the surgical methods to improve symptoms in patients with hip osteoarthritis. The use of electroacupuncture and TENS reduces pain, increases range of motion and improves performance. Methods: In this clinical trial study, 30 patients after hip arthroplasty were randomly divided into two groups: electroacupuncture (n=16) with exercise therapy and TENS with exercise therapy (n=14). Severity of pain, quality of life, range of motion, edema and function were evaluated in two groups before and after the interventions. Interventions of 10 sessions (three sessions per week) were conducted for two groups. The significance level in all tests was below 0.05. Results: The results showed that both groups improved all of the symptoms after the intervention (p≤0.05), although there was no statistically significant difference between the two groups in terms of effectiveness (p≥0.05). Conclusion: The results showed that both methods improve symptoms in patients after surgery. According to this study, electroacupuncture is suggested as a new method effective for the treatment of people with post-Total Hip Arthroplasty.

Keywords: electroacupuncture, physical performance, total hip arthroplasty, TENS

Procedia PDF Downloads 82
7372 The Application of Artificial Neural Network for Bridge Structures Design Optimization

Authors: Angga S. Fajar, A. Aminullah, J. Kiyono, R. A. Safitri

Abstract:

This paper discusses about the application of ANN for optimizing of bridge structure design. ANN has been applied in various field of science concerning prediction and optimization. The structural optimization has several benefit including accelerate structural design process, saving the structural material, and minimize self-weight and mass of structure. In this paper, there are three types of bridge structure that being optimized including PSC I-girder superstructure, composite steel-concrete girder superstructure, and RC bridge pier. The different optimization strategy on each bridge structure implement back propagation method of ANN is conducted in this research. The optimal weight and easier design process of bridge structure with satisfied error are achieved.

Keywords: bridge structures, ANN, optimization, back propagation

Procedia PDF Downloads 373
7371 Effects of Acacia Honey Drink Ingestion during Rehydration after Exercise Compared to Sports Drink on Physiological Parameters and Subsequent Running Performance in the Heat

Authors: Foong Kiew Ooi, Aidi Naim Mohamad Samsani, Chee Keong Chen, Mohamed Saat Ismail

Abstract:

Introduction: Prolonged exercise in a hot and humid environment can result in glycogen depletion and associated with loss of body fluid. Carbohydrate contained in sports beverages is beneficial for improving sports performance and preventing dehydration. Carbohydrate contained in honey is believed can be served as an alternative form of carbohydrate for enhancing sports performance. Objective: To investigate the effectiveness of honey drink compared to sports drink as a recovery aid for running performance and physiological parameters in the heat. Method: Ten male recreational athletes (age: 22.2 ± 2.0 years, VO2max: 51.5 ± 3.7 ml.kg-1.min-1) participated in this randomized cross-over study. On each trial, participants were required to run for 1 hour in the glycogen depletion phase (Run-1), followed by a rehydration phase for 2 hours and subsequently a 20 minutes time trial performance (Run-2). During Run-1, subjects were required to run on the treadmill in the heat (31°C) with 70% relative humidity at 70 % of their VO2max. During rehydration phase, participants drank either honey drink or sports drink, or plain water with amount equivalent to 150% of body weight loss in dispersed interval (60 %, 50 % and 40 %) at 0 min, 30 min and 60 min respectively. Subsequently, time trial was performed by the participants in 20 minutes and the longest distance covered was recorded. Physiological parameters were analysed using two-way ANOVA with repeated measure and time trial performance was analysed using one-way ANOVA. Results: Result showed that Acacia honey elicited a better time trial performance with significantly longer distance compared to water trial (P<0.05). However, there was no significant difference between Acacia honey and sport drink trials (P > 0.05). Acacia honey and sports drink trials elicited 249 m (8.24 %) and 211 m (6.79 %) longer in distance compared to the water trial respectively. For physiological parameters, plasma glucose, plasma insulin and plasma free fatty acids in Acacia honey and sports drink trials were significantly higher compared to the water trial respectively during rehydration phase and time trial running performance phase. There were no significant differences in body weight changes, oxygen uptake, hematocrit, plasma volume changes and plasma cortisol in all the trials. Conclusion: Acacia honey elicited greatest beneficial effects on sports performance among the drinks, thus it has potential to be used for rehydration in athletes who train and compete in hot environment.

Keywords: honey drink, rehydration, sports performance, plasma glucose, plasma insulin, plasma cortisol

Procedia PDF Downloads 309
7370 O-(2-18F-Fluoroethyl)-L-Tyrosine Positron Emission Tomography/Computed Tomography in Patients with Suspicious Recurrent Low and High-Grade Glioma

Authors: Mahkameh Asadi, Habibollah Dadgar

Abstract:

The precise definition margin of high and low-grade glioma is crucial for choosing best treatment approach after surgery and radio-chemotherapy. The aim of the current study was to assess the O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) positron emission tomography (PET)/computed tomography (CT) in patients with low (LGG) and high grade glioma (HGG). We retrospectively analyzed 18F-FET PET/CT of 10 patients (age: 33 ± 12 years) with suspicious for recurrent LGG and HGG. The final decision of recurrence was made by magnetic resonance imaging (MRI) and registered clinical data. While response to radio-chemotherapy by MRI is often complex and sophisticated due to the edema, necrosis, and inflammation, emerging amino acid PET leading to better interpretations with more specifically differentiate true tumor boundaries from equivocal lesions. Therefore, integrating amino acid PET in the management of glioma to complement MRI will significantly improve early therapy response assessment, treatment planning, and clinical trial design.

Keywords: positron emission tomography, amino acid positron emission tomography, magnetic resonance imaging, low and high grade glioma

Procedia PDF Downloads 176
7369 Clinical Pharmacology Throughout the World: A View from Global Health

Authors: Ragy Raafat Gaber Attaalla

Abstract:

Despite having the greatest rates of mortality and morbidity in the world, low- and middle-income (LMIC) nations trail high-income nations in terms of the number of clinical trials, the number of qualified researchers, and the amount of research information specific to their people. Health inequities and the use of precision medicine may be hampered by a lack of local genomic data, clinical pharmacology and pharmacometrics competence, and training opportunities. These issues can be solved by carrying out health care infrastructure development, which includes data gathering and well-designed clinical pharmacology training in LMICs. It will be advantageous if there is international cooperation focused at enhancing education and infrastructure and promoting locally motivated clinical trials and research. This paper outlines various instances where clinical pharmacology knowledge could be put to use, including pharmacogenomic opportunities that could lead to better clinical guideline recommendations. Examples of how clinical pharmacology training can be successfully implemented in LMICs are also provided, including clinical pharmacology and pharmacometrics training programmes in Africa and a Tanzanian researcher's personal experience while on a training sabbatical in the United States. These training initiatives will profit from advocacy for clinical pharmacologists' employment prospects and career development pathways, which are gradually becoming acknowledged and established in LMICs. The advancement of training and research infrastructure to increase clinical pharmacologists' knowledge in LMICs would be extremely beneficial because they have a significant role to play in global health.

Keywords: low- and middle-income, clinical pharmacology, pharmacometrics, career development pathways

Procedia PDF Downloads 72
7368 Evaluation of a Surrogate Based Method for Global Optimization

Authors: David Lindström

Abstract:

We evaluate the performance of a numerical method for global optimization of expensive functions. The method is using a response surface to guide the search for the global optimum. This metamodel could be based on radial basis functions, kriging, or a combination of different models. We discuss how to set the cycling parameters of the optimization method to get a balance between local and global search. We also discuss the eventual problem with Runge oscillations in the response surface.

Keywords: expensive function, infill sampling criterion, kriging, global optimization, response surface, Runge phenomenon

Procedia PDF Downloads 578
7367 Robot Movement Using the Trust Region Policy Optimization

Authors: Romisaa Ali

Abstract:

The Policy Gradient approach is one of the deep reinforcement learning families that combines deep neural networks (DNN) with reinforcement learning RL to discover the optimum of the control problem through experience gained from the interaction between the robot and its surroundings. In contrast to earlier policy gradient algorithms, which were unable to handle these two types of error because of over-or under-estimation introduced by the deep neural network model, this article will discuss the state-of-the-art SOTA policy gradient technique, trust region policy optimization (TRPO), by applying this method in various environments compared to another policy gradient method, the Proximal Policy Optimization (PPO), to explain their robust optimization, using this SOTA to gather experience data during various training phases after observing the impact of hyper-parameters on neural network performance.

Keywords: deep neural networks, deep reinforcement learning, proximal policy optimization, state-of-the-art, trust region policy optimization

Procedia PDF Downloads 169
7366 A Study on Weight-Reduction of Double Deck High-Speed Train Using Size Optimization Method

Authors: Jong-Yeon Kim, Kwang-Bok Shin, Tae-Hwan Ko

Abstract:

The purpose of this paper is to suggest a weight-reduction design method for the aluminum extrusion carbody structure of a double deck high-speed train using size optimization method. The size optimization method was used to optimize thicknesses of skin and rib of the aluminum extrusion for the carbody structure. Thicknesses of 1st underframe, 2nd underframe, solebar and roof frame were selected by design variables in order to conduct size optimization. The results of the size optimization analysis showed that the weight of the aluminum extrusion could be reduced by 0.61 tons (5.60%) compared to the weight of the original carbody structure.

Keywords: double deck high-speed train, size optimization, weigh-reduction, aluminum extrusion

Procedia PDF Downloads 290
7365 Dietary Flaxseed Decreases Central Blood Pressure and the Concentrations of Plasma Oxylipins Associated with Hypertension in Patients with Peripheral Arterial Disease

Authors: Stephanie PB Caligiuri, Harold M Aukema, Delfin Rodriguez-Leyva, Amir Ravandi, Randy Guzman, Grant N. Pierce

Abstract:

Background: Hypertension leads to cardiac and cerebral events and therefore is the leading risk factor attributed to death in the world. Oxylipins may be mediators in these events as they can regulate vascular tone and inflammation. Oxylipins are derived from fatty acids. Dietary flaxseed is rich in the n3 fatty acid, alpha-linolenic acid, and, therefore, may have the ability to change the substrate profile of oxylipins. As a result, this could alter blood pressure. Methods: A randomized, double-blinded, controlled clinical trial, the Flax-PAD trial, was used to assess the impact of dietary flaxseed on blood pressure (BP), and to also assess the relationship of plasma oxylipins to BP in 81 patients with peripheral arterial disease (PAD). Patients with PAD were chosen for the clinical trial as they are at an increased risk for hypertension and cardiac and cerebral events. Thirty grams of ground flaxseed were added to food products to consume on a daily basis for 6 months. The control food products contained wheat germ, wheat bran, and mixed dietary oils instead of flaxseed. Central BP, which is more significantly associated to organ damage, cardiac, and cerebral events versus brachial BP, was measured by pulse wave analysis at baseline and 6 months. A plasma profile of 43 oxylipins was generated using solid phase extraction, HPLC-MS/MS, and stable isotope dilution quantitation. Results: At baseline, the central BP (systolic/diastolic) in the placebo and flaxseed group were, 131/73 ± 2.5/1.4 mmHg and 128/71 ± 2.6/1.4 mmHg, respectively. After 6 months of intervention, the flaxseed group exhibited a decrease in blood pressure of 4.0/1.0 mmHg. The 6 month central BP in the placebo and flaxseed groups were, 132/74 ± 2.9/1.8 mmHg and 124/70 ± 2.6/1.6 mmHg (P<0.05). Correlation and logistic regression analyses between central blood pressure and oxylipins were performed. Significant associations were observed between central blood pressure and 17 oxylipins, primarily produced from arachidonic acid. Every 1 nM increase in 16-hydroxyeicosatetraenoic acid (HETE) increased the odds of having high central systolic BP by 15-fold, of having high central diastolic BP by 6-fold and of having high central mean arterial pressure by 15-fold. In addition, every 1 nM increase in 5,6-dihydroxyeicosatrienoic acid (DHET) and 11,12-DHET increased the odds of having high central mean arterial pressure by 45- and 18-fold, respectively. Flaxseed induced a significant decrease in these as well as 4 other vasoconstrictive oxylipins. Conclusion: Dietary flaxseed significantly lowered blood pressure in patients with PAD and hypertension. Plasma oxylipins were strongly associated with central blood pressure and may have mediated the flaxseed-induced decrease in blood pressure.

Keywords: hypertension, flaxseed, oxylipins, peripheral arterial disease

Procedia PDF Downloads 468
7364 Tools for Analysis and Optimization of Standalone Green Microgrids

Authors: William Anderson, Kyle Kobold, Oleg Yakimenko

Abstract:

Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.

Keywords: microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks

Procedia PDF Downloads 282
7363 Effect of Weed Control and Different Plant Densities the Yield and Quality of Safflower (Carthamus tinctorius L.)

Authors: Hasan Dalgic, Fikret Akinerdem

Abstract:

This trial was made to determine effect of different plant density and weed control on yield and quality of winter sowing safflower (Carthamus tinctorius L.) in Selcuk University, Agricultural Faculty trial fields and the effective substance of Trifluran was used as herbicide. Field trial was made during the vegetation period of 2009-2010 with three replications according to 'Split Plots in Randomized Blocks' design. The weed control techniques were made on main plots and row distances was set up on sub-plots. The trial subjects were consisting from three weed control techniques as fallowing: herbicide application (Trifluran), hoeing and control beside the row distances of 15 cm and 30 cm. The results were ranged between 59.0-76.73 cm in plant height, 40.00-47.07 cm in first branch height, 5.00-7.20 in number of branch per plant, 6.00-14.73 number of head per plant, 19.57-21.87 mm in head diameter, 2125.0-3968.3 kg ha-1 in seed yield, 27.10-28.08 % in crude oil rate and 531.7-1070.3 kg ha-1. According to the results, Remzibey safflower cultivar showed the highest seed yield on 30 cm of row distance and herbicide application by means of the direct effects of plant height, first branch height, number of branch per plant, number of head per plant, table diameter, crude oil rate and crude oil yield.

Keywords: safflower, herbicide, row spacing, seed yield, oil ratio, oil yield

Procedia PDF Downloads 333
7362 Optimization of Syngas Quality for Fischer-Tropsch Synthesis

Authors: Ali Rabah

Abstract:

This research received no grant or financial support from any public, commercial, or none governmental agency. The author conducted this work as part of his normal research activities as a professor of Chemical Engineering at the University of Khartoum, Sudan. Abstract While fossil oil reserves have been receding, the demand for diesel and gasoline has been growing. In recent years, syngas of biomass origin has been emerging as a viable feedstock for Fischer-Tropsch (FT) synthesis, a process for manufacturing synthetic gasoline and diesel. This paper reports the optimization of syngas quality to match FT synthesis requirements. The optimization model maximizes the thermal efficiency under the constraint of H2/CO≥2.0 and operating conditions of equivalent ratio (0 ≤ ER ≤ 1.0), steam to biomass ratio (0 ≤ SB ≤ 5), and gasification temperature (500 °C ≤ Tg ≤ 1300 °C). The optimization model is executed using the optimization section of the Model Analysis Tools of the Aspen Plus simulator. The model is tested using eleven (11) types of MSW. The optimum operating conditions under which the objective function and the constraint are satisfied are ER=0, SB=0.66-1.22, and Tg=679 - 763°C. Under the optimum operating conditions, the syngas quality is H2=52.38 - 58.67-mole percent, LHV=12.55 - 17.15 MJ/kg, N2=0.38 - 2.33-mole percent, and H2/CO≥2.15. The generalized optimization model reported could be extended to any other type of biomass and coal. Keywords: MSW, Syngas, Optimization, Fischer-Tropsch.

Keywords: syngas, MSW, optimization, Fisher-Tropsh

Procedia PDF Downloads 80
7361 Leveraging Deep Q Networks in Portfolio Optimization

Authors: Peng Liu

Abstract:

Deep Q networks (DQNs) represent a significant advancement in reinforcement learning, utilizing neural networks to approximate the optimal Q-value for guiding sequential decision processes. This paper presents a comprehensive introduction to reinforcement learning principles, delves into the mechanics of DQNs, and explores its application in portfolio optimization. By evaluating the performance of DQNs against traditional benchmark portfolios, we demonstrate its potential to enhance investment strategies. Our results underscore the advantages of DQNs in dynamically adjusting asset allocations, offering a robust portfolio management framework.

Keywords: deep reinforcement learning, deep Q networks, portfolio optimization, multi-period optimization

Procedia PDF Downloads 32
7360 Cloud Monitoring and Performance Optimization Ensuring High Availability and Security

Authors: Inayat Ur Rehman, Georgia Sakellari

Abstract:

Cloud computing has evolved into a vital technology for businesses, offering scalability, flexibility, and cost-effectiveness. However, maintaining high availability and optimal performance in the cloud is crucial for reliable services. This paper explores the significance of cloud monitoring and performance optimization in sustaining the high availability of cloud-based systems. It discusses diverse monitoring tools, techniques, and best practices for continually assessing the health and performance of cloud resources. The paper also delves into performance optimization strategies, including resource allocation, load balancing, and auto-scaling, to ensure efficient resource utilization and responsiveness. Addressing potential challenges in cloud monitoring and optimization, the paper offers insights into data security and privacy considerations. Through this thorough analysis, the paper aims to underscore the importance of cloud monitoring and performance optimization for ensuring a seamless and highly available cloud computing environment.

Keywords: cloud computing, cloud monitoring, performance optimization, high availability

Procedia PDF Downloads 65
7359 Effect of Immunocastration Vaccine Administration at Different Doses on Performance of Feedlot Holstein Bulls

Authors: M. Bolacali

Abstract:

The aim of the study is to determine the effect of immunocastration vaccine administration at different doses on fattening performance of feedlot Holstein bulls. Bopriva® is a vaccine that stimulates the animals' own immune system to produce specific antibodies against gonadotropin releasing factor (GnRF). Ninety four Holstein male calves (309.5 ± 2.58 kg body live weight and 267 d-old) assigned to the 4 treatments. Control group; 1 mL of 0.9% saline solution was subcutaneously injected to intact bulls on 1st and 60th days of the feedlot as placebo. On the same days of the feedlot, Bopriva® at two doses of 1 mL and 1 mL for Trial-1 group, 1.5 mL, and 1.5 mL for Trial-2 group, 1.5 mL, and 1 mL for Trial-3 group were subcutaneously injected to bulls. The study was conducted in a private establishment in the Sirvan district of Siirt province and lasted 180 days. The animals were weighed at the beginning of fattening and at 30-day intervals to determine their live weights at various periods. The statistical analysis for normal distribution data of the treatment groups was carried out with the general linear model procedure of SPSS software. The fattening initial live weight in Control, Trial-1, Trial-2 and Trial-3 groups was respectively 309.21, 306.62, 312.11, and 315.39 kg. The fattening final live weight was respectively 560.88, 536.67, 548.56, and 548.25 kg. The daily live weight gain during the trial was respectively 1.40, 1.28, 1.31, and 1.29 kg/day. The cold carcass yield was respectively 51.59%, 50.32%, 50.85%, and 50.77%. Immunocastration vaccine administration at different doses did not affect the live weights and cold carcass yields of Holstein male calves reared under intensive conditions (P > 0.05). However, it was determined to reduce fattening performance between 61-120 days (P < 0.05) and 1-180 days (P < 0.01). In addition, it was determined that the best performance among the vaccine-treated groups occurred in the group administered a 1.5 mL of vaccine on the 1st and 60th study days. In animals, castration is used to control fertility, aggressive and sexual behaviors. As a result, the fact that stress is induced by physical castration in animals and active immunization against GnRF maintains performance by maximizing welfare in bulls improves carcass and meat quality and controls unwanted sexual and aggressive behavior. Considering such features, it may be suggested that immunocastration vaccine with Bopriva® can be administered as a 1.5 mL dose on the 1st and 60th days of the fattening period in Holstein bulls.

Keywords: anti-GnRF, fattening, growth, immunocastration

Procedia PDF Downloads 192
7358 An Intelligent Search and Retrieval System for Mining Clinical Data Repositories Based on Computational Imaging Markers and Genomic Expression Signatures for Investigative Research and Decision Support

Authors: David J. Foran, Nhan Do, Samuel Ajjarapu, Wenjin Chen, Tahsin Kurc, Joel H. Saltz

Abstract:

The large-scale data and computational requirements of investigators throughout the clinical and research communities demand an informatics infrastructure that supports both existing and new investigative and translational projects in a robust, secure environment. In some subspecialties of medicine and research, the capacity to generate data has outpaced the methods and technology used to aggregate, organize, access, and reliably retrieve this information. Leading health care centers now recognize the utility of establishing an enterprise-wide, clinical data warehouse. The primary benefits that can be realized through such efforts include cost savings, efficient tracking of outcomes, advanced clinical decision support, improved prognostic accuracy, and more reliable clinical trials matching. The overarching objective of the work presented here is the development and implementation of a flexible Intelligent Retrieval and Interrogation System (IRIS) that exploits the combined use of computational imaging, genomics, and data-mining capabilities to facilitate clinical assessments and translational research in oncology. The proposed System includes a multi-modal, Clinical & Research Data Warehouse (CRDW) that is tightly integrated with a suite of computational and machine-learning tools to provide insight into the underlying tumor characteristics that are not be apparent by human inspection alone. A key distinguishing feature of the System is a configurable Extract, Transform and Load (ETL) interface that enables it to adapt to different clinical and research data environments. This project is motivated by the growing emphasis on establishing Learning Health Systems in which cyclical hypothesis generation and evidence evaluation become integral to improving the quality of patient care. To facilitate iterative prototyping and optimization of the algorithms and workflows for the System, the team has already implemented a fully functional Warehouse that can reliably aggregate information originating from multiple data sources including EHR’s, Clinical Trial Management Systems, Tumor Registries, Biospecimen Repositories, Radiology PAC systems, Digital Pathology archives, Unstructured Clinical Documents, and Next Generation Sequencing services. The System enables physicians to systematically mine and review the molecular, genomic, image-based, and correlated clinical information about patient tumors individually or as part of large cohorts to identify patterns that may influence treatment decisions and outcomes. The CRDW core system has facilitated peer-reviewed publications and funded projects, including an NIH-sponsored collaboration to enhance the cancer registries in Georgia, Kentucky, New Jersey, and New York, with machine-learning based classifications and quantitative pathomics, feature sets. The CRDW has also resulted in a collaboration with the Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC) at the U.S. Department of Veterans Affairs to develop algorithms and workflows to automate the analysis of lung adenocarcinoma. Those studies showed that combining computational nuclear signatures with traditional WHO criteria through the use of deep convolutional neural networks (CNNs) led to improved discrimination among tumor growth patterns. The team has also leveraged the Warehouse to support studies to investigate the potential of utilizing a combination of genomic and computational imaging signatures to characterize prostate cancer. The results of those studies show that integrating image biomarkers with genomic pathway scores is more strongly correlated with disease recurrence than using standard clinical markers.

Keywords: clinical data warehouse, decision support, data-mining, intelligent databases, machine-learning.

Procedia PDF Downloads 126
7357 Modeling and Optimization of Micro-Grid Using Genetic Algorithm

Authors: Mehrdad Rezaei, Reza Haghmaram, Nima Amjadi

Abstract:

This paper proposes an operating and cost optimization model for micro-grid (MG). This model takes into account emission costs of NOx, SO2, and CO2, together with the operation and maintenance costs. Wind turbines (WT), photovoltaic (PV) arrays, micro turbines (MT), fuel cells (FC), diesel engine generators (DEG) with different capacities are considered in this model. The aim of the optimization is minimizing operation cost according to constraints, supply demand and safety of the system. The proposed genetic algorithm (GA), with the ability to fine-tune its own settings, is used to optimize the micro-grid operation.

Keywords: micro-grid, optimization, genetic algorithm, MG

Procedia PDF Downloads 511
7356 DEKA-1 a Dose-Finding Phase 1 Trial: Observing Safety and Biomarkers using DK210 (EGFR) for Inoperable Locally Advanced and/or Metastatic EGFR+ Tumors with Progressive Disease Failing Systemic Therapy

Authors: Spira A., Marabelle A., Kientop D., Moser E., Mumm J.

Abstract:

Background: Both interleukin-2 (IL-2) and interleukin-10 (IL-10) have been extensively studied for their stimulatory function on T cells and their potential to obtain sustainable tumor control in RCC, melanoma, lung, and pancreatic cancer as monotherapy, as well as combination with PD-1 blockers, radiation, and chemotherapy. While approved, IL-2 retains significant toxicity, preventing its widespread use. The significant efforts undertaken to uncouple IL-2 toxicity from its anti-tumor function have been unsuccessful, and early phase clinical safety observed with PEGylated IL-10 was not met in a blinded Phase 3 trial. Deka Biosciences has engineered a novel molecule coupling wild-type IL-2 to a high affinity variant of Epstein Barr Viral (EBV) IL-10 via a scaffold (scFv) that binds to epidermal growth factor receptors (EGFR). This patented molecule, termed DK210 (EGFR), is retained at high levels within the tumor microenvironment for days after dosing. In addition to overlapping and non-redundant anti-tumor function, IL-10 reduces IL-2 mediated cytokine release syndrome risks and inhibits IL-2 mediated T regulatory cell proliferation. Methods: DK210 (EGFR) is being evaluated in an open-label, dose-escalation (Phase 1) study with 5 (0.025-0.3 mg/kg) monotherapy dose levels and (expansion cohorts) in combination with PD-1 blockers, or radiation or chemotherapy in patients with advanced solid tumors overexpressing EGFR. Key eligibility criteria include 1) confirmed progressive disease on at least one line of systemic treatment, 2) EGFR overexpression or amplification documented in histology reports, 3) at least a 4 week or 5 half-lives window since last treatment, and 4) excluding subjects with long QT syndrome, multiple myeloma, multiple sclerosis, myasthenia gravis or uncontrolled infectious, psychiatric, neurologic, or cancer disease. Plasma and tissue samples will be investigated for pharmacodynamic and predictive biomarkers and genetic signatures associated with IFN-gamma secretion, aiming to select subjects for treatment in Phase 2. Conclusion: Through successful coupling of wild-type IL-2 with a high affinity IL-10 and targeting directly to the tumor microenvironment, DK210 (EGFR) has the potential to harness IL-2 and IL-10’s known anti-cancer promise while reducing immunogenicity and toxicity risks enabling safe concomitant cytokine treatment with other anti-cancer modalities.

Keywords: cytokine, EGFR over expression, interleukine-2, interleukine-10, clinical trial

Procedia PDF Downloads 86
7355 A Hybrid Particle Swarm Optimization-Nelder- Mead Algorithm (PSO-NM) for Nelson-Siegel- Svensson Calibration

Authors: Sofia Ayouche, Rachid Ellaia, Rajae Aboulaich

Abstract:

Today, insurers may use the yield curve as an indicator evaluation of the profit or the performance of their portfolios; therefore, they modeled it by one class of model that has the ability to fit and forecast the future term structure of interest rates. This class of model is the Nelson-Siegel-Svensson model. Unfortunately, many authors have reported a lot of difficulties when they want to calibrate the model because the optimization problem is not convex and has multiple local optima. In this context, we implement a hybrid Particle Swarm optimization and Nelder Mead algorithm in order to minimize by least squares method, the difference between the zero-coupon curve and the NSS curve.

Keywords: optimization, zero-coupon curve, Nelson-Siegel-Svensson, particle swarm optimization, Nelder-Mead algorithm

Procedia PDF Downloads 430
7354 COVID_ICU_BERT: A Fine-Tuned Language Model for COVID-19 Intensive Care Unit Clinical Notes

Authors: Shahad Nagoor, Lucy Hederman, Kevin Koidl, Annalina Caputo

Abstract:

Doctors’ notes reflect their impressions, attitudes, clinical sense, and opinions about patients’ conditions and progress, and other information that is essential for doctors’ daily clinical decisions. Despite their value, clinical notes are insufficiently researched within the language processing community. Automatically extracting information from unstructured text data is known to be a difficult task as opposed to dealing with structured information such as vital physiological signs, images, and laboratory results. The aim of this research is to investigate how Natural Language Processing (NLP) techniques and machine learning techniques applied to clinician notes can assist in doctors’ decision-making in Intensive Care Unit (ICU) for coronavirus disease 2019 (COVID-19) patients. The hypothesis is that clinical outcomes like survival or mortality can be useful in influencing the judgement of clinical sentiment in ICU clinical notes. This paper introduces two contributions: first, we introduce COVID_ICU_BERT, a fine-tuned version of clinical transformer models that can reliably predict clinical sentiment for notes of COVID patients in the ICU. We train the model on clinical notes for COVID-19 patients, a type of notes that were not previously seen by clinicalBERT, and Bio_Discharge_Summary_BERT. The model, which was based on clinicalBERT achieves higher predictive accuracy (Acc 93.33%, AUC 0.98, and precision 0.96 ). Second, we perform data augmentation using clinical contextual word embedding that is based on a pre-trained clinical model to balance the samples in each class in the data (survived vs. deceased patients). Data augmentation improves the accuracy of prediction slightly (Acc 96.67%, AUC 0.98, and precision 0.92 ).

Keywords: BERT fine-tuning, clinical sentiment, COVID-19, data augmentation

Procedia PDF Downloads 206
7353 Perceptions of Research Staff on the Implementation of Each-B Study: A Randomised Controlled Trial

Authors: Laila Khawaja

Abstract:

In recent years, an increasing emphasis has been placed on measuring program implementation, in part because of the great variability in how complex interventions are delivered in real-life settings. There is an increased awareness that while conducting process evaluations, one should aim to identify and understand the complexities of intervention if they are to be used for future intervention development or the strategies needed to implement the same intervention in a different setting. Complex interventions are public health interventions that are not drugs or surgical procedures but have many potential active aspects of intervention. In this paper, process evaluations are aligned with MRC guidelines to identify contextual factors related to outcomes to assess the quality of implementation. This paper briefly discusses the perceptions of research team on the implementation of the intervention of ‘Engaging Adolescents in Changing Behaviour’ (EACH-B), a school-based complex intervention study aiming to improve diet and physical activity among adolescents aged 12-13 years. Through qualitative interviews and focus groups with 10 staff members, we aimed to understand their experiences and reflections on implementing the EACH-B trial delivered in 49 Schools around Hampshire, England. Data were uploaded into NVivo, and analysis was conducted using thematic analysis. The investigation revealed two overarching themes: (a) how the communication patterns with teachers were impacted during the delivery of implementation and (b) what were the team’s strategies to keep logistics aligned with the research process that impacted the overall implementation of the trial. The paper informs adaptation strategies used by the research team to establish and maintain effective communication with the teachers as well as the thoughtfulness of the team’s logistic strategy for the successful delivery of the trial.

Keywords: complex interventions, process evaluation, adaptation strategies, randomised controlled trial

Procedia PDF Downloads 67
7352 Reinforcement Learning Optimization: Unraveling Trends and Advancements in Metaheuristic Algorithms

Authors: Rahul Paul, Kedar Nath Das

Abstract:

The field of machine learning (ML) is experiencing rapid development, resulting in a multitude of theoretical advancements and extensive practical implementations across various disciplines. The objective of ML is to facilitate the ability of machines to perform cognitive tasks by leveraging knowledge gained from prior experiences and effectively addressing complex problems, even in situations that deviate from previously encountered instances. Reinforcement Learning (RL) has emerged as a prominent subfield within ML and has gained considerable attention in recent times from researchers. This surge in interest can be attributed to the practical applications of RL, the increasing availability of data, and the rapid advancements in computing power. At the same time, optimization algorithms play a pivotal role in the field of ML and have attracted considerable interest from researchers. A multitude of proposals have been put forth to address optimization problems or improve optimization techniques within the domain of ML. The necessity of a thorough examination and implementation of optimization algorithms within the context of ML is of utmost importance in order to provide guidance for the advancement of research in both optimization and ML. This article provides a comprehensive overview of the application of metaheuristic evolutionary optimization algorithms in conjunction with RL to address a diverse range of scientific challenges. Furthermore, this article delves into the various challenges and unresolved issues pertaining to the optimization of RL models.

Keywords: machine learning, reinforcement learning, loss function, evolutionary optimization techniques

Procedia PDF Downloads 75
7351 Prospective Randomized Trial of Na/K Citrate for the Prevention of Contrast-Induced Nephropathy in High-Risk Patients

Authors: Leili Iranirad, Mohammad Saleh Sadeghi, Seyed Fakhreddin Hejazi, Negar Vakili Razlighi

Abstract:

Objective: Contrast-induced nephropathy (CIN) or contrast-induced acute kidney injury (CI-AKI) is an unknown acute kidney injury (AKI) occurring after exposure to contrast media (CM). Contrast agents are most often used for diagnostic procedures or therapeutic angiographic interventions. Recently, Na/K citrate as a urine alkalinization has been evaluated for the prevention of CIN. We conducted this experiment to evaluate the efficiency of Na/K citrate on CIN in high-risk patients treated with cardiac catheterization. Methods: A prospective randomized clinical trial was conducted on 400 patients having moderate to high-risk factors for CIN treated with elective percutaneous coronary intervention (PCI) and were assigned randomly to the control group or the Na/K citrate group. The Na/K citrate group (n=200) received 5 g Na/K citrate solution, which was diluted in 200 mL water two h before and four hours after the first administration and intravenous hydration for two h prior to and six h after the procedure, while the control group (n=200) only received intravenous hydration. Serum creatinine (SCr) was calculated prior to the contrast exposure and after 48 h. CIN was described as a 25% increase in creatinine of serum (SCr) or >0.5 mg/dl 48 h after contrast administration. Results: CIN was observed in 33 patients (16.5%) in the control group and in 6 patients (3%) in the Na/K citrate group. A significant variation was recorded in the CIN incidence between the two groups 48 h after the radiocontrast agent administration (p < 0.001). Conclusion: Our results show that Na/K citrate is useful and substantially reduces the incidence of CIN.

Keywords: contrast media, citrate, PCI

Procedia PDF Downloads 104
7350 Software Architecture Optimization Using Swarm Intelligence Techniques

Authors: Arslan Ellahi, Syed Amjad Hussain, Fawaz Saleem Bokhari

Abstract:

Optimization of software architecture can be done with respect to a quality attributes (QA). In this paper, there is an analysis of multiple research papers from different dimensions that have been used to classify those attributes. We have proposed a technique of swarm intelligence Meta heuristic ant colony optimization algorithm as a contribution to solve this critical optimization problem of software architecture. We have ranked quality attributes and run our algorithm on every QA, and then we will rank those on the basis of accuracy. At the end, we have selected the most accurate quality attributes. Ant colony algorithm is an effective algorithm and will perform best in optimizing the QA’s and ranking them.

Keywords: complexity, rapid evolution, swarm intelligence, dimensions

Procedia PDF Downloads 261
7349 Optimization of FGM Sandwich Beams Using Imperialist Competitive Algorithm

Authors: Saeed Kamarian, Mahmoud Shakeri

Abstract:

Sandwich structures are used in a variety of engineering applications including aircraft, construction and transportation where strong, stiff and light structures are required. In this paper, frequency maximization of Functionally Graded Sandwich (FGS) beams resting on Pasternak foundations is investigated. A generalized power-law distribution with four parameters is considered for material distribution through the thicknesses of face layers. Since the search space is large, the optimization processes becomes so complicated and too much time consuming. Thus a novel meta–heuristic called Imperialist Competitive Algorithm (ICA) which is a socio-politically motivated global search strategy is implemented to improve the speed of optimization process. Results show the success of applying ICA for engineering problems especially for design optimization of FGM sandwich beams.

Keywords: sandwich beam, functionally graded materials, optimization, imperialist competitive algorithm

Procedia PDF Downloads 569
7348 Chemical Reaction Algorithm for Expectation Maximization Clustering

Authors: Li Ni, Pen ManMan, Li KenLi

Abstract:

Clustering is an intensive research for some years because of its multifaceted applications, such as biology, information retrieval, medicine, business and so on. The expectation maximization (EM) is a kind of algorithm framework in clustering methods, one of the ten algorithms of machine learning. Traditionally, optimization of objective function has been the standard approach in EM. Hence, research has investigated the utility of evolutionary computing and related techniques in the regard. Chemical Reaction Optimization (CRO) is a recently established method. So the property embedded in CRO is used to solve optimization problems. This paper presents an algorithm framework (EM-CRO) with modified CRO operators based on EM cluster problems. The hybrid algorithm is mainly to solve the problem of initial value sensitivity of the objective function optimization clustering algorithm. Our experiments mainly take the EM classic algorithm:k-means and fuzzy k-means as an example, through the CRO algorithm to optimize its initial value, get K-means-CRO and FKM-CRO algorithm. The experimental results of them show that there is improved efficiency for solving objective function optimization clustering problems.

Keywords: chemical reaction optimization, expection maimization, initia, objective function clustering

Procedia PDF Downloads 715
7347 Analysis of Tandem Detonator Algorithm Optimized by Quantum Algorithm

Authors: Tomasz Robert Kuczerski

Abstract:

The high complexity of the algorithm of the autonomous tandem detonator system creates an optimization problem due to the parallel operation of several machine states of the system. Many years of experience and classic analyses have led to a partially optimized model. Limitations on the energy resources of this class of autonomous systems make it necessary to search for more effective methods of optimisation. The use of the Quantum Approximate Optimization Algorithm (QAOA) in these studies shows the most promising results. With the help of multiple evaluations of several qubit quantum circuits, proper results of variable parameter optimization were obtained. In addition, it was observed that the increase in the number of assessments does not result in further efficient growth due to the increasing complexity of optimising variables. The tests confirmed the effectiveness of the QAOA optimization method.

Keywords: algorithm analysis, autonomous system, quantum optimization, tandem detonator

Procedia PDF Downloads 92
7346 Daye™ Tampon as a Tool for Vaginal Sample Collection Towards the Detection of Genital Infections

Authors: Valentina Milanova, Kalina Mihaylova, Iva Lazarova

Abstract:

The mechanisms by which female genital infections are detected are varied and include clinician-collected high vaginal swabs, clinician-collected endocervical swabs, patient-collected vaginal swabs, and first-pass urine samples. Vaginal health screening has chronically low rates of uptake. This highlights the unmet need for a screening tool with comparable diagnostic accuracy which is familiar, convenient and easy to use for people. The Daye™ medical grade tampon offers an alternative to traditional sampling methods with the potential of increasing screening uptake among people previously too embarrassed or busy to attend gynecological appointments. In this white paper, the results of stability studies and a comparative clinical trial are discussed to assess the suitability of the device for the collection of vaginal samples for various clinical assessments. The tampon has demonstrated good sample stability and comparable sample quality compared to a self-collected vaginal swab and a clinician-collected cervical swab.

Keywords: vaginal microbiome, vaginal infections, gynaecological infections, female health, menstrual tampons, in vitro diagnostics

Procedia PDF Downloads 103
7345 Group Attachment Based Intervention® Reduces Toddlers' Fearfulness

Authors: Kristin Lewis, Howard Steele, Anne Murphy, Miriam Steele, Karen Bonuck, Paul Meissner

Abstract:

The present study examines data collected during the randomized control trial (RCT) of the Group Attachment-Based Intervention (GABI©), a trauma-informed, attachment-based intervention aimed at promoting healthy parent-child relationships that support child development. Families received treatment at Treatment Center and were randomly assigned to either the GABI condition or the treatment as usual condition, a parenting class called Systematic Training for Effective Parenting (STEP). Significant improvements in the parent-child relationship have been reported for families participating in GABI, but not in the STEP control group relying on Coding Interactive Behavior (CIB) as applied to 5-minute video-films of mothers and their toddlers in a free play context. This report considers five additional attachment-relevant 'clinical codes' that were also applied to the 5-minute free play sessions. Seventy-two parent-child dyads (38 in GABI and 34 in STEP) were compared to one another at intake and end-of-treatment, on these five-point dimensions: two-parent codes—the dissociation and ignoring; two child codes—simultaneous display of contradictory behavior and fear; and one parent-child code, i.e., role reversal. Overall, scores were low for these clinical codes; thus, a binary measure was computed contrasting no evidence with some evidence of each clinical code. Crosstab analyses indicate that child fear at end-of-treatment was significantly lower among children who participated in GABI (7% or 3 children) as compared to those whose mothers participated in STEP (29% or 10 children) Chi Sq= 6.57 (1), p < .01. Discussion focuses on the potential for GABI to reduce childhood fearfulness and so enhance the child's health.

Keywords: coding interactive behavior, clinical codes, group attachment based intervention, GABI, attachment, fear

Procedia PDF Downloads 118