Search results for: Retention Time
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18725

Search results for: Retention Time

965 Impact of Material Chemistry and Morphology on Attrition Behavior of Excipients during Blending

Authors: Sri Sharath Kulkarni, Pauline Janssen, Alberto Berardi, Bastiaan Dickhoff, Sander van Gessel

Abstract:

Blending is a common process in the production of pharmaceutical dosage forms where the high shear is used to obtain a homogenous dosage. The shear required can lead to uncontrolled attrition of excipients and affect API’s. This has an impact on the performance of the formulation as this can alter the structure of the mixture. Therefore, it is important to understand the driving mechanisms for attrition. The aim of this study was to increase the fundamental understanding of the attrition behavior of excipients. Attrition behavior of the excipients was evaluated using a high shear blender (Procept Form-8, Zele, Belgium). Twelve pure excipients are tested, with morphologies varying from crystalline (sieved), granulated to spray dried (round to fibrous). Furthermore, materials include lactose, microcrystalline cellulose (MCC), di-calcium phosphate (DCP), and mannitol. The rotational speed of the blender was set at 1370 rpm to have the highest shear with a Froude (Fr) number 9. Varying blending times of 2-10 min were used. Subsequently, after blending, the excipients were analyzed for changes in particle size distribution (PSD). This was determined (n = 3) by dry laser diffraction (Helos/KR, Sympatec, Germany). Attrition was found to be a surface phenomenon which occurs in the first minutes of the high shear blending process. An increase of blending time above 2 mins showed no change in particle size distribution. Material chemistry was identified as a key driver for differences in the attrition behavior between different excipients. This is mainly related to the proneness to fragmentation, which is known to be higher for materials such as DCP and mannitol compared to lactose and MCC. Secondly, morphology also was identified as a driver of the degree of attrition. Granular products consisting of irregular surfaces showed the highest reduction in particle size. This is due to the weak solid bonds created between the primary particles during the granulation process. Granular DCP and mannitol show a reduction of 80-90% in x10(µm) compared to a 20-30% drop for granular lactose (monohydrate and anhydrous). Apart from the granular lactose, all the remaining morphologies of lactose (spray dried-round, sieved-tomahawk, milled) show little change in particle size. Similar observations have been made for spray-dried fibrous MCC. All these morphologies have little irregular or sharp surfaces and thereby are less prone to fragmentation. Therefore, products containing brittle materials such as mannitol and DCP are more prone to fragmentation when exposed to shear. Granular products with irregular surfaces lead to an increase in attrition. While spherical, crystalline, or fibrous morphologies show reduced impact during high shear blending. These changes in size will affect the functionality attributes of the formulation, such as flow, API homogeneity, tableting, formation of dust, etc. Hence it is important for formulators to fully understand the excipients to make the right choices.

Keywords: attrition, blending, continuous manufacturing, excipients, lactose, microcrystalline cellulose, shear

Procedia PDF Downloads 111
964 Design of a Small and Medium Enterprise Growth Prediction Model Based on Web Mining

Authors: Yiea Funk Te, Daniel Mueller, Irena Pletikosa Cvijikj

Abstract:

Small and medium enterprises (SMEs) play an important role in the economy of many countries. When the overall world economy is considered, SMEs represent 95% of all businesses in the world, accounting for 66% of the total employment. Existing studies show that the current business environment is characterized as highly turbulent and strongly influenced by modern information and communication technologies, thus forcing SMEs to experience more severe challenges in maintaining their existence and expanding their business. To support SMEs at improving their competitiveness, researchers recently turned their focus on applying data mining techniques to build risk and growth prediction models. However, data used to assess risk and growth indicators is primarily obtained via questionnaires, which is very laborious and time-consuming, or is provided by financial institutes, thus highly sensitive to privacy issues. Recently, web mining (WM) has emerged as a new approach towards obtaining valuable insights in the business world. WM enables automatic and large scale collection and analysis of potentially valuable data from various online platforms, including companies’ websites. While WM methods have been frequently studied to anticipate growth of sales volume for e-commerce platforms, their application for assessment of SME risk and growth indicators is still scarce. Considering that a vast proportion of SMEs own a website, WM bears a great potential in revealing valuable information hidden in SME websites, which can further be used to understand SME risk and growth indicators, as well as to enhance current SME risk and growth prediction models. This study aims at developing an automated system to collect business-relevant data from the Web and predict future growth trends of SMEs by means of WM and data mining techniques. The envisioned system should serve as an 'early recognition system' for future growth opportunities. In an initial step, we examine how structured and semi-structured Web data in governmental or SME websites can be used to explain the success of SMEs. WM methods are applied to extract Web data in a form of additional input features for the growth prediction model. The data on SMEs provided by a large Swiss insurance company is used as ground truth data (i.e. growth-labeled data) to train the growth prediction model. Different machine learning classification algorithms such as the Support Vector Machine, Random Forest and Artificial Neural Network are applied and compared, with the goal to optimize the prediction performance. The results are compared to those from previous studies, in order to assess the contribution of growth indicators retrieved from the Web for increasing the predictive power of the model.

Keywords: data mining, SME growth, success factors, web mining

Procedia PDF Downloads 267
963 The Relationship between Wasting and Stunting in Young Children: A Systematic Review

Authors: Susan Thurstans, Natalie Sessions, Carmel Dolan, Kate Sadler, Bernardette Cichon, Shelia Isanaka, Dominique Roberfroid, Heather Stobagh, Patrick Webb, Tanya Khara

Abstract:

For many years, wasting and stunting have been viewed as separate conditions without clear evidence supporting this distinction. In 2014, the Emergency Nutrition Network (ENN) examined the relationship between wasting and stunting and published a report highlighting the evidence for linkages between the two forms of undernutrition. This systematic review aimed to update the evidence generated since this 2014 report to better understand the implications for improving child nutrition, health and survival. Following PRISMA guidelines, this review was conducted using search terms to describe the relationship between wasting and stunting. Studies related to children under five from low- and middle-income countries that assessed both ponderal growth/wasting and linear growth/stunting, as well as the association between the two, were included. Risk of bias was assessed in all included studies using SIGN checklists. 45 studies met the inclusion criteria- 39 peer reviewed studies, 1 manual chapter, 3 pre-print publications and 2 published reports. The review found that there is a strong association between the two conditions whereby episodes of wasting contribute to stunting and, to a lesser extent, stunting leads to wasting. Possible interconnected physiological processes and common risk factors drive an accumulation of vulnerabilities. Peak incidence of both wasting and stunting was found to be between birth and three months. A significant proportion of children experience concurrent wasting and stunting- Country level data suggests that up to 8% of children under 5 may be both wasted and stunted at the same time, global estimates translate to around 16 million children. Children with concurrent wasting and stunting have an elevated risk of mortality when compared to children with one deficit alone. These children should therefore be considered a high-risk group in the targeting of treatment. Wasting, stunting and concurrent wasting and stunting appear to be more prevalent in boys than girls and it appears that concurrent wasting and stunting peaks between 12- 30 months of age with younger children being the most affected. Seasonal patterns in prevalence of both wasting and stunting are seen in longitudinal and cross sectional data and in particular season of birth has been shown to have an impact on a child’s subsequent experience of wasting and stunting. Evidence suggests that the use of mid-upper-arm circumference combined with weight-for-age Z-score might effectively identify children most at risk of near-term mortality, including those concurrently wasted and stunted. Wasting and stunting frequently occur in the same child, either simultaneously or at different moments through their life course. Evidence suggests there is a process of accumulation of nutritional deficits and therefore risk over the life course of a child demonstrates the need for a more integrated approach to prevention and treatment strategies to interrupt this process. To achieve this, undernutrition policies, programmes, financing and research must become more unified.

Keywords: Concurrent wasting and stunting, Review, Risk factors, Undernutrition

Procedia PDF Downloads 127
962 Chi Square Confirmation of Autonomic Functions Percentile Norms of Indian Sportspersons Withdrawn from Competitive Games and Sports

Authors: Pawan Kumar, Dhananjoy Shaw, Manoj Kumar Rathi

Abstract:

Purpose of the study were to compare between (a) frequencies among the four quartiles of percentile norms of autonomic variables from power events and (b) frequencies among the four quartiles percentile norms of autonomic variables from aerobic events of Indian sportspersons withdrawn from competitive games and sports in regard to number of samples falling in each quartile. The study was conducted on 430 males of 30 to 35 years of age. Based on the nature of game/sports the retired sportspersons were classified into power events (throwers, judo players, wrestlers, short distance swimmers, cricket fast bowlers and power lifters) and aerobic events (long distance runners, long distance swimmers, water polo players). Date was collected using ECG polygraphs. Data were processed and extracted using frequency domain analysis and time domain analysis. Collected data were computed with frequency, percentage of each quartile and finally the frequencies were compared with the chi square analysis. The finding pertaining to norm reference comparison of frequencies among the four quartiles of Indian sportspersons withdrawn from competitive games and sports from (a) power events suggests that frequency distribution in four quartile namely Q1, Q2, Q3, and Q4 are significantly different at .05 level in regard to variables namely, SDNN, Total Power (Absolute Power), HF (Absolute Power), LF (Normalized Power), HF (Normalized Power), LF/HF ratio, deep breathing test, expiratory respiratory ratio, valsalva manoeuvre, hand grip test, cold pressor test and lying to standing test, whereas, insignificantly different at .05 level in regard to variables namely, SDSD, RMSSD, SDANN, NN50 Count, pNN50 Count, LF (Absolute Power) and 30: 15 Ratio (b) aerobic events suggests that frequency distribution in four quartile are significantly different at .05 level in regard to variables namely, SDNN, LF (Normalized Power), HF (Normalized Power), LF/HF ratio, deep breathing test, expiratory respiratory ratio, hand grip test, cold pressor test, lying to standing test and 30: 15 ratio, whereas, insignificantly different at .05 level in regard to variables namely, SDSD, RMSSD. SDANN, NN50 count, pNN50 count, Total Power (Absolute Power), LF(Absolute Power) HF(Absolute Power), and valsalva manoeuvre. The study concluded that comparison of frequencies among the four quartiles of Indian retired sportspersons from power events and aerobic events are different in four quartiles in regard to selected autonomic functions, hence the developed percentile norms are not homogenously distributed across the percentile scale; hence strengthen the percentage distribution towards normal distribution.

Keywords: power, aerobic, absolute power, normalized power

Procedia PDF Downloads 353
961 Graphene-Graphene Oxide Dopping Effect on the Mechanical Properties of Polyamide Composites

Authors: Daniel Sava, Dragos Gudovan, Iulia Alexandra Gudovan, Ioana Ardelean, Maria Sonmez, Denisa Ficai, Laurentia Alexandrescu, Ecaterina Andronescu

Abstract:

Graphene and graphene oxide have been intensively studied due to the very good properties, which are intrinsic to the material or come from the easy doping of those with other functional groups. Graphene and graphene oxide have known a broad band of useful applications, in electronic devices, drug delivery systems, medical devices, sensors and opto-electronics, coating materials, sorbents of different agents for environmental applications, etc. The board range of applications does not come only from the use of graphene or graphene oxide alone, or by its prior functionalization with different moieties, but also it is a building block and an important component in many composite devices, its addition coming with new functionalities on the final composite or strengthening the ones that are already existent on the parent product. An attempt to improve the mechanical properties of polyamide elastomers by compounding with graphene oxide in the parent polymer composition was attempted. The addition of the graphene oxide contributes to the properties of the final product, improving the hardness and aging resistance. Graphene oxide has a lower hardness and textile strength, and if the amount of graphene oxide in the final product is not correctly estimated, it can lead to mechanical properties which are comparable to the starting material or even worse, the graphene oxide agglomerates becoming a tearing point in the final material if the amount added is too high (in a value greater than 3% towards the parent material measured in mass percentages). Two different types of tests were done on the obtained materials, the hardness standard test and the tensile strength standard test, and they were made on the obtained materials before and after the aging process. For the aging process, an accelerated aging was used in order to simulate the effect of natural aging over a long period of time. The accelerated aging was made in extreme heat. For all materials, FT-IR spectra were recorded using FT-IR spectroscopy. From the FT-IR spectra only the bands corresponding to the polyamide were intense, while the characteristic bands for graphene oxide were very small in comparison due to the very small amounts introduced in the final composite along with the low absorptivity of the graphene backbone and limited number of functional groups. In conclusion, some compositions showed very promising results, both in tensile strength test and in hardness tests. The best ratio of graphene to elastomer was between 0.6 and 0.8%, this addition extending the life of the product. Acknowledgements: The present work was possible due to the EU-funding grant POSCCE-A2O2.2.1-2013-1, Project No. 638/12.03.2014, code SMIS-CSNR 48652. The financial contribution received from the national project ‘New nanostructured polymeric composites for centre pivot liners, centre plate and other components for the railway industry (RONERANANOSTRUCT)’, No: 18 PTE (PN-III-P2-2.1-PTE-2016-0146) is also acknowledged.

Keywords: graphene, graphene oxide, mechanical properties, dopping effect

Procedia PDF Downloads 314
960 Modeling the International Economic Relations Development: The Prospects for Regional and Global Economic Integration

Authors: M. G. Shilina

Abstract:

The interstate economic interaction phenomenon is complex. ‘Economic integration’, as one of its types, can be explored through the prism of international law, the theories of the world economy, politics and international relations. The most objective study of the phenomenon requires a comprehensive multifactoral approach. In new geopolitical realities, the problems of coexistence and possible interconnection of various mechanisms of interstate economic interaction are actively discussed. Currently, the Eurasian continent states support the direction to economic integration. At the same time, the existing international economic law fragmentation in Eurasia is seen as the important problem. The Eurasian space is characterized by a various types of interstate relations: international agreements (multilateral and bilateral), and a large number of cooperation formats (from discussion platforms to organizations aimed at deep integration). For their harmonization, it is necessary to have a clear vision to the phased international economic relations regulation options. In the conditions of rapid development of international economic relations, the modeling (including prognostic) can be optimally used as the main scientific method for presenting the phenomenon. On the basis of this method, it is possible to form the current situation vision and the best options for further action. In order to determine the most objective version of the integration development, the combination of several approaches were used. The normative legal approach- the descriptive method of legal modeling- was taken as the basis for the analysis. A set of legal methods was supplemented by the international relations science prognostic methods. The key elements of the model are the international economic organizations and states' associations existing in the Eurasian space (the Eurasian Economic Union (EAEU), the European Union (EU), the Shanghai Cooperation Organization (SCO), Chinese project ‘One belt-one road’ (OBOR), the Commonwealth of Independent States (CIS), BRICS, etc.). A general term for the elements of the model is proposed - the interstate interaction mechanisms (IIM). The aim of building a model of current and future Eurasian economic integration is to show optimal options for joint economic development of the states and IIMs. The long-term goal of this development is the new economic and political space, so-called the ‘Great Eurasian Community’. The process of achievement this long-term goal consists of successive steps. Modeling the integration architecture and dividing the interaction into stages led us to the following conclusion: the SCO is able to transform Eurasia into a single economic space. Gradual implementation of the complex phased model, in which the SCO+ plays a key role, will allow building an effective economic integration for all its participants, to create an economically strong community. The model can have practical value for politicians, lawyers, economists and other participants involved in the economic integration process. A clear, systematic structure can serve as a basis for further governmental action.

Keywords: economic integration, The Eurasian Economic Union, The European Union, The Shanghai Cooperation Organization, The Silk Road Economic Belt

Procedia PDF Downloads 150
959 Hydrogen Storage Systems for Enhanced Grid Balancing Services in Wind Energy Conversion Systems

Authors: Nezmin Kayedpour, Arash E. Samani, Siavash Asiaban, Jeroen M. De Kooning, Lieven Vandevelde, Guillaume Crevecoeur

Abstract:

The growing adoption of renewable energy sources, such as wind power, in electricity generation is a significant step towards a sustainable and decarbonized future. However, the inherent intermittency and uncertainty of wind resources pose challenges to the reliable and stable operation of power grids. To address this, hydrogen storage systems have emerged as a promising and versatile technology to support grid balancing services in wind energy conversion systems. In this study, we propose a supplementary control design that enhances the performance of the hydrogen storage system by integrating wind turbine (WT) pitch and torque control systems. These control strategies aim to optimize the hydrogen production process, ensuring efficient utilization of wind energy while complying with grid requirements. The wind turbine pitch control system plays a crucial role in managing the turbine's aerodynamic performance. By adjusting the blade pitch angle, the turbine's rotational speed and power output can be regulated. Our proposed control design dynamically coordinates the pitch angle to match the wind turbine's power output with the optimal hydrogen production rate. This ensures that the electrolyzer receives a steady and optimal power supply, avoiding unnecessary strain on the system during high wind speeds and maximizing hydrogen production during low wind speeds. Moreover, the wind turbine torque control system is incorporated to facilitate efficient operation at varying wind speeds. The torque control system optimizes the energy capture from the wind while limiting mechanical stress on the turbine components. By harmonizing the torque control with hydrogen production requirements, the system maintains stable wind turbine operation, thereby enhancing the overall energy-to-hydrogen conversion efficiency. To enable grid-friendly operation, we introduce a cascaded controller that regulates the electrolyzer's electrical power-current in accordance with grid requirements. This controller ensures that the hydrogen production rate can be dynamically adjusted based on real-time grid demands, supporting grid balancing services effectively. By maintaining a close relationship between the wind turbine's power output and the electrolyzer's current, the hydrogen storage system can respond rapidly to grid fluctuations and contribute to enhanced grid stability. In this paper, we present a comprehensive analysis of the proposed supplementary control design's impact on the overall performance of the hydrogen storage system in wind energy conversion systems. Through detailed simulations and case studies, we assess the system's ability to provide grid balancing services, maximize wind energy utilization, and reduce greenhouse gas emissions.

Keywords: active power control, electrolyzer, grid balancing services, wind energy conversion systems

Procedia PDF Downloads 84
958 The Dynamics of a Droplet Spreading on a Steel Surface

Authors: Evgeniya Orlova, Dmitriy Feoktistov, Geniy Kuznetsov

Abstract:

Spreading of a droplet over a solid substrate is a key phenomenon observed in the following engineering applications: thin film coating, oil extraction, inkjet printing, and spray cooling of heated surfaces. Droplet cooling systems are known to be more effective than film or rivulet cooling systems. It is caused by the greater evaporation surface area of droplets compared with the film of the same mass and wetting surface. And the greater surface area of droplets is connected with the curvature of the interface. Location of the droplets on the cooling surface influences on the heat transfer conditions. The close distance between the droplets provides intensive heat removal, but there is a possibility of their coalescence in the liquid film. The long distance leads to overheating of the local areas of the cooling surface and the occurrence of thermal stresses. To control the location of droplets is possible by changing the roughness, structure and chemical composition of the surface. Thus, control of spreading can be implemented. The most important characteristic of spreading of droplets on solid surfaces is a dynamic contact angle, which is a function of the contact line speed or capillary number. However, there is currently no universal equation, which would describe the relationship between these parameters. This paper presents the results of the experimental studies of water droplet spreading on metal substrates with different surface roughness. The effect of the droplet growth rate and the surface roughness on spreading characteristics was studied at low capillary numbers. The shadow method using high speed video cameras recording up to 10,000 frames per seconds was implemented. A droplet profile was analyzed by Axisymmetric Drop Shape Analyses techniques. According to change of the dynamic contact angle and the contact line speed three sequential spreading stages were observed: rapid increase in the dynamic contact angle; monotonous decrease in the contact angle and the contact line speed; and form of the equilibrium contact angle at constant contact line. At low droplet growth rate, the dynamic contact angle of the droplet spreading on the surfaces with the maximum roughness is found to increase throughout the spreading time. It is due to the fact that the friction force on such surfaces is significantly greater than the inertia force; and the contact line is pinned on microasperities of a relief. At high droplet growth rate the contact angle decreases during the second stage even on the surfaces with the maximum roughness, as in this case, the liquid does not fill the microcavities, and the droplet moves over the “air cushion”, i.e. the interface is a liquid/gas/solid system. Also at such growth rates pulsation of liquid flow was detected; and the droplet oscillates during the spreading. Thus, obtained results allow to conclude that it is possible to control spreading by using the surface roughness and the growth rate of droplets on surfaces as varied factors. Also, the research findings may be used for analyzing heat transfer in rivulet and drop cooling systems of high energy equipment.

Keywords: contact line speed, droplet growth rate, dynamic contact angle, shadow system, spreading

Procedia PDF Downloads 330
957 Using Convolutional Neural Networks to Distinguish Different Sign Language Alphanumerics

Authors: Stephen L. Green, Alexander N. Gorban, Ivan Y. Tyukin

Abstract:

Within the past decade, using Convolutional Neural Networks (CNN)’s to create Deep Learning systems capable of translating Sign Language into text has been a breakthrough in breaking the communication barrier for deaf-mute people. Conventional research on this subject has been concerned with training the network to recognize the fingerspelling gestures of a given language and produce their corresponding alphanumerics. One of the problems with the current developing technology is that images are scarce, with little variations in the gestures being presented to the recognition program, often skewed towards single skin tones and hand sizes that makes a percentage of the population’s fingerspelling harder to detect. Along with this, current gesture detection programs are only trained on one finger spelling language despite there being one hundred and forty-two known variants so far. All of this presents a limitation for traditional exploitation for the state of current technologies such as CNN’s, due to their large number of required parameters. This work aims to present a technology that aims to resolve this issue by combining a pretrained legacy AI system for a generic object recognition task with a corrector method to uptrain the legacy network. This is a computationally efficient procedure that does not require large volumes of data even when covering a broad range of sign languages such as American Sign Language, British Sign Language and Chinese Sign Language (Pinyin). Implementing recent results on method concentration, namely the stochastic separation theorem, an AI system is supposed as an operate mapping an input present in the set of images u ∈ U to an output that exists in a set of predicted class labels q ∈ Q of the alphanumeric that q represents and the language it comes from. These inputs and outputs, along with the interval variables z ∈ Z represent the system’s current state which implies a mapping that assigns an element x ∈ ℝⁿ to the triple (u, z, q). As all xi are i.i.d vectors drawn from a product mean distribution, over a period of time the AI generates a large set of measurements xi called S that are grouped into two categories: the correct predictions M and the incorrect predictions Y. Once the network has made its predictions, a corrector can then be applied through centering S and Y by subtracting their means. The data is then regularized by applying the Kaiser rule to the resulting eigenmatrix and then whitened before being split into pairwise, positively correlated clusters. Each of these clusters produces a unique hyperplane and if any element x falls outside the region bounded by these lines then it is reported as an error. As a result of this methodology, a self-correcting recognition process is created that can identify fingerspelling from a variety of sign language and successfully identify the corresponding alphanumeric and what language the gesture originates from which no other neural network has been able to replicate.

Keywords: convolutional neural networks, deep learning, shallow correctors, sign language

Procedia PDF Downloads 100
956 Vortex Control by a Downstream Splitter Plate in Psudoplastic Fluid Flow

Authors: Sudipto Sarkar, Anamika Paul

Abstract:

Pseudoplastic (n<1, n is the power index) fluids have great importance in food, pharmaceutical and chemical process industries which require a lot of attention. Unfortunately, due to its complex flow behavior inadequate research works can be found even in laminar flow regime. A practical problem is solved in the present research work by numerical simulation where we tried to control the vortex shedding from a square cylinder using a horizontal splitter plate placed at the downstream flow region. The position of the plate is at the centerline of the cylinder with varying distance from the cylinder to calculate the critical gap-ratio. If the plate is placed inside this critical gap, the vortex shedding from the cylinder suppressed completely. The Reynolds number considered here is in unsteady laminar vortex shedding regime, Re = 100 (Re = U∞a/ν, where U∞ is the free-stream velocity of the flow, a is the side of the cylinder and ν is the maximum value of kinematic viscosity of the fluid). Flow behavior has been studied for three different gap-ratios (G/a = 2, 2.25 and 2.5, where G is the gap between cylinder and plate) and for a fluid with three different flow behavior indices (n =1, 0.8 and 0.5). The flow domain is constructed using Gambit 2.2.30 and this software is also used to generate the mesh and to impose the boundary conditions. For G/a = 2, the domain size is considered as 37.5a × 16a with 316 × 208 grid points in the streamwise and flow-normal directions respectively after a thorough grid independent study. Fine and equal grid spacing is used close to the geometry to capture the vortices shed from the cylinder and the boundary layer developed over the flat plate. Away from the geometry meshes are unequal in size and stretched out. For other gap-ratios, proportionate domain size and total grid points are used with similar kind of mesh distribution. Velocity inlet (u = U∞), pressure outlet (Neumann condition), symmetry (free-slip boundary condition) at upper and lower domain boundary conditions are used for the simulation. Wall boundary condition (u = v = 0) is considered both on the cylinder and the splitter plate surfaces. Discretized forms of fully conservative 2-D unsteady Navier Stokes equations are then solved by Ansys Fluent 14.5. SIMPLE algorithm written in finite volume method is selected for this purpose which is a default solver inculcate in Fluent. The results obtained for Newtonian fluid flow agree well with previous works supporting Fluent’s usefulness in academic research. A thorough analysis of instantaneous and time-averaged flow fields are depicted both for Newtonian and pseudoplastic fluid flow. It has been observed that as the value of n reduces the stretching of shear layers also reduce and these layers try to roll up before the plate. For flow with high pseudoplasticity (n = 0.5) the nature of vortex shedding changes and the value of critical gap-ratio reduces. These are the remarkable findings for laminar periodic vortex shedding regime in pseudoplastic flow environment.

Keywords: CFD, pseudoplastic fluid flow, wake-boundary layer interactions, critical gap-ratio

Procedia PDF Downloads 111
955 Recovering Trust in Institutions through Networked Governance: An Analytical Approach via the Study of the Provincial Government of Gipuzkoa

Authors: Xabier Barandiaran, Igone Guerra

Abstract:

The economic and financial crisis that hit European countries in 2008 revealed the inability of governments to respond unilaterally to the so-called “wicked” problems that affect our societies. Closely linked to this, the increasing disaffection of citizens towards politics has resulted in growing distrust of the citizenry not only in the institutions in general but also in the political system, in particular. Precisely, these two factors provoked the action of the local government of Gipuzkoa (Basque Country) to move from old ways of “doing politics” to a new way of “thinking politics” based on a collaborative approach, in which innovative modes of public decision making are prominent. In this context, in 2015, the initiative Etorkizuna Eraikiz (Building the Future), a contemporary form of networked governance, was launched by the Provincial Government. The paper focuses on the Etorkizuna Eraikiz initiative, a sound commitment from a local government to build jointly with the citizens the future of the territory. This paper will present preliminary results obtained from three different experiences of co-creation developed within Etorkizuna Eraikiz in which the formulation of networked governance is a mandatory pre-requisite. These experiences show how the network building approach among the different agents of the territory as well as the co-creation of public policies is the cornerstone of this challenging mission. Through the analysis of the information and documentation gathered during the four years of Etorkizuna-Eraikiz, and, specifically by delving into the strategy promoted by the initiative, some emerging analytical conclusions resulting from the promotion of this collaborative culture will be presented. For example, some preliminary results have shown a significant positive relationship between shared leadership and the formulation of the public good. In the period 2016-2018, a total of 73 projects were launched and funding by the Provincial Government of Gipuzkoa within the Etorkizuna Eraikiz initiative, that indicates greater engagement of the citizenry in the process of policy-making and therefore improving, somehow, the quality of the public policies. These statements have been supported by the last survey about the perspectives of the citizens toward politics and policies. Some of the more prominent results show us that there is still a high level of distrust in Politics (78,9% of respondents) but a greater trust in institutions such the Political Government of Gipuzkoa (40,8% of respondents declared as “good” the performance of this provincial institution). Regarding the Etorkizuna Eraikiz Initiative, it is being more readily recognized by citizens over this period of time (25,4% of the respondents in June 2018 agreed to know about the initiative giving it a mark of 5,89 ) and thus build trust and a sense of ownership. Although, there is a clear requirement for further research on the linkages between collaborative governance and level of trust, the paper, based on these findings, will provide some managerial and theoretical implications for collaborative governance in the territory.

Keywords: network governance, collaborative governance, public sector innovation, citizen participation, trust

Procedia PDF Downloads 122
954 Topographic and Thermal Analysis of Plasma Polymer Coated Hybrid Fibers for Composite Applications

Authors: Hande Yavuz, Grégory Girard, Jinbo Bai

Abstract:

Manufacturing of hybrid composites requires particular attention to overcome various critical weaknesses that are originated from poor interfacial compatibility. A large number of parameters have to be considered to optimize the interfacial bond strength either to avoid flaw sensitivity or delamination that occurs in composites. For this reason, surface characterization of reinforcement phase is needed in order to provide necessary data to drive an assessment of fiber-matrix interfacial compatibility prior to fabrication of composite structures. Compared to conventional plasma polymerization processes such as radiofrequency and microwave, dielectric barrier discharge assisted plasma polymerization is a promising process that can be utilized to modify the surface properties of carbon fibers in a continuous manner. Finding the most suitable conditions (e.g., plasma power, plasma duration, precursor proportion) for plasma polymerization of pyrrole in post-discharge region either in the presence or in the absence of p-toluene sulfonic acid monohydrate as well as the characterization of plasma polypyrrole coated fibers are the important aspects of this work. Throughout the current investigation, atomic force microscopy (AFM) and thermogravimetric analysis (TGA) are used to characterize plasma treated hybrid fibers (CNT-grafted Toray T700-12K carbon fibers, referred as T700/CNT). TGA results show the trend in the change of decomposition process of deposited polymer on fibers as a function of temperature up to 900 °C. Within the same period of time, all plasma pyrrole treated samples began to lose weight with relatively fast rate up to 400 °C which suggests the loss of polymeric structures. The weight loss between 300 and 600 °C is attributed to evolution of CO2 due to decomposition of functional groups (e.g. carboxyl compounds). With keeping in mind the surface chemical structure, the higher the amount of carbonyl, alcohols, and ether compounds, the lower the stability of deposited polymer. Thus, the highest weight loss is observed in 1400 W 45 s pyrrole+pTSA.H2O plasma treated sample probably because of the presence of less stable polymer than that of other plasma treated samples. Comparison of the AFM images for untreated and plasma treated samples shows that the surface topography may change on a microscopic scale. The AFM image of 1800 W 45 s treated T700/CNT fiber possesses the most significant increase in roughening compared to untreated T700/CNT fiber. Namely, the fiber surface became rougher with ~3.6 fold that of the T700/CNT fiber. The increase observed in surface roughness compared to untreated T700/CNT fiber may provide more contact points between fiber and matrix due to increased surface area. It is believed to be beneficial for their application as reinforcement in composites.

Keywords: hybrid fibers, surface characterization, surface roughness, thermal stability

Procedia PDF Downloads 233
953 Dragonflies (Odonata) Reflect Climate Warming Driven Changes in High Mountain Invertebrates Populations

Authors: Nikola Góral, Piotr Mikołajczuk, Paweł Buczyński

Abstract:

Much scientific research in the last 20 years has focused on the influence of global warming on the distribution and phenology of living organisms. Three potential responses to climate change are predicted: individual species may become extinct, adapt to new conditions in their existing range or change their range by migrating to places where climatic conditions are more favourable. It means not only migration to areas in other latitudes, but also different altitudes. In the case of dragonflies (Odonata), monitoring in Western Europe has shown that in response to global warming, dragonflies tend to change their range to a more northern one. The strongest response to global warming is observed in arctic and alpine species, as well as in species capable of migrating over long distances. The aim of the research was to assess whether the fauna of aquatic insects in high-mountain habitats has changed as a result of climate change and, if so, how big and what type these changes are. Dragonflies were chosen as a model organism because of their fast reaction to changes in the environment: they have high migration abilities and short life cycle. The state of the populations of boreal-mountain species and the extent to which lowland species entered high altitudes was assessed. The research was carried out on 20 sites in Western Sudetes, Southern Poland. They were located at an altitude of between 850 and 1250 m. The selected sites were representative of many types of valuable alpine habitats (subalpine raised bog, transitional spring bog, habitats associated with rivers and mountain streams). Several sites of anthropogenic origin were also selected. Thanks to this selection, a wide characterization of the fauna of the Karkonosze was made and it was compared whether the studied processes proceeded differently, depending on whether the habitat is primary or secondary. Both imagines and larvae were examined (by taking hydrobiological samples with a kick-net), and exuviae were also collected. Individual species dragonflies were characterized in terms of their reproductive, territorial and foraging behaviour. During each inspection, the basic physicochemical parameters of the water were measured. The population of the high-mountain dragonfly Somatochlora alpestris turned out to be in a good condition. This species was noted at several sites. Some of those sites were situated relatively low (995 m AMSL), which proves that the thermal conditions at the lower altitudes might be still optimal for this species. The protected by polish law species Somatochlora arctica, Aeshna subarctica and Leucorrhinia albifrons, as well as strongly associated with bogs Leucorrhinia dubia and Aeshna juncea bogs were observed. However, they were more frequent and more numerous in habitats of anthropogenic origin, which may suggest minor changes in the habitat preferences of dragonflies. The subject requires further research and observations over a longer time scale.

Keywords: alpine species, bioindication, global warming, habitat preferences, population dynamics

Procedia PDF Downloads 150
952 The Brain’s Attenuation Coefficient as a Potential Estimator of Temperature Elevation during Intracranial High Intensity Focused Ultrasound Procedures

Authors: Daniel Dahis, Haim Azhari

Abstract:

Noninvasive image-guided intracranial treatments using high intensity focused ultrasound (HIFU) are on the course of translation into clinical applications. They include, among others, tumor ablation, hyperthermia, and blood-brain-barrier (BBB) penetration. Since many of these procedures are associated with local temperature elevation, thermal monitoring is essential. MRI constitutes an imaging method with high spatial resolution and thermal mapping capacity. It is the currently leading modality for temperature guidance, commonly under the name MRgHIFU (magnetic-resonance guided HIFU). Nevertheless, MRI is a very expensive non-portable modality which jeopardizes its accessibility. Ultrasonic thermal monitoring, on the other hand, could provide a modular, cost-effective alternative with higher temporal resolution and accessibility. In order to assess the feasibility of ultrasonic brain thermal monitoring, this study investigated the usage of brain tissue attenuation coefficient (AC) temporal changes as potential estimators of thermal changes. Newton's law of cooling describes a temporal exponential decay behavior for the temperature of a heated object immersed in a relatively cold surrounding. Similarly, in the case of cerebral HIFU treatments, the temperature in the region of interest, i.e., focal zone, is suggested to follow the same law. Thus, it was hypothesized that the AC of the irradiated tissue may follow a temporal exponential behavior during cool down regime. Three ex-vivo bovine brain tissue specimens were inserted into plastic containers along with four thermocouple probes in each sample. The containers were placed inside a specially built ultrasonic tomograph and scanned at room temperature. The corresponding pixel-averaged AC was acquired for each specimen and used as a reference. Subsequently, the containers were placed in a beaker containing hot water and gradually heated to about 45ᵒC. They were then repeatedly rescanned during cool down using ultrasonic through-transmission raster trajectory until reaching about 30ᵒC. From the obtained images, the normalized AC and its temporal derivative as a function of temperature and time were registered. The results have demonstrated high correlation (R² > 0.92) between both the brain AC and its temporal derivative to temperature. This indicates the validity of the hypothesis and the possibility of obtaining brain tissue temperature estimation from the temporal AC thermal changes. It is important to note that each brain yielded different AC values and slopes. This implies that a calibration step is required for each specimen. Thus, for a practical acoustic monitoring of the brain, two steps are suggested. The first step consists of simply measuring the AC at normal body temperature. The second step entails measuring the AC after small temperature elevation. In face of the urging need for a more accessible thermal monitoring technique for brain treatments, the proposed methodology enables a cost-effective high temporal resolution acoustical temperature estimation during HIFU treatments.

Keywords: attenuation coefficient, brain, HIFU, image-guidance, temperature

Procedia PDF Downloads 161
951 The Use of Image Analysis Techniques to Describe a Cluster Cracks in the Cement Paste with the Addition of Metakaolinite

Authors: Maciej Szeląg, Stanisław Fic

Abstract:

The impact of elevated temperatures on the construction materials manifests in change of their physical and mechanical characteristics. Stresses and thermal deformations that occur inside the volume of the material cause its progressive degradation as temperature increase. Finally, the reactions and transformations of multiphase structure of cementitious composite cause its complete destruction. A particularly dangerous phenomenon is the impact of thermal shock – a sudden high temperature load. The thermal shock leads to a high value of the temperature gradient between the outer surface and the interior of the element in a relatively short time. The result of mentioned above process is the formation of the cracks and scratches on the material’s surface and inside the material. The article describes the use of computer image analysis techniques to identify and assess the structure of the cluster cracks on the surfaces of modified cement pastes, caused by thermal shock. Four series of specimens were tested. Two Portland cements were used (CEM I 42.5R and CEM I 52,5R). In addition, two of the series contained metakaolinite as a replacement for 10% of the cement content. Samples in each series were made in combination of three w/b (water/binder) indicators of respectively 0.4; 0.5; 0.6. Surface cracks of the samples were created by a sudden temperature load at 200°C for 4 hours. Images of the cracked surfaces were obtained via scanning at 1200 DPI; digital processing and measurements were performed using ImageJ v. 1.46r software. In order to examine the cracked surface of the cement paste as a system of closed clusters – the dispersal systems theory was used to describe the structure of cement paste. Water is used as the dispersing phase, and the binder is used as the dispersed phase – which is the initial stage of cement paste structure creation. A cluster itself is considered to be the area on the specimen surface that is limited by cracks (created by sudden temperature loading) or by the edge of the sample. To describe the structure of cracks two stereological parameters were proposed: A ̅ – the cluster average area, L ̅ – the cluster average perimeter. The goal of this study was to compare the investigated stereological parameters with the mechanical properties of the tested specimens. Compressive and tensile strength testes were carried out according to EN standards. The method used in the study allowed the quantitative determination of defects occurring in the examined modified cement pastes surfaces. Based on the results, it was found that the nature of the cracks depends mainly on the physical parameters of the cement and the intermolecular interactions on the dispersal environment. Additionally, it was noted that the A ̅/L ̅ relation of created clusters can be described as one function for all tested samples. This fact testifies about the constant geometry of the thermal cracks regardless of the presence of metakaolinite, the type of cement and the w/b ratio.

Keywords: cement paste, cluster cracks, elevated temperature, image analysis, metakaolinite, stereological parameters

Procedia PDF Downloads 388
950 Anti-Hyperglycemic Effects and Chemical Analysis of Allium sativum Bulbs Growing in Sudan

Authors: Ikram Mohamed Eltayeb Elsiddig, Yacouba Amina Djamila, Amna El Hassan Hamad

Abstract:

Hyperglycemia and diabetes have been treated with several medicinal plants for a long time, meanwhile reduce associated side effects than the synthetic ones. Therefore, the search for more effective and safer anti-diabetic agents derived from plants has become an interest area of active research. A. sativum, belonging to the Liliaceae family is well known for its medicinal uses in African traditional medicine, it used for treating of many human diseases mainly diabetes, high cholesterol, and high blood pressure. The present study was carried out to investigate the anti-hyperglycemic effect of the extracts of A. sativum bulb growing in Sudan on glucose-loaded Wistar albino rats. A. sativum bulbs were collected from local vegetable market at Khourtoum/ Sudan in a fresh form, identified and authenticated by taxonomist, then dried, and extracted with solvents of increasing polarity: petroleum ether, chloroform, ethyl acetate and methanol by using Soxhlet apparatus. The effect of the extracts on glucose uptake was evaluated by using the isolated rats hemidiaphgrams after loading the fasting rats with glucose, and the anti-hyperglycemic effect was investigated on glucose-loaded Wistar albino rats. Their effects were compared to control rats administered with the vehicle and to a standard group administered with Metformin standard drug. The most active extract was analyzed chemically using GC-MS analysis compared to NIST library. The results showed significant anti-diabetic effect of extracts of A. sativum bulb growing in Sudan. Addition to the hypoglycemic activity of A. sativum extracts was found to be decreased with increase in the polarity of the extraction solvent; this may explain the less polarity of substance responsible for the activity and their concentration decreased with polarity increase. The petroleum ether extract possess anti-hyperglycemic activity more significant than the other extracts and the Metformin standard drug with p-value 0.000** of 400mg/kg at 1 hour, 2 hour and four hour; and p-value 0.019*, 0.015* and 0.010* of 200mg/kg at 1 hour, 2 hour and four hour respectively. The GC-MS analysis of petroleum ether extract, with highest anti -diabetes activity showed the presence of Methyl linolate (42.75%), Hexadecanoic acid, methyl ester (10.54%), Methyl α-linolenate (8.36%), Dotriacontane (6.83), Tetrapentacontane (6.33), Methyl 18-methylnonadecanoate (4.8), Phenol,2,2’-methylenebis[6-(1,1-dimethylethyl)-4-methyl] (3.25), Methyl 20-methyl-heneicosanoate (2.70), Pentatriacontane (2.13) and many other minor compounds. The most of these compounds are well known for their anti-diabetic activity. The study concluded that A. sativum bulbs extracts were found to enhanced the reuptake of glucose in the isolated rat hemidiaphragm and have antihyperglycemic effect when evaluated on glucose-loaded albino rats with petroleum ether extract activity more significant than the Metformin standard drug.

Keywords: Allium, anti-hyperglycemic, bulbs, sativum

Procedia PDF Downloads 168
949 Artificial Neural Network Approach for GIS-Based Soil Macro-Nutrients Mapping

Authors: Shahrzad Zolfagharnassab, Abdul Rashid Mohamed Shariff, Siti Khairunniza Bejo

Abstract:

Conventional methods for nutrient soil mapping are based on laboratory tests of samples that are obtained from surveys. The time and cost involved in gathering and analyzing soil samples are the reasons that researchers use Predictive Soil Mapping (PSM). PSM can be defined as the development of a numerical or statistical model of the relationship among environmental variables and soil properties, which is then applied to a geographic database to create a predictive map. Kriging is a group of geostatistical techniques to spatially interpolate point values at an unobserved location from observations of values at nearby locations. The main problem with using kriging as an interpolator is that it is excessively data-dependent and requires a large number of closely spaced data points. Hence, there is a need to minimize the number of data points without sacrificing the accuracy of the results. In this paper, an Artificial Neural Networks (ANN) scheme was used to predict macronutrient values at un-sampled points. ANN has become a popular tool for prediction as it eliminates certain difficulties in soil property prediction, such as non-linear relationships and non-normality. Back-propagation multilayer feed-forward network structures were used to predict nitrogen, phosphorous and potassium values in the soil of the study area. A limited number of samples were used in the training, validation and testing phases of ANN (pattern reconstruction structures) to classify soil properties and the trained network was used for prediction. The soil analysis results of samples collected from the soil survey of block C of Sawah Sempadan, Tanjung Karang rice irrigation project at Selangor of Malaysia were used. Soil maps were produced by the Kriging method using 236 samples (or values) that were a combination of actual values (obtained from real samples) and virtual values (neural network predicted values). For each macronutrient element, three types of maps were generated with 118 actual and 118 virtual values, 59 actual and 177 virtual values, and 30 actual and 206 virtual values, respectively. To evaluate the performance of the proposed method, for each macronutrient element, a base map using 236 actual samples and test maps using 118, 59 and 30 actual samples respectively produced by the Kriging method. A set of parameters was defined to measure the similarity of the maps that were generated with the proposed method, termed the sample reduction method. The results show that the maps that were generated through the sample reduction method were more accurate than the corresponding base maps produced through a smaller number of real samples. For example, nitrogen maps that were produced from 118, 59 and 30 real samples have 78%, 62%, 41% similarity, respectively with the base map (236 samples) and the sample reduction method increased similarity to 87%, 77%, 71%, respectively. Hence, this method can reduce the number of real samples and substitute ANN predictive samples to achieve the specified level of accuracy.

Keywords: artificial neural network, kriging, macro nutrient, pattern recognition, precision farming, soil mapping

Procedia PDF Downloads 70
948 The Construction Women Self in Law: A Case of Medico-Legal Jurisprudence Textbooks in Rape Cases

Authors: Rahul Ranjan

Abstract:

Using gender as a category to cull out historical analysis, feminist scholars have produced plethora of literature on the sexual symbolics and carnal practices of modern European empires. At a symbolic level, the penetration and conquest of faraway lands was charged with sexual significance and intrigue. The white male’s domination and possession of dark and fertile lands in Africa, Asia and the Americas offered, in Anne McClintock’s words, ‘a fantastic magic lantern of the mind onto which Europe projected its forbidden sexual desires and fears’. The politics of rape were also symbolically a question significant to the politics of empire. To the colonized subject, rape was a fearsome factor, a language that spoke of violent and voracious nature of imperial exploitation. The colonized often looked at rape as an act which colonizers used as tool of oppression. The rape as act of violence got encoded into the legal structure under the helm of Lord Macaulay in the so called ‘Age of Reform’ in 1860 under IPC (Indian penal code). Initially Lord Macaulay formed Indian Law Commission in 1837 in which he drafted a bill and defined the ‘crime of rape as sexual intercourse by a man to a woman against her will and without her consent , except in cases involving girls under nine years of age where consent was immaterial’. The modern English law of rape formulated under the colonial era introduced twofold issues to the forefront. On the one hand it deployed ‘technical experts’ who wrote textbooks of medical jurisprudence that were used as credential citation to make case more ‘objective’, while on the other hand the presumptions about barbaric subjects, the colonized women’s body that was docile which is prone to adultery reflected in cases. The untrustworthiness of native witness also remained an imperative for British jurists to put extra emphasis making ‘objective’ and ‘presumptuous’. This sort of formulation put women down on the pedestrian of justice because it disadvantaged her doubly through British legality and their thinking about the rape. The Imperial morality that acted as vanguards of women’s chastity coincided language of science propagated in the post-enlightenment which not only annulled non-conformist ideas but also made itself a hegemonic language, was often used as a tool and language in encoding of law. The medico-legal understanding of rape in the colonial India has its clear imprints in the post-colonial legality. The onus on the part of rape’s victim was dictated for the longest time and still continues does by widely referred idea that ‘there should signs, marks of resistance on the body of the victim’ otherwise it is likely to be considered consensual. Having said so, this paper looks at the textual continuity that had prolonged the colonial construct of women’s body and the self.

Keywords: body, politics, textual construct, phallocentric

Procedia PDF Downloads 377
947 Particle Observation in Secondary School Using a Student-Built Instrument: Design-Based Research on a STEM Sequence about Particle Physics

Authors: J.Pozuelo-Muñoz, E. Cascarosa-Salillas, C. Rodríguez-Casals, A. de Echave, E. Terrado-Sieso

Abstract:

This study focuses on the development, implementation, and evaluation of an instructional sequence aimed at 16–17-year-old students, involving the design and use of a cloud chamber—a device that allows observation of subatomic particles. The research addresses the limited presence of particle physics in Spanish secondary and high school curricula, a gap that restricts students' learning of advanced physics concepts and diminishes engagement with complex scientific topics. The primary goal of this project is to introduce particle physics in the classroom through a practical, interdisciplinary methodology that promotes autonomous learning and critical thinking. The methodology is framed within Design-Based Research (DBR), an approach that enables iterative and pragmatic development of educational resources. The research proceeded in several phases, beginning with the design of an experimental teaching sequence, followed by its implementation in high school classrooms. This sequence was evaluated, redesigned, and reimplemented with the aim of enhancing students’ understanding and skills related to designing and using particle detection instruments. The instructional sequence was divided into four stages: introduction to the activity, research and design of cloud chamber prototypes, observation of particle tracks, and analysis of collected data. In the initial stage, students were introduced to the fundamentals of the activity and provided with bibliographic resources to conduct autonomous research on cloud chamber functioning principles. During the design stage, students sourced materials and constructed their own prototypes, stimulating creativity and understanding of physics concepts like thermodynamics and material properties. The third stage focused on observing subatomic particles, where students recorded and analyzed the tracks generated in their chambers. Finally, critical reflection was encouraged regarding the instrument's operation and the nature of the particles observed. The results show that designing the cloud chamber motivates students and actively engages them in the learning process. Additionally, the use of this device introduces advanced scientific topics beyond particle physics, promoting a broader understanding of science. The study’s conclusions emphasize the need to provide students with ample time and space to thoroughly understand the role of materials and physical conditions in the functioning of their prototypes and to encourage critical analysis of the obtained data. This project not only highlights the importance of interdisciplinarity in science education but also provides a practical framework for teachers to adapt complex concepts for educational contexts where these topics are often absent.

Keywords: cloud chamber, particle physics, secondary education, instructional design, design-based research, STEM

Procedia PDF Downloads 13
946 Customer Focus in Digital Economy: Case of Russian Companies

Authors: Maria Evnevich

Abstract:

In modern conditions, in most markets, price competition is becoming less effective. On the one hand, there is a gradual decrease in the level of marginality in main traditional sectors of the economy, so further price reduction becomes too ‘expensive’ for the company. On the other hand, the effect of price reduction is leveled, and the reason for this phenomenon is likely to be informational. As a result, it turns out that even if the company reduces prices, making its products more accessible to the buyer, there is a high probability that this will not lead to increase in sales unless additional large-scale advertising and information campaigns are conducted. Similarly, a large-scale information and advertising campaign have a much greater effect itself than price reductions. At the same time, the cost of mass informing is growing every year, especially when using the main information channels. The article presents generalization, systematization and development of theoretical approaches and best practices in the field of customer focus approach to business management and in the field of relationship marketing in the modern digital economy. The research methodology is based on the synthesis and content-analysis of sociological and marketing research and on the study of the systems of working with consumer appeals and loyalty programs in the 50 largest client-oriented companies in Russia. Also, the analysis of internal documentation on customers’ purchases in one of the largest retail companies in Russia allowed to identify if buyers prefer to buy goods for complex purchases in one retail store with the best price image for them. The cost of attracting a new client is now quite high and continues to grow, so it becomes more important to keep him and increase the involvement through marketing tools. A huge role is played by modern digital technologies used both in advertising (e-mailing, SEO, contextual advertising, banner advertising, SMM, etc.) and in service. To implement the above-described client-oriented omnichannel service, it is necessary to identify the client and work with personal data provided when filling in the loyalty program application form. The analysis of loyalty programs of 50 companies identified the following types of cards: discount cards, bonus cards, mixed cards, coalition loyalty cards, bank loyalty programs, aviation loyalty programs, hybrid loyalty cards, situational loyalty cards. The use of loyalty cards allows not only to stimulate the customer to purchase ‘untargeted’, but also to provide individualized offers, as well as to produce more targeted information. The development of digital technologies and modern means of communication has significantly changed not only the sphere of marketing and promotion, but also the economic landscape as a whole. Factors of competitiveness are the digital opportunities of companies in the field of customer orientation: personalization of service, customization of advertising offers, optimization of marketing activity and improvement of logistics.

Keywords: customer focus, digital economy, loyalty program, relationship marketing

Procedia PDF Downloads 163
945 Voyage Analysis of a Marine Gas Turbine Engine Installed to Power and Propel an Ocean-Going Cruise Ship

Authors: Mathias U. Bonet, Pericles Pilidis, Georgios Doulgeris

Abstract:

A gas turbine-powered cruise Liner is scheduled to transport pilgrim passengers from Lagos-Nigeria to the Islamic port city of Jeddah in Saudi Arabia. Since the gas turbine is an air breathing machine, changes in the density and/or mass flow at the compressor inlet due to an encounter with variations in weather conditions induce negative effects on the performance of the power plant during the voyage. In practice, all deviations from the reference atmospheric conditions of 15 oC and 1.103 bar tend to affect the power output and other thermodynamic parameters of the gas turbine cycle. Therefore, this paper seeks to evaluate how a simple cycle marine gas turbine power plant would react under a variety of scenarios that may be encountered during a voyage as the ship sails across the Atlantic Ocean and the Mediterranean Sea before arriving at its designated port of discharge. It is also an assessment that focuses on the effect of varying aerodynamic and hydrodynamic conditions which deteriorate the efficient operation of the propulsion system due to an increase in resistance that results from some projected levels of the ship hull fouling. The investigated passenger ship is designed to run at a service speed of 22 knots and cover a distance of 5787 nautical miles. The performance evaluation consists of three separate voyages that cover a variety of weather conditions in winter, spring and summer seasons. Real-time daily temperatures and the sea states for the selected transit route were obtained and used to simulate the voyage under the aforementioned operating conditions. Changes in engine firing temperature, power output as well as the total fuel consumed per voyage including other performance variables were separately predicted under both calm and adverse weather conditions. The collated data were obtained online from the UK Meteorological Office as well as the UK Hydrographic Office websites, while adopting the Beaufort scale for determining the magnitude of sea waves resulting from rough weather situations. The simulation of the gas turbine performance and voyage analysis was effected through the use of an integrated Cranfield-University-developed computer code known as ‘Turbomatch’ and ‘Poseidon’. It is a project that is aimed at developing a method for predicting the off design behavior of the marine gas turbine when installed and operated as the main prime mover for both propulsion and powering of all other auxiliary services onboard a passenger cruise liner. Furthermore, it is a techno-economic and environmental assessment that seeks to enable the forecast of the marine gas turbine part and full load performance as it relates to the fuel requirement for a complete voyage.

Keywords: cruise ship, gas turbine, hull fouling, performance, propulsion, weather

Procedia PDF Downloads 165
944 3D Classification Optimization of Low-Density Airborne Light Detection and Ranging Point Cloud by Parameters Selection

Authors: Baha Eddine Aissou, Aichouche Belhadj Aissa

Abstract:

Light detection and ranging (LiDAR) is an active remote sensing technology used for several applications. Airborne LiDAR is becoming an important technology for the acquisition of a highly accurate dense point cloud. A classification of airborne laser scanning (ALS) point cloud is a very important task that still remains a real challenge for many scientists. Support vector machine (SVM) is one of the most used statistical learning algorithms based on kernels. SVM is a non-parametric method, and it is recommended to be used in cases where the data distribution cannot be well modeled by a standard parametric probability density function. Using a kernel, it performs a robust non-linear classification of samples. Often, the data are rarely linearly separable. SVMs are able to map the data into a higher-dimensional space to become linearly separable, which allows performing all the computations in the original space. This is one of the main reasons that SVMs are well suited for high-dimensional classification problems. Only a few training samples, called support vectors, are required. SVM has also shown its potential to cope with uncertainty in data caused by noise and fluctuation, and it is computationally efficient as compared to several other methods. Such properties are particularly suited for remote sensing classification problems and explain their recent adoption. In this poster, the SVM classification of ALS LiDAR data is proposed. Firstly, connected component analysis is applied for clustering the point cloud. Secondly, the resulting clusters are incorporated in the SVM classifier. Radial basic function (RFB) kernel is used due to the few numbers of parameters (C and γ) that needs to be chosen, which decreases the computation time. In order to optimize the classification rates, the parameters selection is explored. It consists to find the parameters (C and γ) leading to the best overall accuracy using grid search and 5-fold cross-validation. The exploited LiDAR point cloud is provided by the German Society for Photogrammetry, Remote Sensing, and Geoinformation. The ALS data used is characterized by a low density (4-6 points/m²) and is covering an urban area located in residential parts of the city Vaihingen in southern Germany. The class ground and three other classes belonging to roof superstructures are considered, i.e., a total of 4 classes. The training and test sets are selected randomly several times. The obtained results demonstrated that a parameters selection can orient the selection in a restricted interval of (C and γ) that can be further explored but does not systematically lead to the optimal rates. The SVM classifier with hyper-parameters is compared with the most used classifiers in literature for LiDAR data, random forest, AdaBoost, and decision tree. The comparison showed the superiority of the SVM classifier using parameters selection for LiDAR data compared to other classifiers.

Keywords: classification, airborne LiDAR, parameters selection, support vector machine

Procedia PDF Downloads 147
943 A Greener Approach towards the Synthesis of an Antimalarial Drug Lumefantrine

Authors: Luphumlo Ncanywa, Paul Watts

Abstract:

Malaria is a disease that kills approximately one million people annually. Children and pregnant women in sub-Saharan Africa lost their lives due to malaria. Malaria continues to be one of the major causes of death, especially in poor countries in Africa. Decrease the burden of malaria and save lives is very essential. There is a major concern about malaria parasites being able to develop resistance towards antimalarial drugs. People are still dying due to lack of medicine affordability in less well-off countries in the world. If more people could receive treatment by reducing the cost of drugs, the number of deaths in Africa could be massively reduced. There is a shortage of pharmaceutical manufacturing capability within many of the countries in Africa. However one has to question how Africa would actually manufacture drugs, active pharmaceutical ingredients or medicines developed within these research programs. It is quite likely that such manufacturing would be outsourced overseas, hence increasing the cost of production and potentially limiting the full benefit of the original research. As a result the last few years has seen major interest in developing more effective and cheaper technology for manufacturing generic pharmaceutical products. Micro-reactor technology (MRT) is an emerging technique that enables those working in research and development to rapidly screen reactions utilizing continuous flow, leading to the identification of reaction conditions that are suitable for usage at a production level. This emerging technique will be used to develop antimalarial drugs. It is this system flexibility that has the potential to reduce both the time was taken and risk associated with transferring reaction methodology from research to production. Using an approach referred to as scale-out or numbering up, a reaction is first optimized within the laboratory using a single micro-reactor, and in order to increase production volume, the number of reactors employed is simply increased. The overall aim of this research project is to develop and optimize synthetic process of antimalarial drugs in the continuous processing. This will provide a step change in pharmaceutical manufacturing technology that will increase the availability and affordability of antimalarial drugs on a worldwide scale, with a particular emphasis on Africa in the first instance. The research will determine the best chemistry and technology to define the lowest cost manufacturing route to pharmaceutical products. We are currently developing a method to synthesize Lumefantrine in continuous flow using batch process as bench mark. Lumefantrine is a dichlorobenzylidine derivative effective for the treatment of various types of malaria. Lumefantrine is an antimalarial drug used with artemether for the treatment of uncomplicated malaria. The results obtained when synthesizing Lumefantrine in a batch process are transferred into a continuous flow process in order to develop an even better and reproducible process. Therefore, development of an appropriate synthetic route for Lumefantrine is significant in pharmaceutical industry. Consequently, if better (and cheaper) manufacturing routes to antimalarial drugs could be developed and implemented where needed, it is far more likely to enable antimalarial drugs to be available to those in need.

Keywords: antimalarial, flow, lumefantrine, synthesis

Procedia PDF Downloads 203
942 The Effect of Calcium Phosphate Composite Scaffolds on the Osteogenic Differentiation of Rabbit Dental Pulp Stem Cells

Authors: Ling-Ling E, Lin Feng, Hong-Chen Liu, Dong-Sheng Wang, Zhanping Shi, Juncheng Wang, Wei Luo, Yan Lv

Abstract:

The objective of this study was to compare the effects of the two calcium phosphate composite scaffolds on the attachment, proliferation and osteogenic differentiation of rabbit dental pulp stem cells (DPSCs). One nano-hydroxyapatite/collagen/poly (L-lactide) (nHAC/PLA), imitating the composition and the micro-structure characteristics of the natural bone, was made by Beijing Allgens Medical Science & Technology Co., Ltd. (China). The other beta-tricalcium phosphate (β-TCP), being fully interoperability globular pore structure, was provided by Shanghai Bio-lu Biomaterials Co, Ltd. (China). We compared the absorption water rate and the protein adsorption rate of two scaffolds and the characterization of DPSCs cultured on the culture plate and both scaffolds under osteogenic differentiation media (ODM) treatment. The constructs were then implanted subcutaneously into the back of severe combined immunodeficient (SCID) mice for 8 and 12 weeks to compare their bone formation capacity. The results showed that the ODM-treated DPSCs expressed osteocalcin (OCN), bone sialoprotein (BSP), type I collagen (COLI) and osteopontin (OPN) by immunofluorescence staining. Positive alkaline phosphatase (ALP) staining, calcium deposition and calcium nodules were also observed on the ODM-treated DPSCs. The nHAC/PLA had significantly higher absorption water rate and protein adsorption rate than ß-TCP. The initial attachment of DPSCs seeded onto nHAC/PLA was significantly higher than that onto ß-TCP; and the proliferation rate of the cells was significantly higher than that of ß-TCP on 1, 3 and 7 days of cell culture. DPSCs+ß-TCP had significantly higher ALP activity, calcium/phosphorus content and mineral formation than DPSCs+nHAC/PLA. When implanted into the back of SCID mice, nHAC/PLA alone had no new bone formation, newly formed mature bone and osteoid were only observed in β-TCP alone, DPSCs+nHAC/PLA and DPSCs+β-TCP, and this three groups displayed increased bone formation over the 12-week period. The percentage of total bone formation area had no difference between DPSCs+β-TCP and DPSCs+nHAC/PLA at each time point,but the percentage of mature bone formation area of DPSCs+β-TCP was significantly higher than that of DPSCs+nHAC/PLA. Our results demonstrated that the DPSCs on nHAC/PLA had a better proliferation and that the DPSCs on β-TCP had a more mineralization in vitro, much more newly formed mature bones in vivo were presented in DPSCs+β-TCP group. These findings have provided a further knowledge that scaffold architecture has a different influence on the attachment, proliferation and differentiation of cells. This study may provide insight into the clinical periodontal bone tissue repair with DPSCs+β-TCP construct.

Keywords: dental pulp stem cells, nano-hydroxyapatite/collagen/poly(L-lactide), beta-tricalcium phosphate, periodontal tissue engineering, bone regeneration

Procedia PDF Downloads 333
941 Validation of Mapping Historical Linked Data to International Committee for Documentation (CIDOC) Conceptual Reference Model Using Shapes Constraint Language

Authors: Ghazal Faraj, András Micsik

Abstract:

Shapes Constraint Language (SHACL), a World Wide Web Consortium (W3C) language, provides well-defined shapes and RDF graphs, named "shape graphs". These shape graphs validate other resource description framework (RDF) graphs which are called "data graphs". The structural features of SHACL permit generating a variety of conditions to evaluate string matching patterns, value type, and other constraints. Moreover, the framework of SHACL supports high-level validation by expressing more complex conditions in languages such as SPARQL protocol and RDF Query Language (SPARQL). SHACL includes two parts: SHACL Core and SHACL-SPARQL. SHACL Core includes all shapes that cover the most frequent constraint components. While SHACL-SPARQL is an extension that allows SHACL to express more complex customized constraints. Validating the efficacy of dataset mapping is an essential component of reconciled data mechanisms, as the enhancement of different datasets linking is a sustainable process. The conventional validation methods are the semantic reasoner and SPARQL queries. The former checks formalization errors and data type inconsistency, while the latter validates the data contradiction. After executing SPARQL queries, the retrieved information needs to be checked manually by an expert. However, this methodology is time-consuming and inaccurate as it does not test the mapping model comprehensively. Therefore, there is a serious need to expose a new methodology that covers the entire validation aspects for linking and mapping diverse datasets. Our goal is to conduct a new approach to achieve optimal validation outcomes. The first step towards this goal is implementing SHACL to validate the mapping between the International Committee for Documentation (CIDOC) conceptual reference model (CRM) and one of its ontologies. To initiate this project successfully, a thorough understanding of both source and target ontologies was required. Subsequently, the proper environment to run SHACL and its shape graphs were determined. As a case study, we performed SHACL over a CIDOC-CRM dataset after running a Pellet reasoner via the Protégé program. The applied validation falls under multiple categories: a) data type validation which constrains whether the source data is mapped to the correct data type. For instance, checking whether a birthdate is assigned to xsd:datetime and linked to Person entity via crm:P82a_begin_of_the_begin property. b) Data integrity validation which detects inconsistent data. For instance, inspecting whether a person's birthdate occurred before any of the linked event creation dates. The expected results of our work are: 1) highlighting validation techniques and categories, 2) selecting the most suitable techniques for those various categories of validation tasks. The next plan is to establish a comprehensive validation model and generate SHACL shapes automatically.

Keywords: SHACL, CIDOC-CRM, SPARQL, validation of ontology mapping

Procedia PDF Downloads 253
940 Nonviolent Communication and Disciplinary Area of Social Communication: Case Study on the International Circulation of Ideas from a Brazilian Perspective

Authors: Luiza Toschi

Abstract:

This work presents part of an empirical and theoretical master's degree meta-research that is interested in the relationship between the disciplinary area of Social Communication, to be investigated with the characteristics of the Bourdieusian scientific field, and the emergence of public interest in Nonviolent Communication (NVC) in Brazil and the world. To this end, the state of the art of this conceptual and practical relationship is investigated based on scientific productions available in spaces of academic credibility, such as conferences and scientific journals renowned in the field. From there, agents and the sociological aspects that make them contribute or not to scientific production in Brazil and the world are mapped. In this work, a brief dive into the international context is presented to understand if and how nonviolent communication permeates scientific production in communication in a systematic way. Using three accessible articles published between 2013 and 2022 in the 117 magazines classified as Quartiles Q1 in the Journal Ranking of Communication, the international production on the subject is compared with the Brazilian one from its context. The social conditions of the international circulation of ideas are thus discussed. Science is a product of its social environment, arising from relations of interest and power that compete in the political dimension at the same time as in the epistemological dimension. In this way, scientific choices are linked to the resources mobilized from or through the prestige and recognition of peers. In this sense, an object of interest stands out to a scientist for its academic value, but also and inseparably that which has a social interest within the collective, their social stratification, and the context of legitimacy created in their surroundings, influenced by cultural universalism. In Brazil, three published articles were found in congresses and journals that mention NVC in their abstract or keywords. All were written by Public Relations undergraduate students. Between the most experienced researchers who guided or validated the publications, it is possible to find two professionals who are interested in the Culture of Peace and Dialogy. Likewise, internationally, only three of the articles found mention the term in their abstract or title. Two analyze journalistic coverage based on the principles of NVC and Journalism for Peace. The third is from one of the Brazilian researchers identified as interested in dialogic practices, who analyses audiovisual material and promotes epistemological reflections. If, on the one hand, some characteristics inside and outside Brazil are similar: small samples, relationship with peace studies, and female researchers, two of whom are Brazilian, on the other hand, differences are obvious. If within the country, the subject is mostly Organizational Communication, outside this intersection, it is not presented explicitly. Furthermore, internationally, there is an interest in analyzing from the perspective of NVC, which has not been found so far in publications in Brazil. Up to the present moment, it is possible to presume that, universally, the legitimacy of the topic is sought by its association with conflict conciliation research and communication for peace.

Keywords: academic field sociology, international circulation of ideas, meta research in communication, nonviolent communication

Procedia PDF Downloads 39
939 Survey of Prevalence of Noise Induced Hearing Loss in Hawkers and Shopkeepers in Noisy Areas of Mumbai City

Authors: Hitesh Kshayap, Shantanu Arya, Ajay Basod, Sachin Sakhuja

Abstract:

This study was undertaken to measure the overall noise levels in different locations/zones and to estimate the prevalence of Noise induced hearing loss in Hawkers & Shopkeepers in Mumbai, India. The Hearing Test developed by American Academy Of Otolaryngology, translated from English to Hindi, and validated is used as a screening tool for hearing sensitivity was employed. The tool is having 14 items. Each item is scored on a scale 0, 1, 2 and 3. The score 6 and above indicated some difficulty or definite difficulty in hearing in daily activities and low score indicated lesser difficulty or normal hearing. The subjects who scored 6 or above or having tinnitus were made to undergo hearing evaluation by Pure tone audiometer. Further, the environmental noise levels were measured from Morning to Evening at road side at different Location/Hawking zones in Mumbai city using SLM9 Agronic 8928B & K type Digital Sound Level Meter) in dB (A). The maximum noise level of 100.0 dB (A) was recorded during evening hours from Chattrapati Shivaji Terminal to Colaba with overall noise level of 79.0 dB (A). However, the minimum noise level in this area was 72.6 dB (A) at any given point of time. Further, 54.6 dB (A) was recorded as minimum noise level during 8-9 am at Sion Circle. Further, commencement of flyovers with 2-tier traffic, sky walks, increasing number of vehicular traffic at road, high rise buildings and other commercial & urbanization activities in the Mumbai city most probably have resulted in increasing the overall environmental noise levels. Trees which acted as noise absorbers have been cut owing to rapid construction. The study involved 100 participants in the age range of 18 to 40 years of age, with the mean age of 29 years (S.D. =6.49). 46 participants having tinnitus or have obtained the score of 6 were made to undergo Pure Tone Audiometry and it was found that the prevalence rate of hearing loss in hawkers & shopkeepers is 19% (10% Hawkers and 9 % Shopkeepers). The results found indicates that 29 (42.6%) out of 64 Hawkers and 17 (47.2%) out of 36 Shopkeepers who underwent PTA had no significant difference in percentage of Noise Induced Hearing loss. The study results also reveal that participants who exhibited tinnitus 19 (41.30%) out of 46 were having mild to moderate sensorineural hearing loss between 3000Hz to 6000Hz. The Pure tone Audiogram pattern revealed Hearing loss at 4000 Hz and 6000 Hz while hearing at adjacent frequencies were nearly normal. 7 hawkers and 8 shopkeepers had mild notch while 3 hawkers and 1 shopkeeper had a moderate degree of notch. It is thus inferred that tinnitus is a strong indicator for presence of hearing loss and 4/6 KHz notch is a strong marker for road/traffic/ environmental noise as an occupational hazard for hawkers and shopkeepers. Mass awareness about these occupational hazards, regular hearing check up, early intervention along with sustainable development juxtaposed with social and urban forestry can help in this regard.

Keywords: NIHL, noise, sound level meter, tinnitus

Procedia PDF Downloads 202
938 Ammonia Bunkering Spill Scenarios: Modelling Plume’s Behaviour and Potential to Trigger Harmful Algal Blooms in the Singapore Straits

Authors: Bryan Low

Abstract:

In the coming decades, the global maritime industry will face a most formidable environmental challenge -achieving net zero carbon emissions by 2050. To meet this target, the Maritime Port Authority of Singapore (MPA) has worked to establish green shipping and digital corridors with ports of several other countries around the world where ships will use low-carbon alternative fuels such as ammonia for power generation. While this paradigm shift to the bunkering of greener fuels is encouraging, fuels like ammonia will also introduce a new and unique type of environmental risk in the unlikely scenario of a spill. While numerous modelling studies have been conducted for oil spills and their associated environmental impact on coastal and marine ecosystems, ammonia spills are comparatively less well understood. For example, there is a knowledge gap regarding how the complex hydrodynamic conditions of the Singapore Straits may influence the dispersion of a hypothetical ammonia plume, which has different physical and chemical properties compared to an oil slick. Chemically, ammonia can be absorbed by phytoplankton, thus altering the balance of the marine nitrogen cycle. Biologically, ammonia generally serves the role of a nutrient in coastal ecosystems at lower concentrations. However, at higher concentrations, it has been found to be toxic to many local species. It may also have the potential to trigger eutrophication and harmful algal blooms (HABs) in coastal waters, depending on local hydrodynamic conditions. Thus, the key objective of this research paper is to support the development of a model-based forecasting system that can predict ammonia plume behaviour in coastal waters, given prevailing hydrodynamic conditions and their environmental impact. This will be essential as ammonia bunkering becomes more commonplace in Singapore’s ports and around the world. Specifically, this system must be able to assess the HAB-triggering potential of an ammonia plume, as well as its lethal and sub-lethal toxic effects on local species. This will allow the relevant authorities to better plan risk mitigation measures or choose a time window with the ideal hydrodynamic conditions to conduct ammonia bunkering operations with minimal risk. In this paper, we present the first part of such a forecasting system: a jointly coupled hydrodynamic-water quality model that can capture how advection-diffusion processes driven by ocean currents influence plume behaviour and how the plume interacts with the marine nitrogen cycle. The model is then applied to various ammonia spill scenarios where the results are discussed in the context of current ammonia toxicity guidelines, impact on local ecosystems, and mitigation measures for future bunkering operations conducted in the Singapore Straits.

Keywords: ammonia bunkering, forecasting, harmful algal blooms, hydrodynamics, marine nitrogen cycle, oceanography, water quality modeling

Procedia PDF Downloads 83
937 Treatment and Diagnostic Imaging Methods of Fetal Heart Function in Radiology

Authors: Mahdi Farajzadeh Ajirlou

Abstract:

Prior evidence of normal cardiac anatomy is desirable to relieve the anxiety of cases with a family history of congenital heart disease or to offer the option of early gestation termination or close follow-up should a cardiac anomaly be proved. Fetal heart discovery plays an important part in the opinion of the fetus, and it can reflect the fetal heart function of the fetus, which is regulated by the central nervous system. Acquisition of ventricular volume and inflow data would be useful to quantify more valve regurgitation and ventricular function to determine the degree of cardiovascular concession in fetal conditions at threat for hydrops fetalis. This study discusses imaging the fetal heart with transvaginal ultrasound, Doppler ultrasound, three-dimensional ultrasound (3DUS) and four-dimensional (4D) ultrasound, spatiotemporal image correlation (STIC), glamorous resonance imaging and cardiac catheterization. Doppler ultrasound (DUS) image is a kind of real- time image with a better imaging effect on blood vessels and soft tissues. DUS imaging can observe the shape of the fetus, but it cannot show whether the fetus is hypoxic or distressed. Spatiotemporal image correlation (STIC) enables the acquisition of a volume of data concomitant with the beating heart. The automated volume accession is made possible by the array in the transducer performing a slow single reach, recording a single 3D data set conforming to numerous 2D frames one behind the other. The volume accession can be done in a stationary 3D, either online 4D (direct volume scan, live 3D ultrasound or a so-called 4D (3D/ 4D)), or either spatiotemporal image correlation-STIC (off-line 4D, which is a circular volume check-up). Fetal cardiovascular MRI would appear to be an ideal approach to the noninvasive disquisition of the impact of abnormal cardiovascular hemodynamics on antenatal brain growth and development. Still, there are practical limitations to the use of conventional MRI for fetal cardiovascular assessment, including the small size and high heart rate of the mortal fetus, the lack of conventional cardiac gating styles to attend data accession, and the implicit corruption of MRI data due to motherly respiration and unpredictable fetal movements. Fetal cardiac MRI has the implicit to complement ultrasound in detecting cardiovascular deformations and extracardiac lesions. Fetal cardiac intervention (FCI), minimally invasive catheter interventions, is a new and evolving fashion that allows for in-utero treatment of a subset of severe forms of congenital heart deficiency. In special cases, it may be possible to modify the natural history of congenital heart disorders. It's entirely possible that future generations will ‘repair’ congenital heart deficiency in utero using nanotechnologies or remote computer-guided micro-robots that work in the cellular layer.

Keywords: fetal, cardiac MRI, ultrasound, 3D, 4D, heart disease, invasive, noninvasive, catheter

Procedia PDF Downloads 40
936 Risks beyond Cyber in IoT Infrastructure and Services

Authors: Mattias Bergstrom

Abstract:

Significance of the Study: This research will provide new insights into the risks with digital embedded infrastructure. Through this research, we will analyze each risk and its potential negation strategies, especially for AI and autonomous automation. Moreover, the analysis that is presented in this paper will convey valuable information for future research that can create more stable, secure, and efficient autonomous systems. To learn and understand the risks, a large IoT system was envisioned, and risks with hardware, tampering, and cyberattacks were collected, researched, and evaluated to create a comprehensive understanding of the potential risks. Potential solutions have then been evaluated on an open source IoT hardware setup. This list shows the identified passive and active risks evaluated in the research. Passive Risks: (1) Hardware failures- Critical Systems relying on high rate data and data quality are growing; SCADA systems for infrastructure are good examples of such systems. (2) Hardware delivers erroneous data- Sensors break, and when they do so, they don’t always go silent; they can keep going, just that the data they deliver is garbage, and if that data is not filtered out, it becomes disruptive noise in the system. (3) Bad Hardware injection- Erroneous generated sensor data can be pumped into a system by malicious actors with the intent to create disruptive noise in critical systems. (4) Data gravity- The weight of the data collected will affect Data-Mobility. (5) Cost inhibitors- Running services that need huge centralized computing is cost inhibiting. Large complex AI can be extremely expensive to run. Active Risks: Denial of Service- It is one of the most simple attacks, where an attacker just overloads the system with bogus requests so that valid requests disappear in the noise. Malware- Malware can be anything from simple viruses to complex botnets created with specific goals, where the creator is stealing computer power and bandwidth from you to attack someone else. Ransomware- It is a kind of malware, but it is so different in its implementation that it is worth its own mention. The goal with these pieces of software is to encrypt your system so that it can only be unlocked with a key that is held for ransom. DNS spoofing- By spoofing DNS calls, valid requests and data dumps can be sent to bad destinations, where the data can be extracted for extortion or to corrupt and re-inject into a running system creating a data echo noise loop. After testing multiple potential solutions. We found that the most prominent solution to these risks was to use a Peer 2 Peer consensus algorithm over a blockchain to validate the data and behavior of the devices (sensors, storage, and computing) in the system. By the devices autonomously policing themselves for deviant behavior, all risks listed above can be negated. In conclusion, an Internet middleware that provides these features would be an easy and secure solution to any future autonomous IoT deployments. As it provides separation from the open Internet, at the same time, it is accessible over the blockchain keys.

Keywords: IoT, security, infrastructure, SCADA, blockchain, AI

Procedia PDF Downloads 107