Search results for: plant classification
3878 The Classification Accuracy of Finance Data through Holder Functions
Authors: Yeliz Karaca, Carlo Cattani
Abstract:
This study focuses on the local Holder exponent as a measure of the function regularity for time series related to finance data. In this study, the attributes of the finance dataset belonging to 13 countries (India, China, Japan, Sweden, France, Germany, Italy, Australia, Mexico, United Kingdom, Argentina, Brazil, USA) located in 5 different continents (Asia, Europe, Australia, North America and South America) have been examined.These countries are the ones mostly affected by the attributes with regard to financial development, covering a period from 2012 to 2017. Our study is concerned with the most important attributes that have impact on the development of finance for the countries identified. Our method is comprised of the following stages: (a) among the multi fractal methods and Brownian motion Holder regularity functions (polynomial, exponential), significant and self-similar attributes have been identified (b) The significant and self-similar attributes have been applied to the Artificial Neuronal Network (ANN) algorithms (Feed Forward Back Propagation (FFBP) and Cascade Forward Back Propagation (CFBP)) (c) the outcomes of classification accuracy have been compared concerning the attributes that have impact on the attributes which affect the countries’ financial development. This study has enabled to reveal, through the application of ANN algorithms, how the most significant attributes are identified within the relevant dataset via the Holder functions (polynomial and exponential function).Keywords: artificial neural networks, finance data, Holder regularity, multifractals
Procedia PDF Downloads 2463877 Recovery of Hydrogen Converter Efficiency Affected by Poisoning of Catalyst with Increasing of Temperature
Authors: Enayat Enayati, Reza Behtash
Abstract:
The purpose of the H2 removal system is to reduce a content of hydrogen and other combustibles in the CO2 feed owing to avoid developing a possible explosive condition in the synthesis. In order to reduce the possibility of forming an explosive gas mixture in the synthesis as much as possible, the hydrogen percent in the fresh CO2, will be removed in hydrogen converter. Therefore the partly compressed CO2/Air mixture is led through Hydrogen converter (Reactor) where the H2, present in the CO2, is reduced by catalytic combustion to values less than 50 ppm (vol). According the following exothermic chemical reaction: 2H2 + O2 → 2H2O + Heat. The catalyst in hydrogen converter consist of platinum on a aluminum oxide carrier. Low catalyst activity maybe due to catalyst poisoning. This will result in an increase of the hydrogen content in the CO2 to the synthesis. It is advised to shut down the plant when the outlet of hydrogen converter increased above 100 ppm, to prevent undesirable gas composition in the plant. Replacement of catalyst will be time exhausting and costly so as to prevent this, we increase the inlet temperature of hydrogen converter according to following Arrhenius' equation: K=K0e (-E_a/RT) K is rate constant of a chemical reaction where K0 is the pre-exponential factor, E_a is the activation energy, and R is the universal gas constant. Increment of inlet temperature of hydrogen converter caused to increase the rate constant of chemical reaction and so declining the amount of hydrogen from 125 ppm to 70 ppm.Keywords: catalyst, converter, poisoning, temperature
Procedia PDF Downloads 8203876 Design of an Acoustic System for Small-Scale Power Plants
Authors: Mohammadreza Judaki, Hosein Mohammadnezhad Shourkaei
Abstract:
Usually, noise generated by industrial units, is a pollution and disturbs people and causes problems for human health and sometimes these units will be closed because they cannot eliminate this pollution. Small-scale power plants usually are built close to residential areas, and noise generated by these power plants is an important factor in choosing their location and their design. Materials used to reduce noise are studied by measuring their absorption and reflection index numerically and experimentally. We can use MIKI model (Yasushi Miki, 1990) to simulate absorption index by using software like Ansys or Soundflow and compare calculation results with experimental simulation data. We consider high frequency sounds of power plant engines octave band diagram because dB value of high frequency noise is more noticeable for human ears. To prove this, in this study we first will study calculating octave band of engines exhausts and then we will study acoustic behavior of materials that we will use in high frequencies and this will give us our optimum noise reduction plan.Keywords: acoustic materials, eliminating engine noise, octave level diagram, power plant noise
Procedia PDF Downloads 1443875 Optimization of Oxygen Plant Parameters Simulating with MATLAB
Authors: B. J. Sonani, J. K. Ratnadhariya, Srinivas Palanki
Abstract:
Cryogenic engineering is the fast growing branch of the modern technology. There are various applications of the cryogenic engineering such as liquefaction in gas industries, metal industries, medical science, space technology, and transportation. The low-temperature technology developed superconducting materials which lead to reduce the friction and wear in various components of the systems. The liquid oxygen, hydrogen and helium play vital role in space application. The liquefaction process is produced very low temperature liquid for various application in research and modern application. The air liquefaction system for oxygen plants in gas industries is based on the Claude cycle. The effect of process parameters on the overall system is difficult to be analysed by manual calculations, and this provides the motivation to use process simulators for understanding the steady state and dynamic behaviour of such systems. The parametric study of this system via MATLAB simulations provide useful guidelines for preliminary design of air liquefaction system based on the Claude cycle. Every organization is always trying for reduce the cost and using the optimum performance of the plant for the staying in the competitive market.Keywords: cryogenic, liquefaction, low -temperature, oxygen, claude cycle, optimization, MATLAB
Procedia PDF Downloads 3223874 Rheological Characterization of Gels Based on Medicinal Plant Extracts Mixture (Zingibar Officinale and Cinnamomum Cassia)
Authors: Zahia Aliche, Fatiha Boudjema, Benyoucef Khelidj, Selma Mettai, Zohra Bouriahi, Saliha Mohammed Belkebir, Ridha Mazouz
Abstract:
The purpose of this work is the study of the viscoelastic behaviour formulating gels based plant extractions. The extracts of Zingibar officinale and Cinnamomum cassia were included in the gel at different concentrations of these plants in order to be applied in anti-inflammatory drugs. The yield of ethanolic extraction of Zingibar o. is 3.98% and for Cinnamomum c., essential oil by hydrodistillation is 1.67 %. The ethanolic extract of Zingibar.o, the essential oil of Cinnamomum c. and the mixture showed an anti-DPPH radicals’ activity, presented by EC50 values of 11.32, 13.48 and 14.39 mg/ml respectively. A gel based on different concentrations of these extracts was prepared. Microbiological tests conducted against Staphylococcus aureus and Escherichia colishowed moderate inhibition of Cinnamomum c. gel and less the gel based on Cinnamomum c./ Zingibar o. (20/80). The yeast Candida albicansis resistant to gels. The viscoelastic formulation property was carried out in dynamic and creep and modeled with the Kelvin-Voigt model. The influence of some parameters on the stability of the gel (time, temperature and applied stress) has been studied.Keywords: Cinnamomum cassia, Zingibar officinale, antioxidant activity, antimicrobien activity, gel, viscoelastic behaviour
Procedia PDF Downloads 903873 Callus Induction, In-Vitro Plant Regeneration and Acclimatization of Lycium barbarum L. (Goji)
Authors: Rosna Mat Taha, Sakinah Abdullah, Sadegh Mohajer, Asmah Awal
Abstract:
Lycium barbarum L. (Goji) belongs to Solanaceae family and native to some areas of China. Ethnobotanical studies have shown that this plant has been consumed by the Chinese since ancient times. It has been used as medicine in providing excellent effects on cardiovascular system and cholesterol level, besides contains high antioxidant and antidiabetic properties. In the present study, some tissue culture work has been carried out to induce callus, in vitro regeneration from various explants of Goji and also some acclimatization protocols were followed to transfer the regenerated plants to soil. The main aims being to establish high efficient regeneration system for mass production and commercialization for future uses, since the growth of this species is very limited in Malaysia. The optimum hormonal regime and the most suitable and responsive explants were identified. It was found that leaves and stems gave good responses. Murashige and Skoog’s (MS) medium supplemented with 2.0 mg/L NAA and 0.5 mg/L BAP was the best for callus induction and MS media fortified with 1.0 mg/L NAA and 1.0 mg/L BAP was optimum for in vitro regeneration. The survival rates of plantlets after acclimatization was 63±1.5 % on black soil and 50±1.3 % on mixed soil (combination of black and red soil at a ratio of 2 to 1), respectively.Keywords: callus, acclimatization, in vitro culture, regeneration
Procedia PDF Downloads 4473872 Artificial Intelligence Assisted Sentiment Analysis of Hotel Reviews Using Topic Modeling
Authors: Sushma Ghogale
Abstract:
With a surge in user-generated content or feedback or reviews on the internet, it has become possible and important to know consumers' opinions about products and services. This data is important for both potential customers and businesses providing the services. Data from social media is attracting significant attention and has become the most prominent channel of expressing an unregulated opinion. Prospective customers look for reviews from experienced customers before deciding to buy a product or service. Several websites provide a platform for users to post their feedback for the provider and potential customers. However, the biggest challenge in analyzing such data is in extracting latent features and providing term-level analysis of the data. This paper proposes an approach to use topic modeling to classify the reviews into topics and conduct sentiment analysis to mine the opinions. This approach can analyse and classify latent topics mentioned by reviewers on business sites or review sites, or social media using topic modeling to identify the importance of each topic. It is followed by sentiment analysis to assess the satisfaction level of each topic. This approach provides a classification of hotel reviews using multiple machine learning techniques and comparing different classifiers to mine the opinions of user reviews through sentiment analysis. This experiment concludes that Multinomial Naïve Bayes classifier produces higher accuracy than other classifiers.Keywords: latent Dirichlet allocation, topic modeling, text classification, sentiment analysis
Procedia PDF Downloads 973871 Effect of Sowing Dates on Growth, Agronomic Traits and Yield of Tossa Jute (Corchorus olitorius L.)
Authors: Amira Racha Ben Yakoub, Ali Ferchichi
Abstract:
In order to investigate the impact of sowing time on growth parameters, the length of the development cycle and yield of tossa jute (Corchorus olitorius L.), a field experiment was conducted from March to May 2011 at the Laboratoire d’Aridoculture et Cultures Oasiennes, ‘Institut des Régions Arides de Médénine’, Tunisia. Results of the experiment revealed that the early sowing (the middle of March, the beginning of April) induced a cycle of more than 100 days to reach the stage maturity and generates a marked drop in production. This period of plantation affects plant development and leads to a sharp drop in performance marked primarily by a reduction in growth, number and size of leaves, number of flowers and pods and weight of different parts of plant. Sowing from the end of April seems appropriate for shortening the development cycle and better profitability than the first two dates. Seeding of C. olitorius during May enhance the development of plants more dense, which explains the superiority of production marked by the increase of seed yield and leaf fresh and dry weight of this leafy vegetables.Keywords: tossa jute (Corchorus olitorius L), sowing date, growth, yield
Procedia PDF Downloads 3493870 Modelling a Distribution Network with a Hybrid Solar-Hydro Power Plant in Rural Cameroon
Authors: Contimi Kenfack Mouafo, Sebastian Klick
Abstract:
In the rural and remote areas of Cameroon, access to electricity is very limited since most of the population is not connected to the main utility grid. Throughout the country, efforts are underway to not only expand the utility grid to these regions but also to provide reliable off-grid access to electricity. The Cameroonian company Solahydrowatt is currently working on the design and planning of one of the first hybrid solar-hydropower plants of Cameroon in Fotetsa, in the western region of the country, to provide the population with reliable access to electricity. This paper models and proposes a design for the low-voltage network with a hybrid solar-hydropower plant in Fotetsa. The modelling takes into consideration the voltage compliance of the distribution network, the maximum load of operating equipment, and most importantly, the ability for the network to operate as an off-grid system. The resulting modelled distribution network does not only comply with the Cameroonian voltage deviation standard, but it is also capable of being operated as a stand-alone network independent of the main utility grid.Keywords: Cameroon, rural electrification, hybrid solar-hydro, off-grid electricity supply, network simulation
Procedia PDF Downloads 1243869 Water Hyacinth (Eichhornia crassipes) in Nigeria Coastal Waters; lmpacts, Challenges and Prospects
Authors: Efe Ogidiaka-Obende, Gabriel C. C. Ndinwa, John Atadiose, Ewoma O. Oduma
Abstract:
Water hyacinth (Eichhornia crassipes), which is a native of South America, is believed to have found its way into Nigeria waters through Pot-Novo creek, Benin Republic, in September 1984. This study attempts to review the impacts, challenges, and prospects of water hyacinths in Nigeria's coastal waters. Water hyacinth possesses a very high proliferation rate, and its infestation in Nigeria's coastal waters poses severe problems to the fishing, recreational, transportation, and health sector, amongst other activities. The weed has been reported to disrupt aquatic ecosystems, clog waterways, and create associated problems with water supply, irrigation, and drainage. To curb this menace, a huge amount of money is used yearly for its management, which is not sustainable. There is, however, a positive twist to this plant as it has the potential to be used as fertilizers, feed for fish, craft materials, biogas, and many more. Due to its high population and related economic importance and implications in Nigeria's coastal waters, it is highly recommended that more research works be carried out on the of making optimal use of this plant.Keywords: waste to wealth, environmental pollution, water hyacinth, biogas, sustainable development goals
Procedia PDF Downloads 853868 Biological Control of Sclerotium rolfsii, Damping-off Disease on Centella asiatica
Authors: K. Sunitra, T. Srisuda
Abstract:
Centella asiatica, asiatic pennywort is a medicinal herb plant used widely which held in herbal health care group. The problem of asiatic pennywort production is the outbreak of Sclerotium rolfsii causing a damp-off disease which caused plant stem turn yellowish, finally they begin to die and result in extremely damaging to growers. Therefore, the studies were caried out to control damping off with Trichoderma sp., Bacillus subtilis and fermented banana as compared to the control to suppress with bi-culture under the laboratory condition. It was found that Trichoderma harzianum showed the highest percentage of inbihition, 69.44%. The pot experiments in greenhouse condition showed that chemical had minimum of damping-off (31.54%) and highest yield (1.20 tons/rai) and following by Trichoderma harzianum and Bacillus subtilis treatment. Due to the chemical usage leaving toxic residues on plants and affect the human bodies. Trichoderma harzianum and Bacillus subtilis should be considered as alternatives which have percent of damp-off disease and yields as follows: 45.50 and 43.75%, and 1.12 and 1.09 tons/rai, respectively. These two products are known that they have no health risk for growers and consumers in the future.Keywords: Centella asiatica, Sclerotium rolfsii, Trichoderma harzianum, Bacillus subtilis
Procedia PDF Downloads 3033867 Navigating Government Finance Statistics: Effortless Retrieval and Comparative Analysis through Data Science and Machine Learning
Authors: Kwaku Damoah
Abstract:
This paper presents a methodology and software application (App) designed to empower users in accessing, retrieving, and comparatively exploring data within the hierarchical network framework of the Government Finance Statistics (GFS) system. It explores the ease of navigating the GFS system and identifies the gaps filled by the new methodology and App. The GFS, embodies a complex Hierarchical Network Classification (HNC) structure, encapsulating institutional units, revenues, expenses, assets, liabilities, and economic activities. Navigating this structure demands specialized knowledge, experience, and skill, posing a significant challenge for effective analytics and fiscal policy decision-making. Many professionals encounter difficulties deciphering these classifications, hindering confident utilization of the system. This accessibility barrier obstructs a vast number of professionals, students, policymakers, and the public from leveraging the abundant data and information within the GFS. Leveraging R programming language, Data Science Analytics and Machine Learning, an efficient methodology enabling users to access, navigate, and conduct exploratory comparisons was developed. The machine learning Fiscal Analytics App (FLOWZZ) democratizes access to advanced analytics through its user-friendly interface, breaking down expertise barriers.Keywords: data science, data wrangling, drilldown analytics, government finance statistics, hierarchical network classification, machine learning, web application.
Procedia PDF Downloads 703866 The Effect of a Weed-Killer Sulfonylurea on Durum Wheat (Triticum Durum Desf)
Authors: L. Meksem Amara, M. Ferfar, N. Meksem, M. R. Djebar
Abstract:
The wheat is the cereal the most consumed in the world. In Algeria, the production of this cereal covers only 20 in 25 % of the needs for the country, the rest being imported. To improve the efficiency and the productivity of the durum wheat, the farmers turn to the use of pesticides: weed-killers, fungicides and insecticides. However this use often entrains losses of products more at least important contaminating the environment and all the food chain. Weed-killers are substances developed to control or destroy plants considered unwanted. That they are natural or produced by the human being (molecule of synthesis), the absorption and the metabolization of weed-killers by plants cause the death of these plants. In this work, we set as goal the evaluation of the effect of a weed-killer sulfonylurea, the CossackOD with various concentrations (0, 2, 4 and 9 µg) on variety of Triticum durum: Cirta. We evaluated the plant growth by measuring the leaves and root length, compared with the witness as well as the content of proline and analyze the level of one of the antioxydative enzymes: catalase, after 14 days of treatment. Sulfonylurea is foliar and root weed-killers inhibiting the acetolactate synthase: a vegetable enzyme essential to the development of the plant. This inhibition causes the ruling of the growth then the death. The obtained results show a diminution of the average length of leaves and roots this can be explained by the fact that the ALS inhibitors are more active in the young and increasing regions of the plant, what inhibits the cellular division and talks a limitation of the foliar and root’s growth. We also recorded a highly significant increase in the proline levels and a stimulation of the catalase activity. As a response to increasing the herbicide concentrations a particular increases in antioxidative mechanisms in wheat cultivar Cirta suggest that the high sensitivity of Cirta to this sulfonylurea herbicide is related to the enhanced production and oxidative damage of reactive oxygen species.Keywords: sulfonylurea, triticum durum, oxydative stress, toxicity
Procedia PDF Downloads 4133865 Assessment of Antiplasmodial and Some Other Biological Activities, Essential Oil Constituents, and Phytochemical Screening of Azadirachta indica Grown in Ethiopia
Authors: Dawit Chankaye
Abstract:
Background: Azadirachta indica is the most versatile medicinal plant known as “the village pharmacy”. The plant is known for its broad spectrum of biological activity in India and various countries throughout history by many different human cultures. The present study was undertaken to determine the antimalarial and antidiabetic properties of the leaf extracts of A. indica grown in Ethiopia when treated in vivo. This work has also been concerned with determining essential oil composition and the antimicrobial activity of the plant in vitro. Methods: Leaf extracts were prepared using three different selected solvents. Standard and clinical isolates were treated with extracts of the leaves of A. indica using the agar well diffusion method. The antimalarial and antidiabetic tests were conducted in vivo in mice. Phytochemical screening was done using various chemical tests, and the volatile oil constituents were determined using gas chromatography-mass spectrometry (GC/MS). Results: In vivo antimalarial activity studies showed 85.23%, 69.01%, and 81.54% suppression of parasitemia for 70% ethanol, acetone, and water extracts, respectively. The extracts collected from the leaves also showed reduced blood sugar levels in alloxan-induced diabetic mice. In addition, the solvent extracts were shown to have an inhibitory effect on the growth of microorganisms under the study. The minimum inhibitory concentration (MIC) ranged from 850 to 1050 µg/ml. Notably, the phytochemical investigation of the ethanol extracts showed the presence of secondary metabolites. Seventeen compounds (mainly sesquiterpenes) that represent 75.45% of the essential oil were characterized by GC/MS analysis. Conclusion: Extracts examined in this study indicated that the leaf of A. indica grown in Ethiopia retained the biological activities demonstrating the extent equivalent to when it was grown in its natural habitat. In addition, phytochemical investigation and GC/MS analysis of volatile oil constituents showed comparable results to those presented in India and elsewhere.Keywords: Azadirachta indica, vivo, antimalarial activity, antidiabetic activity, alloxan, mice, phytochemical
Procedia PDF Downloads 813864 Effects of Plasma Treatment on Seed Germination
Authors: Yong Ho Jeon, Youn Mi Lee, Yong Yoon Lee
Abstract:
Effects of cold plasma treatment on various plant seed germination were studied. The seeds of hot pepper, cucumber, tomato and arabidopsis were exposed to plasma and the plasma was generated in various devices. The germination speed was evaluated compared to an unexposed control. A positive effect on germination speed was observed in all tested seeds but the effects strongly depended on the type of the used plasma device (Argon-DBD, surface-DBD or MARX generator), time of exposure (6s~10min or 1~10shots) and kind of seeds. The SEM images showed that arrays of gold particles along the cell wall were observed on the surface of cucumber seeds showed a germination-accelerating effect by plasma treatment, which was the same as untreated. However, when treated with the high dose plasma, gold particles were not arrayed at the seed surface, it seems that due to the surface etching. This may suggest that the germination is not promoted by etching or damage of surface caused by the plasma treatment. Seedling growth improvement was also observed by indirect plasma treatment. These lead to an important conclusion that the effect of charged particles on plasma play the essential role in plant germination and indirect plasma treatment offers new perspectives for large scale application.Keywords: cold plasma, cucumber, germination, SEM
Procedia PDF Downloads 3153863 Increasing the Use of LNG on the Java Island (Bali Province) through the Development of Small-Scale LNG Projects
Authors: Herman Susilo, Rahmat Budiman
Abstract:
Bali province is one of the most famous tourist destinations in Indonesia. As a central tourist destination, Bali is very concerned about the use of clean energy. Since Bali is an area that does not have natural resources, so all of its energy sources are imported from java island and other islands. As an example, currently, Pertagas is developing the use of LNG for the needs of the retail industry. Right now, LNG is transported from the LNG plant facility in Bontang (Kalimantan Province) using ISO Tanks which are transported by cargo ships and then transported by trucks to the island of Bali. After that, LNG from ISO Tank is breakbulk into LNG Cylinders for distribution to retail customers. The existing distribution scheme is very long and costly since the source of LNG is come from another island (Kalimantan) and is relatively far away. To solve this problem, we plan to build the mini-LNG plant on Java Island since there are lots of gas sources available. There are some small gas reserves (flared or stranded gas) that are not yet monetized and are less valuable (cheaper) because the volume is very small. After liquifying the gas from the gas field, the LNG is transported by the truck using ISO Tank. After that, LNG from ISO Tank is breakbulk into LNG Cylinders for distribution to retail customers. From this new LNG distribution scheme, there are 4-5 USD/MMBTU saving compared to the existing distribution scheme. It is hoped that with these cost savings, the number of retail LNG sales can increase rapidly.Keywords: LNG, LNG retail, mini LNG, small scale LNG
Procedia PDF Downloads 973862 Effect of Physicochemical Treatments on the Characteristics of Activated Sludge
Authors: Hammadi Larbi
Abstract:
The treatment of wastewater in sewage plants usually results in the formation of a large amount of sludge. These appear at the outlet of the treatment plant as a viscous fluid loaded with a high concentration of dry matter. This sludge production presents environmental, ecological, and economic risks. That is why it is necessary to find many solutions for minimizing these risks. In the present article, the effect of hydrogen peroxide, thermal treatment, and quicklime on the characteristics of the activated sludge produced in urban wastewater plant were evaluated in order to avoid any risk in the plants. The study shows increasing of the dose of H2O2 from 0 to 0.4 g causes an increase in the solubilization rate of COD from 12% to 45% and a reduction in the organic matter content of sludge (VM/SM) from 74% to 36% . The results also show that the optimum efficiency of the heat treatment corresponds to a temperature of 80 ° C for a treatment time of 40 min is 47% and 51.82% for a temperature equal to 100 ° C and 76.30 % for a temperature of 120 ° C, and 79.38% for a temperature of 140 ° C. The treatment of sludge by quicklime gives the optimum efficiency of 70.62 %. It was shown the increasing of the temperature from 80°C to 140°C, the pH of sludge was increased from 7.12 to 9.59. The obtained results showed that with increasing the dose of quicklime from 0 g/l to 1g/l in activated sludge led to an increase of their pH from 7.12 to 12.06. The study shows the increasing the dose of quicklime from 0 g/l to 1g/l causes also an increase in the solubilization of COD from 0% to 70.62 %Keywords: activated sludge, hydrogen peroxide, thermal treatment, quicklime
Procedia PDF Downloads 1043861 Safety Considerations of Furanics for Sustainable Applications in Advanced Biorefineries
Authors: Anitha Muralidhara, Victor Engelen, Christophe Len, Pascal Pandard, Guy Marlair
Abstract:
Production of bio-based chemicals and materials from lignocellulosic biomass is gaining tremendous importance in advanced bio-refineries while aiming towards progressive replacement of petroleum based chemicals in transportation fuels and commodity polymers. One such attempt has resulted in the production of key furan derivatives (FD) such as furfural, HMF, MMF etc., via acid catalyzed dehydration (ACD) of C6 and C5 sugars, which are further converted into key chemicals or intermediates (such as Furandicarboxylic acid, Furfuryl alcohol etc.,). In subsequent processes, many high potential FD are produced, that can be converted into high added value polymers or high energy density biofuels. During ACD, an unavoidable polyfuranic byproduct is generated which is called humins. The family of FD is very large with varying chemical structures and diverse physicochemical properties. Accordingly, the associated risk profiles may largely vary. Hazardous Material (Haz-mat) classification systems such as GHS (CLP in the EU) and the UN TDG Model Regulations for transport of dangerous goods are one of the preliminary requirements for all chemicals for their appropriate classification, labelling, packaging, safe storage, and transportation. Considering the growing application routes of FD, it becomes important to notice the limited access to safety related information (safety data sheets available only for famous compounds such as HMF, furfural etc.,) in these internationally recognized haz-mat classification systems. However, these classifications do not necessarily provide information about the extent of risk involved when the chemical is used in any specific application. Factors such as thermal stability, speed of combustion, chemical incompatibilities, etc., can equally influence the safety profile of a compound, that are clearly out of the scope of any haz-mat classification system. Irrespective of the bio-based origin, FD has so far received inconsistent remarks concerning their toxicity profiles. With such inconsistencies, there is a fear that, a large family of FD may also follow extreme judgmental scenarios like ionic liquids, by ranking some compounds as extremely thermally stable, non-flammable, etc., Unless clarified, these messages could lead to misleading judgements while ranking the chemical based on its hazard rating. Safety is a key aspect in any sustainable biorefinery operation/facility, which is often underscored or neglected. To fill up these existing data gaps and to address ambiguities and discrepancies, the current study focuses on giving preliminary insights on safety assessment of FD and their potential targeted by-products. With the available information in the literature and obtained experimental results, physicochemical safety, environmental safety as well as (a scenario based) fire safety profiles of key FD, as well as side streams such as humins and levulinic acid, will be considered. With this, the study focuses on defining patterns and trends that gives coherent safety related information for existing and newly synthesized FD in the market for better functionality and sustainable applications.Keywords: furanics, humins, safety, thermal and fire hazard, toxicity
Procedia PDF Downloads 1663860 Application of MALDI-MS to Differentiate SARS-CoV-2 and Non-SARS-CoV-2 Symptomatic Infections in the Early and Late Phases of the Pandemic
Authors: Dmitriy Babenko, Sergey Yegorov, Ilya Korshukov, Aidana Sultanbekova, Valentina Barkhanskaya, Tatiana Bashirova, Yerzhan Zhunusov, Yevgeniya Li, Viktoriya Parakhina, Svetlana Kolesnichenko, Yeldar Baiken, Aruzhan Pralieva, Zhibek Zhumadilova, Matthew S. Miller, Gonzalo H. Hortelano, Anar Turmuhambetova, Antonella E. Chesca, Irina Kadyrova
Abstract:
Introduction: The rapidly evolving COVID-19 pandemic, along with the re-emergence of pathogens causing acute respiratory infections (ARI), has necessitated the development of novel diagnostic tools to differentiate various causes of ARI. MALDI-MS, due to its wide usage and affordability, has been proposed as a potential instrument for diagnosing SARS-CoV-2 versus non-SARS-CoV-2 ARI. The aim of this study was to investigate the potential of MALDI-MS in conjunction with a machine learning model to accurately distinguish between symptomatic infections caused by SARS-CoV-2 and non-SARS-CoV-2 during both the early and later phases of the pandemic. Furthermore, this study aimed to analyze mass spectrometry (MS) data obtained from nasal swabs of healthy individuals. Methods: We gathered mass spectra from 252 samples, comprising 108 SARS-CoV-2-positive samples obtained in 2020 (Covid 2020), 7 SARS-CoV- 2-positive samples obtained in 2023 (Covid 2023), 71 samples from symptomatic individuals without SARS-CoV-2 (Control non-Covid ARVI), and 66 samples from healthy individuals (Control healthy). All the samples were subjected to RT-PCR testing. For data analysis, we employed the caret R package to train and test seven machine-learning algorithms: C5.0, KNN, NB, RF, SVM-L, SVM-R, and XGBoost. We conducted a training process using a five-fold (outer) nested repeated (five times) ten-fold (inner) cross-validation with a randomized stratified splitting approach. Results: In this study, we utilized the Covid 2020 dataset as a case group and the non-Covid ARVI dataset as a control group to train and test various machine learning (ML) models. Among these models, XGBoost and SVM-R demonstrated the highest performance, with accuracy values of 0.97 [0.93, 0.97] and 0.95 [0.95; 0.97], specificity values of 0.86 [0.71; 0.93] and 0.86 [0.79; 0.87], and sensitivity values of 0.984 [0.984; 1.000] and 1.000 [0.968; 1.000], respectively. When examining the Covid 2023 dataset, the Naive Bayes model achieved the highest classification accuracy of 43%, while XGBoost and SVM-R achieved accuracies of 14%. For the healthy control dataset, the accuracy of the models ranged from 0.27 [0.24; 0.32] for k-nearest neighbors to 0.44 [0.41; 0.45] for the Support Vector Machine with a radial basis function kernel. Conclusion: Therefore, ML models trained on MALDI MS of nasopharyngeal swabs obtained from patients with Covid during the initial phase of the pandemic, as well as symptomatic non-Covid individuals, showed excellent classification performance, which aligns with the results of previous studies. However, when applied to swabs from healthy individuals and a limited sample of patients with Covid in the late phase of the pandemic, ML models exhibited lower classification accuracy.Keywords: SARS-CoV-2, MALDI-TOF MS, ML models, nasopharyngeal swabs, classification
Procedia PDF Downloads 1083859 Drip Irrigation Timing and Its Effect on Tomato Yield for a Two-Day Schedule
Authors: T. Kizza, M. Muyinda
Abstract:
Irrigation schedules are normally given in terms of frequency (irrigation days). Specific timings within a given day are not usually included. This study examined the effect of irrigation timing for a two-day irrigation schedule of a surface drip-irrigated tomato field on yield. It was carried out for three dry seasons; July-Sept 2016, Jan-April 2017 and Jan-March 2018, at MuZARDI research station. Four irrigation treatments; T1 morning (8.00hrs), T2 noon (12:00hrs), T3 evening (17:00hr) and T4, a combination of morning and evening, were evaluated. The irrigation duration was one hour for T1-T3 and split into 30 minutes for T4. First season results indicated noon watering as having the best yield over other treatments at 51.59t/ha followed closely by morning watering at 50.6t/ha. Plants watered at noon had the highest number of fruits at 19/plant with an average weight of 94g/fruit. Plants watered in the morning had fruits with the highest average weight at 111.2g/fruit but they were the lowest number at 16 fruits/plant. The three-season data indicated the highest yield at 45.9t/ha for morning watering, followed by noon watering at 44.3t/ha and the least yield was for evening watering at 40.9t/ha. Watering tomatoes in the morning will give optimum yields for a two-day irrigation schedule.Keywords: drip irrigation, irrigation schedule, irrigation timing, tomato yield
Procedia PDF Downloads 1383858 Ecobiological Study of Olivier in the Northern Slopes of the Mountains of Tlemcen, Western Algeria
Authors: Hachemi Nouria
Abstract:
The olive tree is a Mediterranean tree, which belongs to the family Oleaceae. The Olea genus contains various species and subspecies, and the only species bearing edible fruit is Olea europaea. The desired issue in this study is to provide the current status of plant cover and especially the training in Olea europaea currently existing in the major centers of the region of Tlemcen. While based on the flora and biometric aspect of this plant germplasm. In order to make an assessment of the phytomass, we made measurements of the four parameters of the aerial part of the taxon: height, diameter, and canopy density to ten feet of the olive tree per station. The floristic analysis shows a certain floristic difference between the different stations. The vegetal formations reflect the biotic and abiotic conditions including climate affecting the ecosystem. Biometric study on the feet of Olea in the six study sites, has led us to conclude that the four measured parameters provides insight on the development or degradation of Olea feet depending on the layout of the stations and the factors environmental. We find that the terrains are havens for these assets. Also the local microclimate (Oued Thalweg) promotes the healthy development of this species.Keywords: olivier, ecology, biometrics, Tlemcen, Algeria
Procedia PDF Downloads 2963857 The Integrated Methodological Development of Reliability, Risk and Condition-Based Maintenance in the Improvement of the Thermal Power Plant Availability
Authors: Henry Pariaman, Iwa Garniwa, Isti Surjandari, Bambang Sugiarto
Abstract:
Availability of a complex system of thermal power plant is strongly influenced by the reliability of spare parts and maintenance management policies. A reliability-centered maintenance (RCM) technique is an established method of analysis and is the main reference for maintenance planning. This method considers the consequences of failure in its implementation, but does not deal with further risk of down time that associated with failures, loss of production or high maintenance costs. Risk-based maintenance (RBM) technique provides support strategies to minimize the risks posed by the failure to obtain maintenance task considering cost effectiveness. Meanwhile, condition-based maintenance (CBM) focuses on monitoring the application of the conditions that allow the planning and scheduling of maintenance or other action should be taken to avoid the risk of failure prior to the time-based maintenance. Implementation of RCM, RBM, CBM alone or combined RCM and RBM or RCM and CBM is a maintenance technique used in thermal power plants. Implementation of these three techniques in an integrated maintenance will increase the availability of thermal power plants compared to the use of maintenance techniques individually or in combination of two techniques. This study uses the reliability, risks and conditions-based maintenance in an integrated manner to increase the availability of thermal power plants. The method generates MPI (Priority Maintenance Index) is RPN (Risk Priority Number) are multiplied by RI (Risk Index) and FDT (Failure Defense Task) which can generate the task of monitoring and assessment of conditions other than maintenance tasks. Both MPI and FDT obtained from development of functional tree, failure mode effects analysis, fault-tree analysis, and risk analysis (risk assessment and risk evaluation) were then used to develop and implement a plan and schedule maintenance, monitoring and assessment of the condition and ultimately perform availability analysis. The results of this study indicate that the reliability, risks and conditions-based maintenance methods, in an integrated manner can increase the availability of thermal power plants.Keywords: integrated maintenance techniques, availability, thermal power plant, MPI, FDT
Procedia PDF Downloads 7953856 Optimization Based Extreme Learning Machine for Watermarking of an Image in DWT Domain
Authors: RAM PAL SINGH, VIKASH CHAUDHARY, MONIKA VERMA
Abstract:
In this paper, we proposed the implementation of optimization based Extreme Learning Machine (ELM) for watermarking of B-channel of color image in discrete wavelet transform (DWT) domain. ELM, a regularization algorithm, works based on generalized single-hidden-layer feed-forward neural networks (SLFNs). However, hidden layer parameters, generally called feature mapping in context of ELM need not to be tuned every time. This paper shows the embedding and extraction processes of watermark with the help of ELM and results are compared with already used machine learning models for watermarking.Here, a cover image is divide into suitable numbers of non-overlapping blocks of required size and DWT is applied to each block to be transformed in low frequency sub-band domain. Basically, ELM gives a unified leaning platform with a feature mapping, that is, mapping between hidden layer and output layer of SLFNs, is tried for watermark embedding and extraction purpose in a cover image. Although ELM has widespread application right from binary classification, multiclass classification to regression and function estimation etc. Unlike SVM based algorithm which achieve suboptimal solution with high computational complexity, ELM can provide better generalization performance results with very small complexity. Efficacy of optimization method based ELM algorithm is measured by using quantitative and qualitative parameters on a watermarked image even though image is subjected to different types of geometrical and conventional attacks.Keywords: BER, DWT, extreme leaning machine (ELM), PSNR
Procedia PDF Downloads 3113855 Information Technology Impacts on the Supply Chain Performance: Case Study Approach
Authors: Kajal Zarei
Abstract:
Supply chain management is becoming an increasingly important issue in many businesses today. In such circumstances, a number of reasons such as management deficiency in different segments of the supply chain, lack of streamlined processes, resistance to change the current systems and technologies, and lack of advanced information system have paved the ground to ask for innovative research studies. To this end, information technology (IT) is becoming a major driver to overcome the supply chain limitations and deficiencies. The emergence of IT has provided an excellent opportunity for redefining the supply chain to be more effective and competitive. This paper has investigated the IT impact on two-digit industry codes in the International Standard Industrial Classification (ISIC) that are operating in four groups of the supply chains. Firstly, the primary fields of the supply chain were investigated, and then paired comparisons of different industry parts were accomplished. Using experts' ideas and Analytical Hierarchy Process (AHP), the status of industrial activities in Kurdistan Province in Iran was determined. The results revealed that manufacturing and inventory fields have been more important compared to other fields of the supply chain. In addition, IT has had greater impact on food and beverage industry, chemical industry, wood industry, wood products, and production of basic metals. The results indicated the need to IT awareness in supply chain management; in other words, IT applications needed to be developed for the identified industries.Keywords: supply chain, information technology, analytical hierarchy process, two-digit codes, international standard industrial classification
Procedia PDF Downloads 2813854 EZOB Technology, Biomass Gasification, and Microcogeneration Unit
Authors: Martin Lisý, Marek Baláš, Michal Špiláček, Zdeněk Skála
Abstract:
This paper deals with the issue of biomass and sorted municipal waste gasification and cogeneration using hot air turbo set. It brings description of designed pilot plant with electrical output 80 kWe. The generated gas is burned in secondary combustion chamber located beyond the gas generator. Flue gas flows through the heat exchanger where the compressed air is heated and consequently brought to a micro turbine. Except description, this paper brings our basic experiences from operating of pilot plant (operating parameters, contributions, problems during operating, etc.). The principal advantage of the given cycle is the fact that there is no contact between the generated gas and the turbine. So there is no need for costly and complicated gas cleaning which is the main source of operating problems in direct use in combustion engines because the content of impurities in the gas causes operation problems to the units due to clogging and tarring of working surfaces of engines and turbines, which may lead as far as serious damage to the equipment under operation. Another merit is the compact container package making installation of the facility easier or making it relatively more mobile. We imagine, this solution of cogeneration from biomass or waste can be suitable for small industrial or communal applications, for low output cogeneration.Keywords: biomass, combustion, gasification, microcogeneration
Procedia PDF Downloads 3303853 Biomass Gasification and Microcogeneration Unit–EZOB Technology
Authors: Martin Lisý, Marek Baláš, Michal Špiláček, Zdeněk Skála
Abstract:
This paper deals with the issue of biomass and sorted municipal waste gasification and cogeneration using hot-air turbo-set. It brings description of designed pilot plant with electrical output 80 kWe. The generated gas is burned in secondary combustion chamber located beyond the gas generator. Flue gas flows through the heat exchanger where the compressed air is heated and consequently brought to a micro turbine. Except description, this paper brings our basic experiences from operating of pilot plant (operating parameters, contributions, problems during operating, etc.). The principal advantage of the given cycle is the fact that there is no contact between the generated gas and the turbine. So there is no need for costly and complicated gas cleaning which is the main source of operating problems in direct use in combustion engines because the content of impurities in the gas causes operation problems to the units due to clogging and tarring of working surfaces of engines and turbines, which may lead as far as serious damage to the equipment under operation. Another merit is the compact container package making installation of the facility easier or making it relatively more mobile. We imagine, this solution of cogeneration from biomass or waste can be suitable for small industrial or communal applications, for low output cogeneration.Keywords: biomass, combustion, gasification, microcogeneration
Procedia PDF Downloads 4893852 Effect of Aeration on Co-Composting of Mixture of Food Waste with Sawdust and Sewage Sludge from Nicosia Waste Water Treatment Plant
Authors: Azad Khalid, Ime Akanyeti
Abstract:
About 68% of the urban solid waste generated in Turkish Republic of Northern Cyprus TRNC is household solid waste, at present, its disposal in landfills. In other hand more than 3000 ton per year of sewage sludge produces in Nicosia waste water treatment plant, the produced sludge piled up without any processing. Co-composting of organic fraction of municipal solid waste and sewage sludge is diverting of municipal solid waste from landfills and best disposal of wastewater sewage sludge. Three 10 L insulated bioreactor R1, R2 and R3 obtained with aeration rate 0.05 m3/h.kg for R2 and R3, R1 was without aeration. The mixture was destined with ratio of sewage sludge: food waste: sawdust; 1:5:0.8 (w/w). The effective of aeration monitored during 42 days of process through investigation in key parameter moisture, C/N ratio, temperature and pH. Results show that the high moisture content cause problem and around 60% recommend, C/N ratio decreased about 17% in aerated reactors and 10% in without aeration and mixture volume reduced in volume 40% in final compost with size of 1.00 to 20.0 mm. temperature in reactors with aeration reached thermophilic phase above 50 °C and <40 °C in without aeration. The final pH is 6.1 in R1, 8.23 in R2 and 8.1 in R3.Keywords: aeration, sewage sludge, food waste, sawdust, composting
Procedia PDF Downloads 893851 Treatment of Wastewater by Constructed Wetland Eco-Technology: Plant Species Alters the Performance and the Enrichment of Bacteria Ries Alters the Performance and the Enrichment of Bacteria
Authors: Kraiem Khadija, Hamadi Kallali, Naceur Jedidi
Abstract:
Constructed wetland systems are eco-technology recognized as environmentally friendly and emerging innovative solutions remediation as these systems are cost-effective and sustainable wastewater treatment systems. The performance of these biological system is affected by various factors such as plant, substrate, wastewater type, hydraulic loading rate, hydraulic retention time, water depth, and operation mood. The objective of this study was to to assess the alters of plant species on pollutants reduction and enrichment of anammox and nitrifing denitrifing bacteria in a modified vertical flow (VFCW) constructed wetland. This tests were carried out using three modified vertical constructed wetlands with a surface of 0.23 m² and depth 80 cm. It was a saturated vertical constructed wetland at the bottom. The saturation zone is maintained by the siphon structure at the outlet. The VFCW (₁) system was unplanted, VFCW (₂) planted with Typha angustofolia, and VFCW(₃) planted with Phragmites australis. The experimental units were fed with domestic wastewater and were operated by batch mode during 8 months at an average hydraulic loading rate around 20 cm day− 1. The operation cycle was two days feeding and five days rest. Results indicated that plants presence improved the removal efficiency; the removal rates of organic matter (85.1–90.9%; COD and 81.8–88.9%; BOD5), nitrogen (54.2–73%; NTK and 66–77%; NH4 -N) were higher by 10.7–30.1% compared to the unplanted vertical constructed wetland. On the other hand, the plant species had no significant effect on removal efficiency of COD, The removal of COD was similar in VFCW (₂) and VFCW (₃) (p > 0.05), attaining average removal efficiencies of 88.7% and 85.2%, respectively. Whereas it had a significant effect on NTK removal (p > 0.05), with an average removal rate of 72% versus 51% for VFCW (₂) and VFCW (₃), respectively. Among the three sets of vertical flow constructed wetlands, the VFCW(₂) removed the highest percent of total streptococcus, fecal streptococcus total coliforms, fecal coliforms, E. coli as 59, 62, 52, 63, and 58%, respectively. The presence and the plant species alters the community composition and abundance of the bacteria. The abundance of bacteria in the planted wetland was much higher than that in the unplanted one. VFCW(₃) had the highest relative abundance of nitrifying bacteria such as Nitrosospira (18%), Nitrosospira (12%), and Nitrobacter (8%). Whereas the vertical constructed wetland planted with typha had larger number of denitrifying species, with relative abundances of Aeromonas (13%), Paracoccus (11%), Thauera (7%), and Thiobacillus (6%). However, the abundance of nitrifying bacteria was very lower in this system than VFCW(₂). Interestingly, the presence of Thypha angustofolia species favored the enrichment of anammox bacteria compared to unplanted system and system planted with phragmites australis. The results showed that the middle layer had the most accumulation of anammox bacteria, which the anaerobic condition is better and the root system is moderate. Vegetation has several characteristics that make it an essential component of wetlands, but its exact effects are complex and debated.Keywords: wastawater, constructed wetland, anammox, removal
Procedia PDF Downloads 1043850 Pharmaceutical Scale up for Solid Dosage Forms
Authors: A. Shashank Tiwari, S. P. Mahapatra
Abstract:
Scale-up is defined as the process of increasing batch size. Scale-up of a process viewed as a procedure for applying the same process to different output volumes. There is a subtle difference between these two definitions: batch size enlargement does not always translate into a size increase of the processing volume. In mixing applications, scale-up is indeed concerned with increasing the linear dimensions from the laboratory to the plant size. On the other hand, processes exist (e.g., tableting) where the term ‘scale-up’ simply means enlarging the output by increasing the speed. To complete the picture, one should point out special procedures where an increase of the scale is counterproductive and ‘scale-down’ is required to improve the quality of the product. In moving from Research and Development (R&D) to production scale, it is sometimes essential to have an intermediate batch scale. This is achieved at the so-called pilot scale, which is defined as the manufacturing of drug product by a procedure fully representative of and simulating that used for full manufacturing scale. This scale also makes it possible to produce enough products for clinical testing and to manufacture samples for marketing. However, inserting an intermediate step between R&D and production scales does not, in itself, guarantee a smooth transition. A well-defined process may generate a perfect product both in the laboratory and the pilot plant and then fail quality assurance tests in production.Keywords: scale up, research, size, batch
Procedia PDF Downloads 4133849 Thermodynamic Analysis of a Multi-Generation Plant Driven by Pine Sawdust as Primary Fuel
Authors: Behzad Panahirad, UğUr Atikol
Abstract:
The current study is based on a combined heat and power system with multi-objectives, driven by biomass. The system consists of a combustion chamber (CC), a single effect absorption cooling system (SEACS), an air conditioning unit (AC), a reheat steam Rankine cycle (RRC), an organic Rankine cycle (ORC) and an electrolyzer. The purpose of this system is to produce hydrogen, electricity, heat, cooling, and air conditioning. All the simulations had been performed by Engineering Equation Solver (EES) software. Pine sawdust is the selected biofuel for the combustion process. The overall utilization factor (εₑₙ) and exergetic efficiency (ψₑₓ) were calculated to be 2.096 and 24.03% respectively. The performed renewable and environmental impact analysis indicated a sustainability index of 1.316 (SI) and a specific CO2 emission of 353.8 kg/MWh. The parametric study is conducted based on the variation of ambient (sink) temperature, biofuel mass flow rate, and boilers outlet temperatures. The parametric simulation showed that the increase in biofuel mass flow rate has a positive effect on the sustainability of the system.Keywords: biomass, exergy assessment, multi-objective plant, CO₂ emission, irreversibility
Procedia PDF Downloads 170