Search results for: models error comparison
10920 A Comparison of the Adsorption Mechanism of Arsenic on Iron-Modified Nanoclays
Authors: Michael Leo L. Dela Cruz, Khryslyn G. Arano, Eden May B. Dela Pena, Leslie Joy Diaz
Abstract:
Arsenic adsorbents were continuously being researched to ease the detrimental impact of arsenic to human health. A comparative study on the adsorption mechanism of arsenic on iron modified nanoclays was undertaken. Iron intercalated montmorillonite (Fe-MMT) and montmorillonite supported zero-valent iron (ZVI-MMT) were the adsorbents investigated in this study. Fe-MMT was produced through ion-exchange by replacing the sodium intercalated ions in montmorillonite with iron (III) ions. The iron (III) in Fe-MMT was later reduced to zero valent iron producing ZVI-MMT. Adsorption study was performed by batch technique. Obtained data were fitted to intra-particle diffusion, pseudo-first order, and pseudo-second-order models and the Elovich equation to determine the kinetics of adsorption. The adsorption of arsenic on Fe-MMT followed the intra-particle diffusion model with intra-particle rate constant of 0.27 mg/g-min0.5. Arsenic was found to be chemically bound on ZVI-MMT as suggested by the pseudo-second order and Elovich equation. The derived pseudo-second order rate constant was 0.0027 g/mg-min with initial adsorption rate computed from the Elovich equation was 113 mg/g-min.Keywords: adsorption mechanism, arsenic, montmorillonite, zero valent iron
Procedia PDF Downloads 41510919 Comparison between the Efficiency of Heterojunction Thin Film InGaP\GaAs\Ge and InGaP\GaAs Solar Cell
Authors: F. Djaafar, B. Hadri, G. Bachir
Abstract:
This paper presents the design parameters for a thin film 3J InGaP/GaAs/Ge solar cell with a simulated maximum efficiency of 32.11% using Tcad Silvaco. Design parameters include the doping concentration, molar fraction, layers’ thickness and tunnel junction characteristics. An initial dual junction InGaP/GaAs model of a previous published heterojunction cell was simulated in Tcad Silvaco to accurately predict solar cell performance. To improve the solar cell’s performance, we have fixed meshing, material properties, models and numerical methods. However, thickness and layer doping concentration were taken as variables. We, first simulate the InGaP\GaAs dual junction cell by changing the doping concentrations and thicknesses which showed an increase in efficiency. Next, a triple junction InGaP/GaAs/Ge cell was modeled by adding a Ge layer to the previous dual junction InGaP/GaAs model with an InGaP /GaAs tunnel junction.Keywords: heterojunction, modeling, simulation, thin film, Tcad Silvaco
Procedia PDF Downloads 36910918 Impact of Instructional Designing in Digital Game-Based Learning for Enhancing Students' Motivation
Authors: Shafaq Rubab
Abstract:
The primary reason for dropping out of school is associated with students’ lack of motivation in class, especially in mathematics. Digital game-based learning is an approach that is being actively explored; there are very few learning games based on proven instructional design models or frameworks due to which the effectiveness of the learning games suffers. The purpose of this research was twofold: first, developing an appropriate instructional design model and second, evaluating the impact of the instructional design model on students’ motivation. This research contributes significantly to the existing literature in terms of student motivation and the impact of instructional design model in digital game-based learning. The sample size for this study consists of two hundred out-of-school students between the age of 6 and 12 years. The research methodology used for this research was a quasi-experimental approach and data was analyzed by using the instructional material motivational survey questionnaire which is adapted from the Keller Arcs model. Control and experimental groups consisting of two hundred students were analyzed by utilizing instructional material motivational survey (IMMS), and comparison of result from both groups showed the difference in the level of motivation of the students. The result of the research showed that the motivational level of student in the experimental group who were taught by the game was higher than the student in control group (taught by conventional methodology). The mean score of the experimental group against all subscales (attention, relevance, confidence, and satisfaction) of IMMS survey was higher; however, no statistical significance was found between the motivational scores of control and experimental group. The positive impact of game-based learning on students’ level of motivation, as measured in this study, strengthens the case for the use of pedagogically sound instructional design models in the design of interactive learning applications. In addition, the present study suggests learning from interactive, immersive applications as an alternative solution for children, especially in Third World countries, who, for various reasons, do not attend school. The mean score of experimental group against all subscales of IMMS survey was higher; however, no statistical significance was found between motivational scores of control and experimental group.Keywords: digital game-based learning, students’ motivation, and instructional designing, instructional material motivational survey
Procedia PDF Downloads 42010917 Government Final Consumption Expenditure and Household Consumption Expenditure NPISHS in Nigeria
Authors: Usman A. Usman
Abstract:
Undeniably, unlike the Classical side, the Keynesian perspective of the aggregate demand side indeed has a significant position in the policy, growth, and welfare of Nigeria due to government involvement and ineffective demand of the population living with poor per capita income. This study seeks to investigate the effect of Government Final Consumption Expenditure, Financial Deepening on Households, and NPISHs Final consumption expenditure using data on Nigeria from 1981 to 2019. This study employed the ADF stationarity test, Johansen Cointegration test, and Vector Error Correction Model. The results of the study revealed that the coefficient of Government final consumption expenditure has a positive effect on household consumption expenditure in the long run. There is a long-run and short-run relationship between gross fixed capital formation and household consumption expenditure. The coefficients cpsgdp (financial deepening and gross fixed capital formation posit a negative impact on household final consumption expenditure. The coefficients money supply lm2gdp, which is another proxy for financial deepening, and the coefficient FDI have a positive effect on household final consumption expenditure in the long run. Therefore, this study recommends that Gross fixed capital formation stimulates household consumption expenditure; a legal framework to support investment is a panacea to increasing hoodmold income and consumption and reducing poverty in Nigeria. Therefore, this should be a key central component of policy.Keywords: government final consumption expenditure, household consumption expenditure, vector error correction model, cointegration
Procedia PDF Downloads 5310916 Designing the Maturity Model of Smart Digital Transformation through the Foundation Data Method
Authors: Mohammad Reza Fazeli
Abstract:
Nowadays, the fourth industry, known as the digital transformation of industries, is seen as one of the top subjects in the history of structural revolution, which has led to the high-tech and tactical dominance of the organization. In the face of these profits, the undefined and non-transparent nature of the after-effects of investing in digital transformation has hindered many organizations from attempting this area of this industry. One of the important frameworks in the field of understanding digital transformation in all organizations is the maturity model of digital transformation. This model includes two main parts of digital transformation maturity dimensions and digital transformation maturity stages. Mediating factors of digital maturity and organizational performance at the individual (e.g., motivations, attitudes) and at the organizational level (e.g., organizational culture) should be considered. For successful technology adoption processes, organizational development and human resources must go hand in hand and be supported by a sound communication strategy. Maturity models are developed to help organizations by providing broad guidance and a roadmap for improvement. However, as a result of a systematic review of the literature and its analysis, it was observed that none of the 18 maturity models in the field of digital transformation fully meet all the criteria of appropriateness, completeness, clarity, and objectivity. A maturity assessment framework potentially helps systematize assessment processes that create opportunities for change in processes and organizations enabled by digital initiatives and long-term improvements at the project portfolio level. Cultural characteristics reflecting digital culture are not systematically integrated, and specific digital maturity models for the service sector are less clearly presented. It is also clearly evident that research on the maturity of digital transformation as a holistic concept is scarce and needs more attention in future research.Keywords: digital transformation, organizational performance, maturity models, maturity assessment
Procedia PDF Downloads 10710915 Series Network-Structured Inverse Models of Data Envelopment Analysis: Pitfalls and Solutions
Authors: Zohreh Moghaddas, Morteza Yazdani, Farhad Hosseinzadeh
Abstract:
Nowadays, data envelopment analysis (DEA) models featuring network structures have gained widespread usage for evaluating the performance of production systems and activities (Decision-Making Units (DMUs)) across diverse fields. By examining the relationships between the internal stages of the network, these models offer valuable insights to managers and decision-makers regarding the performance of each stage and its impact on the overall network. To further empower system decision-makers, the inverse data envelopment analysis (IDEA) model has been introduced. This model allows the estimation of crucial information for estimating parameters while keeping the efficiency score unchanged or improved, enabling analysis of the sensitivity of system inputs or outputs according to managers' preferences. This empowers managers to apply their preferences and policies on resources, such as inputs and outputs, and analyze various aspects like production, resource allocation processes, and resource efficiency enhancement within the system. The results obtained can be instrumental in making informed decisions in the future. The top result of this study is an analysis of infeasibility and incorrect estimation that may arise in the theory and application of the inverse model of data envelopment analysis with network structures. By addressing these pitfalls, novel protocols are proposed to circumvent these shortcomings effectively. Subsequently, several theoretical and applied problems are examined and resolved through insightful case studies.Keywords: inverse models of data envelopment analysis, series network, estimation of inputs and outputs, efficiency, resource allocation, sensitivity analysis, infeasibility
Procedia PDF Downloads 5210914 Interaction between Space Syntax and Agent-Based Approaches for Vehicle Volume Modelling
Authors: Chuan Yang, Jing Bie, Panagiotis Psimoulis, Zhong Wang
Abstract:
Modelling and understanding vehicle volume distribution over the urban network are essential for urban design and transport planning. The space syntax approach was widely applied as the main conceptual and methodological framework for contemporary vehicle volume models with the help of the statistical method of multiple regression analysis (MRA). However, the MRA model with space syntax variables shows a limitation in vehicle volume predicting in accounting for the crossed effect of the urban configurational characters and socio-economic factors. The aim of this paper is to construct models by interacting with the combined impact of the street network structure and socio-economic factors. In this paper, we present a multilevel linear (ML) and an agent-based (AB) vehicle volume model at an urban scale interacting with space syntax theoretical framework. The ML model allowed random effects of urban configurational characteristics in different urban contexts. And the AB model was developed with the incorporation of transformed space syntax components of the MRA models into the agents’ spatial behaviour. Three models were implemented in the same urban environment. The ML model exhibit superiority over the original MRA model in identifying the relative impacts of the configurational characters and macro-scale socio-economic factors that shape vehicle movement distribution over the city. Compared with the ML model, the suggested AB model represented the ability to estimate vehicle volume in the urban network considering the combined effects of configurational characters and land-use patterns at the street segment level.Keywords: space syntax, vehicle volume modeling, multilevel model, agent-based model
Procedia PDF Downloads 14510913 A Machine Learning Approach for Intelligent Transportation System Management on Urban Roads
Authors: Ashish Dhamaniya, Vineet Jain, Rajesh Chouhan
Abstract:
Traffic management is one of the gigantic issue in most of the urban roads in al-most all metropolitan cities in India. Speed is one of the critical traffic parameters for effective Intelligent Transportation System (ITS) implementation as it decides the arrival rate of vehicles on an intersection which are majorly the point of con-gestions. The study aimed to leverage Machine Learning (ML) models to produce precise predictions of speed on urban roadway links. The research objective was to assess how categorized traffic volume and road width, serving as variables, in-fluence speed prediction. Four tree-based regression models namely: Decision Tree (DT), Random Forest (RF), Extra Tree (ET), and Extreme Gradient Boost (XGB)are employed for this purpose. The models' performances were validated using test data, and the results demonstrate that Random Forest surpasses other machine learning techniques and a conventional utility theory-based model in speed prediction. The study is useful for managing the urban roadway network performance under mixed traffic conditions and effective implementation of ITS.Keywords: stream speed, urban roads, machine learning, traffic flow
Procedia PDF Downloads 7010912 Approximation of Geodesics on Meshes with Implementation in Rhinoceros Software
Authors: Marian Sagat, Mariana Remesikova
Abstract:
In civil engineering, there is a problem how to industrially produce tensile membrane structures that are non-developable surfaces. Nondevelopable surfaces can only be developed with a certain error and we want to minimize this error. To that goal, the non-developable surfaces are cut into plates along to the geodesic curves. We propose a numerical algorithm for finding approximations of open geodesics on meshes and surfaces based on geodesic curvature flow. For practical reasons, it is important to automatize the choice of the time step. We propose a method for automatic setting of the time step based on the diagonal dominance criterion for the matrix of the linear system obtained by discretization of our partial differential equation model. Practical experiments show reliability of this method. Because approximation of the model is made by numerical method based on classic derivatives, it is necessary to solve obstacles which occur for meshes with sharp corners. We solve this problem for big family of meshes with sharp corners via special rotations which can be seen as partial unfolding of the mesh. In practical applications, it is required that the approximation of geodesic has its vertices only on the edges of the mesh. This problem is solved by a specially designed pointing tracking algorithm. We also partially solve the problem of finding geodesics on meshes with holes. We implemented the whole algorithm in Rhinoceros (commercial 3D computer graphics and computer-aided design software ). It is done by using C# language as C# assembly library for Grasshopper, which is plugin in Rhinoceros.Keywords: geodesic, geodesic curvature flow, mesh, Rhinoceros software
Procedia PDF Downloads 15110911 Modeling of Turbulent Flow for Two-Dimensional Backward-Facing Step Flow
Authors: Alex Fedoseyev
Abstract:
This study investigates a generalized hydrodynamic equation (GHE) simplified model for the simulation of turbulent flow over a two-dimensional backward-facing step (BFS) at Reynolds number Re=132000. The GHE were derived from the generalized Boltzmann equation (GBE). GBE was obtained by first principles from the chain of Bogolubov kinetic equations and considers particles of finite dimensions. The GHE has additional terms, temporal and spatial fluctuations, compared to the Navier-Stokes equations (NSE). These terms have a timescale multiplier τ, and the GHE becomes the NSE when $\tau$ is zero. The nondimensional τ is a product of the Reynolds number and the squared length scale ratio, τ=Re*(l/L)², where l is the apparent Kolmogorov length scale, and L is a hydrodynamic length scale. The BFS flow modeling results obtained by 2D calculations cannot match the experimental data for Re>450. One or two additional equations are required for the turbulence model to be added to the NSE, which typically has two to five parameters to be tuned for specific problems. It is shown that the GHE does not require an additional turbulence model, whereas the turbulent velocity results are in good agreement with the experimental results. A review of several studies on the simulation of flow over the BFS from 1980 to 2023 is provided. Most of these studies used different turbulence models when Re>1000. In this study, the 2D turbulent flow over a BFS with height H=L/3 (where L is the channel height) at Reynolds number Re=132000 was investigated using numerical solutions of the GHE (by a finite-element method) and compared to the solutions from the Navier-Stokes equations, k–ε turbulence model, and experimental results. The comparison included the velocity profiles at X/L=5.33 (near the end of the recirculation zone, available from the experiment), recirculation zone length, and velocity flow field. The mean velocity of NSE was obtained by averaging the solution over the number of time steps. The solution with a standard k −ε model shows a velocity profile at X/L=5.33, which has no backward flow. A standard k−ε model underpredicts the experimental recirculation zone length X/L=7.0∓0.5 by a substantial amount of 20-25%, and a more sophisticated turbulence model is needed for this problem. The obtained data confirm that the GHE results are in good agreement with the experimental results for turbulent flow over two-dimensional BFS. A turbulence model was not required in this case. The computations were stable. The solution time for the GHE is the same or less than that for the NSE and significantly less than that for the NSE with the turbulence model. The proposed approach was limited to 2D and only one Reynolds number. Further work will extend this approach to 3D flow and a higher Re.Keywords: backward-facing step, comparison with experimental data, generalized hydrodynamic equations, separation, reattachment, turbulent flow
Procedia PDF Downloads 6110910 The Model Establishment and Analysis of TRACE/FRAPTRAN for Chinshan Nuclear Power Plant Spent Fuel Pool
Authors: J. R. Wang, H. T. Lin, Y. S. Tseng, W. Y. Li, H. C. Chen, S. W. Chen, C. Shih
Abstract:
TRACE is developed by U.S. NRC for the nuclear power plants (NPPs) safety analysis. We focus on the establishment and application of TRACE/FRAPTRAN/SNAP models for Chinshan NPP (BWR/4) spent fuel pool in this research. The geometry is 12.17 m × 7.87 m × 11.61 m for the spent fuel pool. In this study, there are three TRACE/SNAP models: one-channel, two-channel, and multi-channel TRACE/SNAP model. Additionally, the cooling system failure of the spent fuel pool was simulated and analyzed by using the above models. According to the analysis results, the peak cladding temperature response was more accurate in the multi-channel TRACE/SNAP model. The results depicted that the uncovered of the fuels occurred at 2.7 day after the cooling system failed. In order to estimate the detailed fuel rods performance, FRAPTRAN code was used in this research. According to the results of FRAPTRAN, the highest cladding temperature located on the node 21 of the fuel rod (the highest node at node 23) and the cladding burst roughly after 3.7 day.Keywords: TRACE, FRAPTRAN, BWR, spent fuel pool
Procedia PDF Downloads 35710909 Analytical Description of Disordered Structures in Continuum Models of Pattern Formation
Authors: Gyula I. Tóth, Shaho Abdalla
Abstract:
Even though numerical simulations indeed have a significant precursory/supportive role in exploring the disordered phase displaying no long-range order in pattern formation models, studying the stability properties of this phase and determining the order of the ordered-disordered phase transition in these models necessitate an analytical description of the disordered phase. First, we will present the results of a comprehensive statistical analysis of a large number (1,000-10,000) of numerical simulations in the Swift-Hohenberg model, where the bulk disordered (or amorphous) phase is stable. We will show that the average free energy density (over configurations) converges, while the variance of the energy density vanishes with increasing system size in numerical simulations, which suggest that the disordered phase is a thermodynamic phase (i.e., its properties are independent of the configuration in the macroscopic limit). Furthermore, the structural analysis of this phase in the Fourier space suggests that the phase can be modeled by a colored isotropic Gaussian noise, where any instant of the noise describes a possible configuration. Based on these results, we developed the general mathematical framework of finding a pool of solutions to partial differential equations in the sense of continuous probability measure, which we will present briefly. Applying the general idea to the Swift-Hohenberg model we show, that the amorphous phase can be found, and its properties can be determined analytically. As the general mathematical framework is not restricted to continuum theories, we hope that the proposed methodology will open a new chapter in studying disordered phases.Keywords: fundamental theory, mathematical physics, continuum models, analytical description
Procedia PDF Downloads 13410908 Numerical Investigation of the Jacketing Method of Reinforced Concrete Column
Authors: S. Boukais, A. Nekmouche, N. Khelil, A. Kezmane
Abstract:
The first intent of this study is to develop a finite element model that can predict correctly the behavior of the reinforced concrete column. Second aim is to use the finite element model to investigate and evaluate the effect of the strengthening method by jacketing of the reinforced concrete column, by considering different interface contact between the old and the new concrete. Four models were evaluated, one by considering perfect contact, the other three models by using friction coefficient of 0.1, 0.3 and 0.5. The simulation was carried out by using Abaqus software. The obtained results show that the jacketing reinforcement led to significant increase of the global performance of the behavior of the simulated reinforced concrete column.Keywords: strengthening, jacketing, rienforced concrete column, Abaqus, simulation
Procedia PDF Downloads 14610907 Seismic Hazard Assessment of Offshore Platforms
Authors: F. D. Konstandakopoulou, G. A. Papagiannopoulos, N. G. Pnevmatikos, G. D. Hatzigeorgiou
Abstract:
This paper examines the effects of pile-soil-structure interaction on the dynamic response of offshore platforms under the action of near-fault earthquakes. Two offshore platforms models are investigated, one with completely fixed supports and one with piles which are clamped into deformable layered soil. The soil deformability for the second model is simulated using non-linear springs. These platform models are subjected to near-fault seismic ground motions. The role of fault mechanism on platforms’ response is additionally investigated, while the study also examines the effects of different angles of incidence of seismic records on the maximum response of each platform.Keywords: hazard analysis, offshore platforms, earthquakes, safety
Procedia PDF Downloads 14810906 A Biometric Template Security Approach to Fingerprints Based on Polynomial Transformations
Authors: Ramon Santana
Abstract:
The use of biometric identifiers in the field of information security, access control to resources, authentication in ATMs and banking among others, are of great concern because of the safety of biometric data. In the general architecture of a biometric system have been detected eight vulnerabilities, six of them allow obtaining minutiae template in plain text. The main consequence of obtaining minutia templates is the loss of biometric identifier for life. To mitigate these vulnerabilities several models to protect minutiae templates have been proposed. Several vulnerabilities in the cryptographic security of these models allow to obtain biometric data in plain text. In order to increase the cryptographic security and ease of reversibility, a minutiae templates protection model is proposed. The model aims to make the cryptographic protection and facilitate the reversibility of data using two levels of security. The first level of security is the data transformation level. In this level generates invariant data to rotation and translation, further transformation is irreversible. The second level of security is the evaluation level, where the encryption key is generated and data is evaluated using a defined evaluation function. The model is aimed at mitigating known vulnerabilities of the proposed models, basing its security on the impossibility of the polynomial reconstruction.Keywords: fingerprint, template protection, bio-cryptography, minutiae protection
Procedia PDF Downloads 17010905 Segregation Patterns of Trees and Grass Based on a Modified Age-Structured Continuous-Space Forest Model
Authors: Jian Yang, Atsushi Yagi
Abstract:
Tree-grass coexistence system is of great importance for forest ecology. Mathematical models are being proposed to study the dynamics of tree-grass coexistence and the stability of the systems. However, few of the models concentrates on spatial dynamics of the tree-grass coexistence. In this study, we modified an age-structured continuous-space population model for forests, obtaining an age-structured continuous-space population model for the tree-grass competition model. In the model, for thermal competitions, adult trees can out-compete grass, and grass can out-compete seedlings. We mathematically studied the model to make sure tree-grass coexistence solutions exist. Numerical experiments demonstrated that a fraction of area that trees or grass occupies can affect whether the coexistence is stable or not. We also tried regulating the mortality of adult trees with other parameters and the fraction of area trees and grass occupies were fixed; results show that the mortality of adult trees is also a factor affecting the stability of the tree-grass coexistence in this model.Keywords: population-structured models, stabilities of ecosystems, thermal competitions, tree-grass coexistence systems
Procedia PDF Downloads 16010904 An Improved Robust Algorithm Based on Cubature Kalman Filter for Single-Frequency Global Navigation Satellite System/Inertial Navigation Tightly Coupled System
Authors: Hao Wang, Shuguo Pan
Abstract:
The Global Navigation Satellite System (GNSS) signal received by the dynamic vehicle in the harsh environment will be frequently interfered with and blocked, which generates gross error affecting the positioning accuracy of the GNSS/Inertial Navigation System (INS) integrated navigation. Therefore, this paper put forward an improved robust Cubature Kalman filter (CKF) algorithm for single-frequency GNSS/INS tightly coupled system ambiguity resolution. Firstly, the dynamic model and measurement model of a single-frequency GNSS/INS tightly coupled system was established, and the method for GNSS integer ambiguity resolution with INS aided is studied. Then, we analyzed the influence of pseudo-range observation with gross error on GNSS/INS integrated positioning accuracy. To reduce the influence of outliers, this paper improved the CKF algorithm and realized an intelligent selection of robust strategies by judging the ill-conditioned matrix. Finally, a field navigation test was performed to demonstrate the effectiveness of the proposed algorithm based on the double-differenced solution mode. The experiment has proved the improved robust algorithm can greatly weaken the influence of separate, continuous, and hybrid observation anomalies for enhancing the reliability and accuracy of GNSS/INS tightly coupled navigation solutions.Keywords: GNSS/INS integrated navigation, ambiguity resolution, Cubature Kalman filter, Robust algorithm
Procedia PDF Downloads 10010903 An Evaluation of the Use of Telematics for Improving the Driving Behaviours of Young People
Authors: James Boylan, Denny Meyer, Won Sun Chen
Abstract:
Background: Globally, there is an increasing trend of road traffic deaths, reaching 1.35 million in 2016 in comparison to 1.3 million a decade ago, and overall, road traffic injuries are ranked as the eighth leading cause of death for all age groups. The reported death rate for younger drivers aged 16-19 years is almost twice the rate reported for older drivers aged 25 and above, with a rate of 3.5 road traffic fatalities per annum for every 10,000 licenses held. Telematics refers to a system with the ability to capture real-time data about vehicle usage. The data collected from telematics can be used to better assess a driver's risk. It is typically used to measure acceleration, turn, braking, and speed, as well as to provide locational information. With the Australian government creating the National Telematics Framework, there has been an increase in the government's focus on using telematics data to improve road safety outcomes. The purpose of this study is to test the hypothesis that improvements in telematics measured driving behaviour to relate to improvements in road safety attitudes measured by the Driving Behaviour Questionnaire (DBQ). Methodology: 28 participants were recruited and given a telematics device to insert into their vehicles for the duration of the study. The participant's driving behaviour over the course of the first month will be compared to their driving behaviour in the second month to determine whether feedback from telematics devices improves driving behaviour. Participants completed the DBQ, evaluated using a 6-point Likert scale (0 = never, 5 = nearly all the time) at the beginning, after the first month, and after the second month of the study. This is a well-established instrument used worldwide. Trends in the telematics data will be captured and correlated with the changes in the DBQ using regression models in SAS. Results: The DBQ has provided a reliable measure (alpha = .823) of driving behaviour based on a sample of 23 participants, with an average of 50.5 and a standard deviation of 11.36, and a range of 29 to 76, with higher scores, indicating worse driving behaviours. This initial sample is well stratified in terms of gender and age (range 19-27). It is expected that in the next six weeks, a larger sample of around 40 will have completed the DBQ after experiencing in-vehicle telematics for 30 days, allowing a comparison with baseline levels. The trends in the telematics data over the first 30 days will be compared with the changes observed in the DBQ. Conclusions: It is expected that there will be a significant relationship between the improvements in the DBQ and the trends in reduced telematics measured aggressive driving behaviours supporting the hypothesis.Keywords: telematics, driving behavior, young drivers, driving behaviour questionnaire
Procedia PDF Downloads 10610902 Use of SUDOKU Design to Assess the Implications of the Block Size and Testing Order on Efficiency and Precision of Dulce De Leche Preference Estimation
Authors: Jéssica Ferreira Rodrigues, Júlio Silvio De Sousa Bueno Filho, Vanessa Rios De Souza, Ana Carla Marques Pinheiro
Abstract:
This study aimed to evaluate the implications of the block size and testing order on efficiency and precision of preference estimation for Dulce de leche samples. Efficiency was defined as the inverse of the average variance of pairwise comparisons among treatments. Precision was defined as the inverse of the variance of treatment means (or effects) estimates. The experiment was originally designed to test 16 treatments as a series of 8 Sudoku 16x16 designs being 4 randomized independently and 4 others in the reverse order, to yield balance in testing order. Linear mixed models were assigned to the whole experiment with 112 testers and all their grades, as well as their partially balanced subgroups, namely: a) experiment with the four initial EU; b) experiment with EU 5 to 8; c) experiment with EU 9 to 12; and b) experiment with EU 13 to 16. To record responses we used a nine-point hedonic scale, it was assumed a mixed linear model analysis with random tester and treatments effects and with fixed test order effect. Analysis of a cumulative random effects probit link model was very similar, with essentially no different conclusions and for simplicity, we present the results using Gaussian assumption. R-CRAN library lme4 and its function lmer (Fit Linear Mixed-Effects Models) was used for the mixed models and libraries Bayesthresh (default Gaussian threshold function) and ordinal with the function clmm (Cumulative Link Mixed Model) was used to check Bayesian analysis of threshold models and cumulative link probit models. It was noted that the number of samples tested in the same session can influence the acceptance level, underestimating the acceptance. However, proving a large number of samples can help to improve the samples discrimination.Keywords: acceptance, block size, mixed linear model, testing order, testing order
Procedia PDF Downloads 32110901 Supervised Machine Learning Approach for Studying the Effect of Different Joint Sets on Stability of Mine Pit Slopes Under the Presence of Different External Factors
Authors: Sudhir Kumar Singh, Debashish Chakravarty
Abstract:
Slope stability analysis is an important aspect in the field of geotechnical engineering. It is also important from safety, and economic point of view as any slope failure leads to loss of valuable lives and damage to property worth millions. This paper aims at mitigating the risk of slope failure by studying the effect of different joint sets on the stability of mine pit slopes under the influence of various external factors, namely degree of saturation, rainfall intensity, and seismic coefficients. Supervised machine learning approach has been utilized for making accurate and reliable predictions regarding the stability of slopes based on the value of Factor of Safety. Numerous cases have been studied for analyzing the stability of slopes using the popular Finite Element Method, and the data thus obtained has been used as training data for the supervised machine learning models. The input data has been trained on different supervised machine learning models, namely Random Forest, Decision Tree, Support vector Machine, and XGBoost. Distinct test data that is not present in training data has been used for measuring the performance and accuracy of different models. Although all models have performed well on the test dataset but Random Forest stands out from others due to its high accuracy of greater than 95%, thus helping us by providing a valuable tool at our disposition which is neither computationally expensive nor time consuming and in good accordance with the numerical analysis result.Keywords: finite element method, geotechnical engineering, machine learning, slope stability
Procedia PDF Downloads 10110900 Churn Prediction for Savings Bank Customers: A Machine Learning Approach
Authors: Prashant Verma
Abstract:
Commercial banks are facing immense pressure, including financial disintermediation, interest rate volatility and digital ways of finance. Retaining an existing customer is 5 to 25 less expensive than acquiring a new one. This paper explores customer churn prediction, based on various statistical & machine learning models and uses under-sampling, to improve the predictive power of these models. The results show that out of the various machine learning models, Random Forest which predicts the churn with 78% accuracy, has been found to be the most powerful model for the scenario. Customer vintage, customer’s age, average balance, occupation code, population code, average withdrawal amount, and an average number of transactions were found to be the variables with high predictive power for the churn prediction model. The model can be deployed by the commercial banks in order to avoid the customer churn so that they may retain the funds, which are kept by savings bank (SB) customers. The article suggests a customized campaign to be initiated by commercial banks to avoid SB customer churn. Hence, by giving better customer satisfaction and experience, the commercial banks can limit the customer churn and maintain their deposits.Keywords: savings bank, customer churn, customer retention, random forests, machine learning, under-sampling
Procedia PDF Downloads 14310899 Reasons for the Selection of Information-Processing Framework and the Philosophy of Mind as a General Account for an Error Analysis and Explanation on Mathematics
Authors: Michael Lousis
Abstract:
This research study is concerned with learner’s errors on Arithmetic and Algebra. The data resulted from a broader international comparative research program called Kassel Project. However, its conceptualisation differed from and contrasted with that of the main program, which was mostly based on socio-demographic data. The way in which the research study was conducted, was not dependent on the researcher’s discretion, but was absolutely dictated by the nature of the problem under investigation. This is because the phenomenon of learners’ mathematical errors is due neither to the intentions of learners nor to institutional processes, rules and norms, nor to the educators’ intentions and goals; but rather to the way certain information is presented to learners and how their cognitive apparatus processes this information. Several approaches for the study of learners’ errors have been developed from the beginning of the 20th century, encompassing different belief systems. These approaches were based on the behaviourist theory, on the Piagetian- constructivist research framework, the perspective that followed the philosophy of science and the information-processing paradigm. The researcher of the present study was forced to disclose the learners’ course of thinking that led them in specific observable actions with the result of showing particular errors in specific problems, rather than analysing scripts with the students’ thoughts presented in a written form. This, in turn, entailed that the choice of methods would have to be appropriate and conducive to seeing and realising the learners’ errors from the perspective of the participants in the investigation. This particular fact determined important decisions to be made concerning the selection of an appropriate framework for analysing the mathematical errors and giving explanations. Thus the rejection of the belief systems concerning behaviourism, the Piagetian-constructivist, and philosophy of science perspectives took place, and the information-processing paradigm in conjunction with the philosophy of mind were adopted as a general account for the elaboration of data. This paper explains why these decisions were appropriate and beneficial for conducting the present study and for the establishment of the ensued thesis. Additionally, the reasons for the adoption of the information-processing paradigm in conjunction with the philosophy of mind give sound and legitimate bases for the development of future studies concerning mathematical error analysis are explained.Keywords: advantages-disadvantages of theoretical prospects, behavioral prospect, critical evaluation of theoretical prospects, error analysis, information-processing paradigm, opting for the appropriate approach, philosophy of science prospect, Piagetian-constructivist research frameworks, review of research in mathematical errors
Procedia PDF Downloads 19010898 Examining a Volunteer-Tutoring Program for Students with Special Education Needs
Authors: David Dean Hampton, William Morrison, Mary Rizza, Jan Osborn
Abstract:
This evaluation examined the effects of a supplemental reading intervThis evaluation examined the effects of a supplemental reading intervention for students with specific learning disabilities in reading who were presented with below grade level on fall benchmark scores on DIBELS 6th ed. Revised. Participants consisted of a condition group, those who received supplemental reading instruction in addition to core + special education services and a comparison group of students who were at grade level in their fall benchmark scores. The students in the condition group received 26 weeks of Project MORE instruction delivered multiple times each week from trained volunteer tutors. Using a regression-discontinuity design, condition and comparison groups were compared on reading development growth using DIBELS ORF. Significant findings were reported for grade 2, 3, and 4. ntion for students with specific learning disabilities in reading who presented with below grade level on fall benchmark scores on DIBELS 6th ed. Revised. Participants consisted of a condition group, those who received supplemental reading instruction in addition to core + special education services and a comparison group of students who were at grade level in their fall benchmark scores. The students in the condition group received 26 weeks of Project MORE instruction delivered multiple times each week from trained volunteer tutors. Using a regression-discontinuity design, condition and comparison groups were compared on reading development growth using DIBELS ORF. Significant findings were reported for grade 2, 3, and 4.Keywords: special education, evidence-based practices, curriculum, tutoring
Procedia PDF Downloads 6710897 Revisited: Financial Literacy and How University Students Fare
Authors: Zaiton Osman, Phang Ing, Azaze Azizi Abd Adis, Izyanti Awg Razli, Mohd Rizwan Abd Majid, Rosle Mohidin
Abstract:
This study is conducted to investigate the level of financial literacy among students taking Financial Management and Banking in Universiti Malaysia Sabah, Malaysia. Students are asked to answer basic financial literacy questions in their first class before study commence and the similar questions were given in their final week of study (after 14 weeks of study duration). The comparison on their level of financial literacy will be examined. This study is expected to yields the following findings; firstly, comparison of the level of financial literacy 'before and after' courses in finance being introduced can be revealed. Secondly, it will provide suggestion on improving the standard of teaching and learning in financial management and banking courses and lastly it will help in identifying financial courses that are important in improving the level of financial literacy among students in Malaysia.Keywords: financial literacy, university students, personal financial planning, business and management engineering
Procedia PDF Downloads 72410896 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction
Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan
Abstract:
Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.Keywords: decision trees, neural network, myocardial infarction, Data Mining
Procedia PDF Downloads 42910895 Signs-Only Compressed Row Storage Format for Exact Diagonalization Study of Quantum Fermionic Models
Authors: Michael Danilov, Sergei Iskakov, Vladimir Mazurenko
Abstract:
The present paper describes a high-performance parallel realization of an exact diagonalization solver for quantum-electron models in a shared memory computing system. The proposed algorithm contains a storage format for efficient computing eigenvalues and eigenvectors of a quantum electron Hamiltonian matrix. The results of the test calculations carried out for 15 sites Hubbard model demonstrate reduction in the required memory and good multiprocessor scalability, while maintaining performance of the same order as compressed row storage.Keywords: sparse matrix, compressed format, Hubbard model, Anderson model
Procedia PDF Downloads 40210894 Effect of Operative Stabilization on Rib Fracture Healing in Porcine Experimental Model: A Pilot Study
Authors: Maria Stepankova, Lucie Vistejnova, Pavel Klein, Tereza Blassova, Marketa Slajerova, Radek Sedlacek, Martin Bartos, Jaroslav Chlupac
Abstract:
Background: Clinical outcome benefits of the segment rib fracture surgical therapy are well known and follow from better stabilization of the chest wall. Despite this, some authors still incline to conservative therapy and point out to possible rib fracture healing failure in connection with the bone vascular supply disturbance caused by metal plate implantation. This suggestion met neither experimental nor clinical verification and remains the object of discussion. In our pilot study we investigated the titanium plate fixation effect on the rib fracture healing in porcine model and its histological, biomechanical and radiological aspects. Materials and Method: Two porcine models (experimental group) underwent the operative chest wall stabilization with a titanium plate implantation after osteotomy. Two other porcine models (control group) were treated conservatively after osteotomy. Three weeks after surgery, all animals were sacrificed, treated ribs were explanted and the histological analysis, µCT imaging and biomechanical testing of the calluses tissue were performed. Results: In µCT imaging, experimental group showed a higher cortical bone volume compared to the control group. Histological analysis using the non-decalcified bone tissue blocks demonstrated more maturated callus with higher newly-formed osseous tissue ratio in experimental group in comparison to controls. In contrast, no significant differences in bone blood vessels supply in both groups were observed. This finding suggests that the bone blood supply in experimental group was not impaired. Biomechanical analysis using 3-point bending test demonstrated significantly higher bending stiffness and the maximum force in experimental group. Conclusion: Based on our observation, it could be concluded, that the titanium plate fixation of the rib fractures leads to faster bone callus maturation whereas does not cause the vascular supply impairment after 3 weeks and thus has a beneficial effect on the rib fracture healing.Keywords: bone vascular supply, chest wall stabilization, fracture healing, histological analysis, titanium plate implantation
Procedia PDF Downloads 14110893 Optimizing the Passenger Throughput at an Airport Security Checkpoint
Authors: Kun Li, Yuzheng Liu, Xiuqi Fan
Abstract:
High-security standard and high efficiency of screening seem to be contradictory to each other in the airport security check process. Improving the efficiency as far as possible while maintaining the same security standard is significantly meaningful. This paper utilizes the knowledge of Operation Research and Stochastic Process to establish mathematical models to explore this problem. We analyze the current process of airport security check and use the M/G/1 and M/G/k models in queuing theory to describe the process. Then we find the least efficient part is the pre-check lane, the bottleneck of the queuing system. To improve passenger throughput and reduce the variance of passengers’ waiting time, we adjust our models and use Monte Carlo method, then put forward three modifications: adjust the ratio of Pre-Check lane to regular lane flexibly, determine the optimal number of security check screening lines based on cost analysis and adjust the distribution of arrival and service time based on Monte Carlo simulation results. We also analyze the impact of cultural differences as the sensitivity analysis. Finally, we give the recommendations for the current process of airport security check process.Keywords: queue theory, security check, stochatic process, Monte Carlo simulation
Procedia PDF Downloads 20010892 Government Final Consumption Expenditure Financial Deepening and Household Consumption Expenditure NPISHs in Nigeria
Authors: Usman A. Usman
Abstract:
Undeniably, unlike the Classical side, the Keynesian perspective of the aggregate demand side indeed has a significant position in the policy, growth, and welfare of Nigeria due to government involvement and ineffective demand of the population living with poor per capita income. This study seeks to investigate the effect of Government Final Consumption Expenditure, Financial Deepening on Households, and NPISHs Final consumption expenditure using data on Nigeria from 1981 to 2019. This study employed the ADF stationarity test, Johansen Cointegration test, and Vector Error Correction Model. The results of the study revealed that the coefficient of Government final consumption expenditure has a positive effect on household consumption expenditure in the long run. There is a long-run and short-run relationship between gross fixed capital formation and household consumption expenditure. The coefficients cpsgdp financial deepening and gross fixed capital formation posit a negative impact on household final consumption expenditure. The coefficients money supply lm2gdp, which is another proxy for financial deepening, and the coefficient FDI have a positive effect on household final consumption expenditure in the long run. Therefore, this study recommends that Gross fixed capital formation stimulates household consumption expenditure; a legal framework to support investment is a panacea to increasing hoodmold income and consumption and reducing poverty in Nigeria. Therefore, this should be a key central component of policy.Keywords: household, government expenditures, vector error correction model, johansen test
Procedia PDF Downloads 6110891 Application of Signature Verification Models for Document Recognition
Authors: Boris M. Fedorov, Liudmila P. Goncharenko, Sergey A. Sybachin, Natalia A. Mamedova, Ekaterina V. Makarenkova, Saule Rakhimova
Abstract:
In modern economic conditions, the question of the possibility of correct recognition of a signature on digital documents in order to verify the expression of will or confirm a certain operation is relevant. The additional complexity of processing lies in the dynamic variability of the signature for each individual, as well as in the way information is processed because the signature refers to biometric data. The article discusses the issues of using artificial intelligence models in order to improve the quality of signature confirmation in document recognition. The analysis of several possible options for using the model is carried out. The results of the study are given, in which it is possible to correctly determine the authenticity of the signature on small samples.Keywords: signature recognition, biometric data, artificial intelligence, neural networks
Procedia PDF Downloads 148