Search results for: melodic models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6764

Search results for: melodic models

5024 Seismic Assessment of a Pre-Cast Recycled Concrete Block Arch System

Authors: Amaia Martinez Martinez, Martin Turek, Carlos Ventura, Jay Drew

Abstract:

This study aims to assess the seismic performance of arch and dome structural systems made from easy to assemble precast blocks of recycled concrete. These systems have been developed by Lock Block Ltd. Company from Vancouver, Canada, as an extension of their currently used retaining wall system. The characterization of the seismic behavior of these structures is performed by a combination of experimental static and dynamic testing, and analytical modeling. For the experimental testing, several tilt tests, as well as a program of shake table testing were undertaken using small scale arch models. A suite of earthquakes with different characteristics from important past events are chosen and scaled properly for the dynamic testing. Shake table testing applying the ground motions in just one direction (in the weak direction of the arch) and in the three directions were conducted and compared. The models were tested with increasing intensity until collapse occurred; which determines the failure level for each earthquake. Since the failure intensity varied with type of earthquake, a sensitivity analysis of the different parameters was performed, being impulses the dominant factor. For all cases, the arches exhibited the typical four-hinge failure mechanism, which was also shown in the analytical model. Experimental testing was also performed reinforcing the arches using a steel band over the structures anchored at both ends of the arch. The models were tested with different pretension levels. The bands were instrumented with strain gauges to measure the force produced by the shaking. These forces were used to develop engineering guidelines for the design of the reinforcement needed for these systems. In addition, an analytical discrete element model was created using 3DEC software. The blocks were designed as rigid blocks, assigning all the properties to the joints including also the contribution of the interlocking shear key between blocks. The model is calibrated to the experimental static tests and validated with the obtained results from the dynamic tests. Then the model can be used to scale up the results to the full scale structure and expanding it to different configurations and boundary conditions.

Keywords: arch, discrete element model, seismic assessment, shake-table testing

Procedia PDF Downloads 206
5023 Flexible Work Arrangements for Managers-Gender Diversity and Organizational Development in German Firms

Authors: Marc Gärtner, Monika Huesmann, Katharina Schiederig

Abstract:

While workplace flexibility provides opportunities to better balance work and family care, careers in management are still predominantly based on physical presence, blurred boundaries and a culture of availability at the workplace. Thus, carers (mostly women) still experience disadvantages and stalled careers. In a multi-case study, funded by the German Federal Ministry of Education and Research, success factors and barriers of flexible work arrangements in five big organizations, including three of the largest German companies, have been identified. Using qualitative interview methods, the working models of 10 female and male users of flexible work arrangements like part time, home office and job sharing have been studied. The study group applied a 360-degree approach with focus groups, covering the users’ themselves, their superiors, colleagues and staff as well as in-house human resource managers. The group interviews reveal that success of flexible models is mainly built on three factors: (a) the inclusiveness of the organizational culture, (b) the commitment of leaders and especially the supervisors, and (c) the fitting of the model and the user(s). Flexibilization of time and space can indeed contribute to a better work-life balance. This is, however, not a necessary outcome, as the interviews suggest, but depends on the right implementation of the right model in the particular work environment. Beyond the actual study results, the presentation will also assess the methodological approach.

Keywords: flexible work, leadership, organizational culture, work-life balance

Procedia PDF Downloads 356
5022 Educational Leadership and Artificial Intelligence

Authors: Sultan Ghaleb Aldaihani

Abstract:

- The environment in which educational leadership takes place is becoming increasingly complex due to factors like globalization and rapid technological change. - This is creating a "leadership gap" where the complexity of the environment outpaces the ability of leaders to effectively respond. - Educational leadership involves guiding teachers and the broader school system towards improved student learning and achievement. 2. Implications of Artificial Intelligence (AI) in Educational Leadership: - AI has great potential to enhance education, such as through intelligent tutoring systems and automating routine tasks to free up teachers. - AI can also have significant implications for educational leadership by providing better information and data-driven decision-making capabilities. - Computer-adaptive testing can provide detailed, individualized data on student learning that leaders can use for instructional decisions and accountability. 3. Enhancing Decision-Making Processes: - Statistical models and data mining techniques can help identify at-risk students earlier, allowing for targeted interventions. - Probability-based models can diagnose students likely to drop out, enabling proactive support. - These data-driven approaches can make resource allocation and decision-making more effective. 4. Improving Efficiency and Productivity: - AI systems can automate tasks and change processes to improve the efficiency of educational leadership and administration. - Integrating AI can free up leaders to focus more on their role's human, interactive elements.

Keywords: Education, Leadership, Technology, Artificial Intelligence

Procedia PDF Downloads 43
5021 3D Modelling and Numerical Analysis of Human Inner Ear by Means of Finite Elements Method

Authors: C. Castro-Egler, A. Durán-Escalante, A. García-González

Abstract:

This paper presents a method to generate a finite element model of the human auditory inner ear system. The geometric model has been realized using 2D images from a virtual model of temporal bones. A point cloud has been gotten manually from those images to construct a whole mesh with hexahedral elements. The main difference with the predecessor models is the spiral shape of the cochlea with its three scales completely defined: scala tympani, scala media and scala vestibuli; which are separate by basilar membrane and Reissner membrane. To validate this model, numerical simulations have been realised with two models: an isolated inner ear and a whole model of human auditory system. Ideal conditions of displacement are applied over the oval window in the isolated Inner Ear model. The whole model is made up of the outer auditory channel, the tympani, the ossicular chain, and the inner ear. The boundary condition for the whole model is 1Pa over the auditory channel entrance. The numerical simulations by FEM have been done using a harmonic analysis with a frequency range between 100-10.000 Hz with an interval of 100Hz. The following results have been carried out: basilar membrane displacement; the scala media pressure according to the cochlea length and the transfer function of the middle ear normalized with the pressure in the tympanic membrane. The basilar membrane displacements and the pressure in the scala media make it possible to validate the response in frequency of the basilar membrane.

Keywords: finite elements method, human auditory system model, numerical analysis, 3D modelling cochlea

Procedia PDF Downloads 362
5020 Statistical and Analytical Comparison of GIS Overlay Modelings: An Appraisal on Groundwater Prospecting in Precambrian Metamorphics

Authors: Tapas Acharya, Monalisa Mitra

Abstract:

Overlay modeling is the most widely used conventional analysis for spatial decision support system. Overlay modeling requires a set of themes with different weightage computed in varied manners, which gives a resultant input for further integrated analysis. In spite of the popularity and most widely used technique; it gives inconsistent and erroneous results for similar inputs while processed in various GIS overlay techniques. This study is an attempt to compare and analyse the differences in the outputs of different overlay methods using GIS platform with same set of themes of the Precambrian metamorphic to obtain groundwater prospecting in Precambrian metamorphic rocks. The objective of the study is to emphasize the most suitable overlay method for groundwater prospecting in older Precambrian metamorphics. Seven input thematic layers like slope, Digital Elevation Model (DEM), soil thickness, lineament intersection density, average groundwater table fluctuation, stream density and lithology have been used in the spatial overlay models of fuzzy overlay, weighted overlay and weighted sum overlay methods to yield the suitable groundwater prospective zones. Spatial concurrence analysis with high yielding wells of the study area and the statistical comparative studies among the outputs of various overlay models using RStudio reveal that the Weighted Overlay model is the most efficient GIS overlay model to delineate the groundwater prospecting zones in the Precambrian metamorphic rocks.

Keywords: fuzzy overlay, GIS overlay model, groundwater prospecting, Precambrian metamorphics, weighted overlay, weighted sum overlay

Procedia PDF Downloads 128
5019 Development of Market Penetration for High Energy Efficiency Technologies in Alberta’s Residential Sector

Authors: Saeidreza Radpour, Md. Alam Mondal, Amit Kumar

Abstract:

Market penetration of high energy efficiency technologies has key impacts on energy consumption and GHG mitigation. Also, it will be useful to manage the policies formulated by public or private organizations to achieve energy or environmental targets. Energy intensity in residential sector of Alberta was 148.8 GJ per household in 2012 which is 39% more than the average of Canada 106.6 GJ, it was the highest amount among the provinces on per household energy consumption. Energy intensity by appliances of Alberta was 15.3 GJ per household in 2012 which is 14% higher than average value of other provinces and territories in energy demand intensity by appliances in Canada. In this research, a framework has been developed to analyze the market penetration and market share of high energy efficiency technologies in residential sector. The overall methodology was based on development of data-intensive models’ estimation of the market penetration of the appliances in the residential sector over a time period. The developed models were a function of a number of macroeconomic and technical parameters. Developed mathematical equations were developed based on twenty-two years of historical data (1990-2011). The models were analyzed through a series of statistical tests. The market shares of high efficiency appliances were estimated based on the related variables such as capital and operating costs, discount rate, appliance’s life time, annual interest rate, incentives and maximum achievable efficiency in the period of 2015 to 2050. Results show that the market penetration of refrigerators is higher than that of other appliances. The stocks of refrigerators per household are anticipated to increase from 1.28 in 2012 to 1.314 and 1.328 in 2030 and 2050, respectively. Modelling results show that the market penetration rate of stand-alone freezers will decrease between 2012 and 2050. Freezer stock per household will decline from 0.634 in 2012 to 0.556 and 0.515 in 2030 and 2050, respectively. The stock of dishwashers per household is expected to increase from 0.761 in 2012 to 0.865 and 0.960 in 2030 and 2050, respectively. The increase in the market penetration rate of clothes washers and clothes dryers is nearly parallel. The stock of clothes washers and clothes dryers per household is expected to rise from 0.893 and 0.979 in 2012 to 0.960 and 1.0 in 2050, respectively. This proposed presentation will include detailed discussion on the modelling methodology and results.

Keywords: appliances efficiency improvement, energy star, market penetration, residential sector

Procedia PDF Downloads 285
5018 Reconstructability Analysis for Landslide Prediction

Authors: David Percy

Abstract:

Landslides are a geologic phenomenon that affects a large number of inhabited places and are constantly being monitored and studied for the prediction of future occurrences. Reconstructability analysis (RA) is a methodology for extracting informative models from large volumes of data that work exclusively with discrete data. While RA has been used in medical applications and social science extensively, we are introducing it to the spatial sciences through applications like landslide prediction. Since RA works exclusively with discrete data, such as soil classification or bedrock type, working with continuous data, such as porosity, requires that these data are binned for inclusion in the model. RA constructs models of the data which pick out the most informative elements, independent variables (IVs), from each layer that predict the dependent variable (DV), landslide occurrence. Each layer included in the model retains its classification data as a primary encoding of the data. Unlike other machine learning algorithms that force the data into one-hot encoding type of schemes, RA works directly with the data as it is encoded, with the exception of continuous data, which must be binned. The usual physical and derived layers are included in the model, and testing our results against other published methodologies, such as neural networks, yields accuracy that is similar but with the advantage of a completely transparent model. The results of an RA session with a data set are a report on every combination of variables and their probability of landslide events occurring. In this way, every combination of informative state combinations can be examined.

Keywords: reconstructability analysis, machine learning, landslides, raster analysis

Procedia PDF Downloads 66
5017 Feasibility Study on the Bioattactants from Pandanus Palm Extracts for Trapping Rice Insect Pests

Authors: Pisit Poolprasert, Phakin Kubchanan, Keerati Tanruean, Wisanu Thongchai, Yuttasak Chammui, Wirot Likittrakulwong

Abstract:

Rice insect pests are problems to rice production. Use of chemicals to minimize these problems of insect pests in paddy field can lead to the residue and affect the health of farmers. Therefore, botanical extracts applied for controlling rice serious enemies should be promoted especially use of plant extract as attractants to lure insects. This research aimed to feasibility study of bioattractants from pandanus palm extracts for trapping insect pets using two different trap models, including plastic bottle and yellow sticky traps. Two main growth and development stages of rice, namely tillering and booting stages, were selected and trapped. The results from both trap models revealed that four rice insect species, including Orseolia oryzae (Wood-Mason), Nilaparvata lugens, Recilia dorsalis, and Nephotettix nigropictus from three families (Cecidomyiidae, Cicadellidae and Delphacidae) and two main orders (Diptera and Hemiptera) were exhibited. All rice insect species mentioned could be found from the yellow sticky trap that were higher than in the bottle trap in which only O. oryzae could be only trapped. From this survey, it was indicated that the yellow sticky trap coated with pandanus palm extracts had a promising potential to use as an attractant for the detection of rice paddy insects in the next future.

Keywords: pandanus palm, bioattractant, bottle trap, yellow sticky trap

Procedia PDF Downloads 125
5016 PaSA: A Dataset for Patent Sentiment Analysis to Highlight Patent Paragraphs

Authors: Renukswamy Chikkamath, Vishvapalsinhji Ramsinh Parmar, Christoph Hewel, Markus Endres

Abstract:

Given a patent document, identifying distinct semantic annotations is an interesting research aspect. Text annotation helps the patent practitioners such as examiners and patent attorneys to quickly identify the key arguments of any invention, successively providing a timely marking of a patent text. In the process of manual patent analysis, to attain better readability, recognising the semantic information by marking paragraphs is in practice. This semantic annotation process is laborious and time-consuming. To alleviate such a problem, we proposed a dataset to train machine learning algorithms to automate the highlighting process. The contributions of this work are: i) we developed a multi-class dataset of size 150k samples by traversing USPTO patents over a decade, ii) articulated statistics and distributions of data using imperative exploratory data analysis, iii) baseline Machine Learning models are developed to utilize the dataset to address patent paragraph highlighting task, and iv) future path to extend this work using Deep Learning and domain-specific pre-trained language models to develop a tool to highlight is provided. This work assists patent practitioners in highlighting semantic information automatically and aids in creating a sustainable and efficient patent analysis using the aptitude of machine learning.

Keywords: machine learning, patents, patent sentiment analysis, patent information retrieval

Procedia PDF Downloads 90
5015 Mathematical Modelling of Ultrasound Pre-Treatment in Microwave Dried Strawberry (Fragaria L.) Slices

Authors: Hilal Uslu, Salih Eroglu, Betul Ozkan, Ozcan Bulantekin, Alper Kuscu

Abstract:

In this study, the strawberry (Fragaria L.) fruits, which were pretreated with ultrasound (US), were worked on in the microwave by using 90W power. Then mathematical modelling was applied to dried fruits by using different experimental thin layer models. The sliced fruits were subjected to ultrasound treatment at a frequency of 40 kHz for 10, 20, and 30 minutes, in an ultrasonic water bath, with a ratio of 1:4 to fruit/water. They are then dried in the microwave (90W). The drying process continued until the product moisture was below 10%. By analyzing the moisture change of the products at a certain time, eight different thin-layer drying models, (Newton, page, modified page, Midilli, Henderson and Pabis, logarithmic, two-term, Wang and Singh) were tested for verification of experimental data. MATLAB R2015a statistical program was used for the modelling, and the best suitable model was determined with R²adj (coefficient of determination of compatibility), and root mean square error (RMSE) values. According to analysis, the drying model that best describes the drying behavior for both drying conditions was determined as the Midilli model by high R²adj and low RMSE values. Control, 10, 20, and 30 min US for groups R²adj and RMSE values was established as respectively; 0,9997- 0,005298; 0,9998- 0,004735; 0,9995- 0,007031; 0,9917-0,02773. In addition, effective diffusion coefficients were calculated for each group and were determined as 3,80x 10⁻⁸, 3,71 x 10⁻⁸, 3,26 x10⁻⁸ ve 3,5 x 10⁻⁸ m/s, respectively.

Keywords: mathematical modelling, microwave drying, strawberry, ultrasound

Procedia PDF Downloads 153
5014 Sensitivity Based Robust Optimization Using 9 Level Orthogonal Array and Stepwise Regression

Authors: K. K. Lee, H. W. Han, H. L. Kang, T. A. Kim, S. H. Han

Abstract:

For the robust optimization of the manufacturing product design, there are design objectives that must be achieved, such as a minimization of the mean and standard deviation in objective functions within the required sensitivity constraints. The authors utilized the sensitivity of objective functions and constraints with respect to the effective design variables to reduce the computational burden associated with the evaluation of the probabilities. The individual mean and sensitivity values could be estimated easily by using the 9 level orthogonal array based response surface models optimized by the stepwise regression. The present study evaluates a proposed procedure from the robust optimization of rubber domes that are commonly used for keyboard switching, by using the 9 level orthogonal array and stepwise regression along with a desirability function. In addition, a new robust optimization process, i.e., the I2GEO (Identify, Integrate, Generate, Explore and Optimize), was proposed on the basis of the robust optimization in rubber domes. The optimized results from the response surface models and the estimated results by using the finite element analysis were consistent within a small margin of error. The standard deviation of objective function is decreasing 54.17% with suggested sensitivity based robust optimization. (Business for Cooperative R&D between Industry, Academy, and Research Institute funded Korea Small and Medium Business Administration in 2017, S2455569)

Keywords: objective function, orthogonal array, response surface model, robust optimization, stepwise regression

Procedia PDF Downloads 288
5013 Use of Statistical Correlations for the Estimation of Shear Wave Velocity from Standard Penetration Test-N-Values: Case Study of Algiers Area

Authors: Soumia Merat, Lynda Djerbal, Ramdane Bahar, Mohammed Amin Benbouras

Abstract:

Along with shear wave, many soil parameters are associated with the standard penetration test (SPT) as a dynamic in situ experiment. Both SPT-N data and geophysical data do not often exist in the same area. Statistical analysis of correlation between these parameters is an alternate method to estimate Vₛ conveniently and without additional investigations or data acquisition. Shear wave velocity is a basic engineering tool required to define dynamic properties of soils. In many instances, engineers opt for empirical correlations between shear wave velocity (Vₛ) and reliable static field test data like standard penetration test (SPT) N value, CPT (Cone Penetration Test) values, etc., to estimate shear wave velocity or dynamic soil parameters. The relation between Vs and SPT- N values of Algiers area is predicted using the collected data, and it is also compared with the previously suggested formulas of Vₛ determination by measuring Root Mean Square Error (RMSE) of each model. Algiers area is situated in high seismic zone (Zone III [RPA 2003: réglement parasismique algerien]), therefore the study is important for this region. The principal aim of this paper is to compare the field measurements of Down-hole test and the empirical models to show which one of these proposed formulas are applicable to predict and deduce shear wave velocity values.

Keywords: empirical models, RMSE, shear wave velocity, standard penetration test

Procedia PDF Downloads 338
5012 Entropy in a Field of Emergence in an Aspect of Linguo-Culture

Authors: Nurvadi Albekov

Abstract:

Communicative situation is a basis, which designates potential models of ‘constructed forms’, a motivated basis of a text, for a text can be assumed as a product of the communicative situation. It is within the field of emergence the models of text, that can be potentially prognosticated in a certain communicative situation, are designated. Every text can be assumed as conceptual system structured on the base of certain communicative situation. However in the process of ‘structuring’ of a certain model of ‘conceptual system’ consciousness of a recipient is able act only within the border of the field of emergence for going out of this border indicates misunderstanding of the communicative situation. On the base of communicative situation we can witness the increment of meaning where the synergizing of the informative model of communication, formed by using of the invariant units of a language system, is a result of verbalization of the communicative situation. The potential of the models of a text, prognosticated within the field of emergence, also depends on the communicative situation. The conception ‘the field of emergence’ is interpreted as a unit of the language system, having poly-directed universal structure, implying the presence of the core, the center and the periphery, including different levels of means of a functioning system of language, both in terms of linguistic resources, and in terms of extra linguistic factors interaction of which results increment of a text. The conception ‘field of emergence’ is considered as the most promising in the analysis of texts: oral, written, printed and electronic. As a unit of the language system field of emergence has several properties that predict its use during the study of a text in different levels. This work is an attempt analysis of entropy in a text in the aspect of lingua-cultural code, prognosticated within the model of the field of emergence. The article describes the problem of entropy in the field of emergence, caused by influence of the extra-linguistic factors. The increasing of entropy is caused not only by the fact of intrusion of the language resources but by influence of the alien culture in a whole, and by appearance of non-typical for this very culture symbols in the field of emergence. The borrowing of alien lingua-cultural symbols into the lingua-culture of the author is a reason of increasing the entropy when constructing a text both in meaning and in structuring level. It is nothing but artificial formatting of lexical units that violate stylistic unity of a phrase. It is marked that one of the important characteristics descending the entropy in the field of emergence is a typical similarity of lexical and semantic resources of the different lingua-cultures in aspects of extra linguistic factors.

Keywords: communicative situation, field of emergence, lingua-culture, entropy

Procedia PDF Downloads 362
5011 The Relationship between Coping Styles and Internet Addiction among High School Students

Authors: Adil Kaval, Digdem Muge Siyez

Abstract:

With the negative effects of internet use in a person's life, the use of the Internet has become an issue. This subject was mostly considered as internet addiction, and it was investigated. In literature, it is noteworthy that some theoretical models have been proposed to explain the reasons for internet addiction. In addition to these theoretical models, it may be thought that the coping style for stressing events can be a predictor of internet addiction. It was aimed to test with logistic regression the effect of high school students' coping styles on internet addiction levels. Sample of the study consisted of 770 Turkish adolescents (471 girls, 299 boys) selected from high schools in the 2017-2018 academic year in İzmir province. Internet Addiction Test, Coping Scale for Child and Adolescents and a demographic information form were used in this study. The results of the logistic regression analysis indicated that the model of coping styles predicted internet addiction provides a statistically significant prediction of internet addiction. Gender does not predict whether or not to be addicted to the internet. The active coping style is not effective on internet addiction levels, while the avoiding and negative coping style are effective on internet addiction levels. With this model, % 79.1 of internet addiction in high school is estimated. The Negelkerke pseudo R2 indicated that the model accounted for %35 of the total variance. The results of this study on Turkish adolescents are similar to the results of other studies in the literature. It can be argued that avoiding and negative coping styles are important risk factors in the development of internet addiction.

Keywords: adolescents, coping, internet addiction, regression analysis

Procedia PDF Downloads 174
5010 Using Photogrammetric Techniques to Map the Mars Surface

Authors: Ahmed Elaksher, Islam Omar

Abstract:

For many years, Mars surface has been a mystery for scientists. Lately with the help of geospatial data and photogrammetric procedures researchers were able to capture some insights about this planet. Two of the most imperative data sources to explore Mars are the The High Resolution Imaging Science Experiment (HiRISE) and the Mars Orbiter Laser Altimeter (MOLA). HiRISE is one of six science instruments carried by the Mars Reconnaissance Orbiter, launched August 12, 2005, and managed by NASA. The MOLA sensor is a laser altimeter carried by the Mars Global Surveyor (MGS) and launched on November 7, 1996. In this project, we used MOLA-based DEMs to orthorectify HiRISE optical images for generating a more accurate and trustful surface of Mars. The MOLA data was interpolated using the kriging interpolation technique. Corresponding tie points were digitized from both datasets. These points were employed in co-registering both datasets using GIS analysis tools. In this project, we employed three different 3D to 2D transformation models. These are the parallel projection (3D affine) transformation model; the extended parallel projection transformation model; the Direct Linear Transformation (DLT) model. A set of tie-points was digitized from both datasets. These points were split into two sets: Ground Control Points (GCPs), used to evaluate the transformation parameters using least squares adjustment techniques, and check points (ChkPs) to evaluate the computed transformation parameters. Results were evaluated using the RMSEs between the precise horizontal coordinates of the digitized check points and those estimated through the transformation models using the computed transformation parameters. For each set of GCPs, three different configurations of GCPs and check points were tested, and average RMSEs are reported. It was found that for the 2D transformation models, average RMSEs were in the range of five meters. Increasing the number of GCPs from six to ten points improve the accuracy of the results with about two and half meters. Further increasing the number of GCPs didn’t improve the results significantly. Using the 3D to 2D transformation parameters provided three to two meters accuracy. Best results were reported using the DLT transformation model. However, increasing the number of GCPS didn’t have substantial effect. The results support the use of the DLT model as it provides the required accuracy for ASPRS large scale mapping standards. However, well distributed sets of GCPs is a key to provide such accuracy. The model is simple to apply and doesn’t need substantial computations.

Keywords: mars, photogrammetry, MOLA, HiRISE

Procedia PDF Downloads 57
5009 Life Stage Customer Segmentation by Fine-Tuning Large Language Models

Authors: Nikita Katyal, Shaurya Uppal

Abstract:

This paper tackles the significant challenge of accurately classifying customers within a retailer’s customer base. Accurate classification is essential for developing targeted marketing strategies that effectively engage this important demographic. To address this issue, we propose a method that utilizes Large Language Models (LLMs). By employing LLMs, we analyze the metadata associated with product purchases derived from historical data to identify key product categories that act as distinguishing factors. These categories, such as baby food, eldercare products, or family-sized packages, offer valuable insights into the likely household composition of customers, including families with babies, families with kids/teenagers, families with pets, households caring for elders, or mixed households. We segment high-confidence customers into distinct categories by integrating historical purchase behavior with LLM-powered product classification. This paper asserts that life stage segmentation can significantly enhance e-commerce businesses’ ability to target the appropriate customers with tailored products and campaigns, thereby augmenting sales and improving customer retention. Additionally, the paper details the data sources, model architecture, and evaluation metrics employed for the segmentation task.

Keywords: LLMs, segmentation, product tags, fine-tuning, target segments, marketing communication

Procedia PDF Downloads 23
5008 Development of pm2.5 Forecasting System in Seoul, South Korea Using Chemical Transport Modeling and ConvLSTM-DNN

Authors: Ji-Seok Koo, Hee‑Yong Kwon, Hui-Young Yun, Kyung-Hui Wang, Youn-Seo Koo

Abstract:

This paper presents a forecasting system for PM2.5 levels in Seoul, South Korea, leveraging a combination of chemical transport modeling and ConvLSTM-DNN machine learning technology. Exposure to PM2.5 has known detrimental impacts on public health, making its prediction crucial for establishing preventive measures. Existing forecasting models, like the Community Multiscale Air Quality (CMAQ) and Weather Research and Forecasting (WRF), are hindered by their reliance on uncertain input data, such as anthropogenic emissions and meteorological patterns, as well as certain intrinsic model limitations. The system we've developed specifically addresses these issues by integrating machine learning and using carefully selected input features that account for local and distant sources of PM2.5. In South Korea, the PM2.5 concentration is greatly influenced by both local emissions and long-range transport from China, and our model effectively captures these spatial and temporal dynamics. Our PM2.5 prediction system combines the strengths of advanced hybrid machine learning algorithms, convLSTM and DNN, to improve upon the limitations of the traditional CMAQ model. Data used in the system include forecasted information from CMAQ and WRF models, along with actual PM2.5 concentration and weather variable data from monitoring stations in China and South Korea. The system was implemented specifically for Seoul's PM2.5 forecasting.

Keywords: PM2.5 forecast, machine learning, convLSTM, DNN

Procedia PDF Downloads 54
5007 An Evaluation of Existing Models to Smart Cities Development Around the World

Authors: Aqsa Mehmood, Muhammad Ali Tahir, Hafiz Syed Hamid Arshad, Salman Atif, Ejaz Hussain, Gavin McArdle, Michela Bertolotto

Abstract:

The evolution of smart cities in recent years has been developing dramatically. As urbanization increases, the demand for big data analytics and digital technology-based solutions for cities has also increased. Many cities around the world have now planned to focus on smart cities. To obtain a systematic overview of smart city models, we carried out a bibliometric analysis in the context of seven regions of the world to understand the main dimensions that characterize smart cities. This paper analyses articles published between 2017 and 2021 that were captured from Web of Science and Scopus. Specifically, we investigated publication trends to highlight the research gaps and current developments in smart cities research. Our survey provides helpful insights into the geographical distribution of smart city publications with respect to regions of the world and explores the current key topics relevant to smart cities and the co-occurrences of keywords used in these publications. A systematic literature review and keyword analysis were performed. The results have focused on identifying future directions in smart city development, including smart citizens, ISO standards, Open Geospatial Consortium and the sustainability factor of smart cities. This article will assist researchers and urban planners in understanding the latest trends in research and highlight the aspects which need further attention.

Keywords: smart cities, sustainability, regions, urban development, VOS viewer, research trends

Procedia PDF Downloads 118
5006 Language on Skin Whitening Products in Pakistan Promotes Unfair Beauty Standards: A Critical Discourse Analysis

Authors: Azeem Alphonce

Abstract:

In Pakistan, there is a variety of skin tones and colors across all provinces. However, a fair complexion is one of the standards of beauty among females in Pakistan, which creates insecurities in dark-complexioned females. This research is a critical discourse analysis of the language used on beauty products for females in Pakistan. The purpose was to analyze the language used on female beauty products using Van Dijk's three-stage socio-cognitive model to understand what message is received from the few words written and repeated across the packaging of various facial products, why such language is used and what are its wider socio-cognitive effects? The criterion for the selection of beauty products was skin whitening terminologies and the language used on these products. The results showed that over 57 per cent of products utilized skin-whitening terms. The adjectives written on the package indicate that fairer skin is the ultimate beauty goal of females. The analysis explored how the language reinforces unfair beauty standards and perpetuates colorism. It was concluded that female beauty products utilize discriminatory discourse by marginalizing individuals of darker skin tones. Fairer skin is promoted, whereas darker skin is referred to as a problem, flaw or imperfection. Socially shared mental models seem to have caused beauty companies to exploit and promote perceptions of colorism in society. Therefore, such discourse should be prevented, and beauty companies should utilize their discourse to promote acceptance of various skin tones.

Keywords: language, skin whitening products, beauty standards, social mental models

Procedia PDF Downloads 70
5005 Influence of Existing Foundations on Soil-Structure Interaction of New Foundations in a Reconstruction Project

Authors: Kanagarajah Ravishankar

Abstract:

This paper describes a study performed for a project featuring an elevated steel bridge structure supported by various types of foundation systems. This project focused on rehabilitation or redesign of a portion of the bridge substructures founded on caisson foundations. The study that this paper focuses on is the evaluation of foundation and soil stiffnesses and interactions between the existing caissons and proposed foundations. The caisson foundations were founded on top of rock, where the depth to the top of rock varies from approximately 50 to 140 feet below ground surface. Based on a comprehensive investigation of the existing piers and caissons, the presence of ASR was suspected from observed whitish deposits on cracked surfaces as well as internal damages sustained through the entire depth of foundation structures. Reuse of existing piers and caissons was precluded and deemed unsuitable under the earthquake condition because of these defects on the structures. The proposed design of new foundations and substructures which was selected ultimately neglected the contribution from the existing caisson and pier columns. Due to the complicated configuration between the existing caisson and the proposed foundation system, three-dimensional finite element method (FEM) was employed to evaluate soil-structure interaction (SSI), to evaluate the effect of the existing caissons on the proposed foundations, and to compare the results with conventional group analysis. The FEM models include separate models for existing caissons, proposed foundations, and combining both.

Keywords: soil-structure interaction, foundation stiffness, finite element, seismic design

Procedia PDF Downloads 138
5004 Orbit Determination Modeling with Graphical Demonstration

Authors: Assem M. F. Sallam, Ah. El-S. Makled

Abstract:

In this paper, there is an implementation, verification, and graphical demonstration of a software application, which can be used swiftly over different preliminary orbit determination methods. A passive orbit determination method is used in this study to determine the location of a satellite or a flying body. It is named a passive orbit determination because it depends on observation without the use of any aids (radio and laser) installed on satellite. In order to understand how these methods work and how their output is accurate when compared with available verification data, the built models help in knowing the different inputs used with each method. Output from the different orbit determination methods (Gibbs, Lambert, and Gauss) will be compared with each other and verified by the data obtained from Satellite Tool Kit (STK) application. A modified model including all of the orbit determination methods using the same input will be introduced to investigate different models output (orbital parameters) for the same input (azimuth, elevation, and time). Simulation software is implemented using MATLAB. A Graphical User Interface (GUI) application named OrDet is produced using the GUI of MATLAB. It includes all the available used inputs and it outputs the current Classical Orbital Elements (COE) of satellite under observation. Produced COE are then used to propagate for a complete revolution and plotted on a 3-D view. Modified model which uses an adapter to allow same input parameters, passes these parameters to the preliminary orbit determination methods under study. Result from all orbit determination methods yield exactly the same COE output, which shows the equality of concept in determination of satellite’s location, but with different numerical methods.

Keywords: orbit determination, STK, Matlab-GUI, satellite tracking

Procedia PDF Downloads 280
5003 Further Development in Predicting Post-Earthquake Fire Ignition Hazard

Authors: Pegah Farshadmanesh, Jamshid Mohammadi, Mehdi Modares

Abstract:

In nearly all earthquakes of the past century that resulted in moderate to significant damage, the occurrence of postearthquake fire ignition (PEFI) has imposed a serious hazard and caused severe damage, especially in urban areas. In order to reduce the loss of life and property caused by post-earthquake fires, there is a crucial need for predictive models to estimate the PEFI risk. The parameters affecting PEFI risk can be categorized as: 1) factors influencing fire ignition in normal (non-earthquake) condition, including floor area, building category, ignitability, type of appliance, and prevention devices, and 2) earthquake related factors contributing to the PEFI risk, including building vulnerability and earthquake characteristics such as intensity, peak ground acceleration, and peak ground velocity. State-of-the-art statistical PEFI risk models are solely based on limited available earthquake data, and therefore they cannot predict the PEFI risk for areas with insufficient earthquake records since such records are needed in estimating the PEFI model parameters. In this paper, the correlation between normal condition ignition risk, peak ground acceleration, and PEFI risk is examined in an effort to offer a means for predicting post-earthquake ignition events. An illustrative example is presented to demonstrate how such correlation can be employed in a seismic area to predict PEFI hazard.

Keywords: fire risk, post-earthquake fire ignition (PEFI), risk management, seismicity

Procedia PDF Downloads 382
5002 Seismic Retrofitting of RC Buildings with Soft Storey and Floating Columns

Authors: Vinay Agrawal, Suyash Garg, Ravindra Nagar, Vinay Chandwani

Abstract:

Open ground storey with floating columns is a typical feature in the modern multistory constructions in urban India. Such features are very much undesirable in buildings built in seismically active areas. The present study proposes a feasible solution to mitigate the effects caused due to non-uniformity of stiffness and discontinuity in load path and to simultaneously hold the functional use of the open storey particularly under the floating column, through a combination of various lateral strengthening systems. An investigation is performed on an example building with nine different analytical models to bring out the importance of recognising the presence of open ground storey and floating columns. Two separate analyses on various models of the building namely, the equivalent static analysis and the response spectrum analysis as per IS: 1893-2002 were performed. Various measures such as incorporation of Chevron bracings and shear walls, strengthening the columns in the open ground storey, and their different combinations were examined. The analysis shows that, in comparison to two short ones separated by interconnecting beams, the structural walls are most effective when placed at the periphery of the buildings and used as one long structural wall. Further, it can be shown that the force transfer from floating columns becomes less horizontal when the Chevron Bracings are placed just below them, thereby reducing the shear forces in the beams on which the floating column rests.

Keywords: equivalent static analysis, floating column, open ground storey, response spectrum analysis, shear wall, stiffness irregularity

Procedia PDF Downloads 257
5001 Examining Audiology Students: Clinical Reasoning Skills When Using Virtual Audiology Cases Aided With no Collaboration, Live Collaboration, and Virtual Collaboration

Authors: Ramy Shaaban

Abstract:

The purpose of this study was to examine the difference in clinical reasoning skills of students when using virtual audiology cases with and without collaborative assistance from major learning approaches important to clinical reasoning skills and computer-based learning models: Situated Learning Theory, Social Development Theory, Scaffolding, and Collaborative Learning. A quasi-experimental design was conducted at two United States universities to examine whether there is a significant difference in clinical reasoning skills between three treatment groups using IUP Audiosim software. Two computer-based audiology case simulations were developed, and participants were randomly placed into the three groups: no collaboration, virtual collaboration, and live collaboration. The clinical reasoning data were analyzed using One-Way ANOVA and Tukey posthoc analyses. The results show that there was a significant difference in clinical reasoning skills between the three treatment groups. The score obtained by the no collaboration group was significantly less than the scores obtained by the virtual and live collaboration groups. Collaboration, whether virtual or in person, has a positive effect on students’ clinical reasoning. These results with audiology students indicate that combining collaboration models with scaffolding and embedding situated learning and social development theories into the design of future virtual patients has the potential to improve students’ clinical reasoning skills.

Keywords: clinical reasoning, virtual patients, collaborative learning, scaffolding

Procedia PDF Downloads 214
5000 An Application of Remote Sensing for Modeling Local Warming Trend

Authors: Khan R. Rahaman, Quazi K. Hassan

Abstract:

Global changes in climate, environment, economies, populations, governments, institutions, and cultures converge in localities. Changes at a local scale, in turn, contribute to global changes as well as being affected by them. Our hypothesis is built on a consideration that temperature does vary at local level (i.e., termed as local warming) in comparison to the predicted models at the regional and/or global scale. To date, the bulk of the research relating local places to global climate change has been top-down, from the global toward the local, concentrating on methods of impact analysis that use as a starting point climate change scenarios derived from global models, even though these have little regional or local specificity. Thus, our focus is to understand such trends over the southern Alberta, which will enable decision makers, scientists, researcher community, and local people to adapt their policies based on local level temperature variations and to act accordingly. Specific objectives in this study are: (i) to understand the local warming (temperature in particular) trend in context of temperature normal during the period 1961-2010 at point locations using meteorological data; (ii) to validate the data by using specific yearly data, and (iii) to delineate the spatial extent of the local warming trends and understanding influential factors to adopt situation by local governments. Existing data has brought the evidence of such changes and future research emphasis will be given to validate this hypothesis based on remotely sensed data (i.e. MODIS product by NASA).

Keywords: local warming, climate change, urban area, Alberta, Canada

Procedia PDF Downloads 339
4999 Examining the Perceived Usefulness of ICTs for Learning about Indigenous Foods

Authors: Khumbuzile M. Ngcobo, Seraphin D. Eyono Obono

Abstract:

Science and technology has a major impact on many societal domains such as communication, medicine, food, transportation, etc. However, this dominance of modern technology can have a negative unintended impact on indigenous systems, and in particular on indigenous foods. This problem serves as a motivation to this study whose aim is to examine the perceptions of learners on the usefulness of Information and Communication Technologies (ICT's) for learning about indigenous foods. This aim will be subdivided into two types of research objectives. The design and identification of theories and models will be achieved using literature content analysis. The objective on the empirical testing of such theories and models will be achieved through the survey of Hospitality studies learners from different schools in the iLembe and Umgungundlovu Districts of the South African Kwazulu-Natal province. SPSS is used to quantitatively analyse the data collected by the questionnaire of this survey using descriptive statistics and Pearson correlations after the assessment of the validity and the reliability of the data. The main hypothesis behind this study is that there is a connection between the demographics of learners, their perceptions on the usefulness of ICTs for learning about indigenous foods and the following personality an e-learning related theories constructs: computer self-efficacy, trust in ICT systems, and conscientiousness; as suggested by existing studies on learning theories. This hypothesis was fully confirmed by the survey conducted by this study except for the demographic factors where gender and age were not found to be determinant factors of learners’ perceptions on the usefulness of ICT's for learning about indigenous foods.

Keywords: e-learning, indigenous foods, information and communication technologies, learning theories, personality

Procedia PDF Downloads 280
4998 Effect of Haemophilus Influenzae Type B (HIB) Vaccination on Child Anthropometry in India: Evidence from Young Lives Study

Authors: Swati Srivastava, Ashish Kumar Upadhyay

Abstract:

Haemophilus influenzae Type B (Hib) cause infections of pneumonia, meningitis, epiglottises and other invasive disease exclusively among children under age five. Occurrence of these infections may impair child growth by causing micronutrient deficiency. Using longitudinal data from first and second waves of Young Lives Study conducted in India during 2002 and 2006-07 respectively and multivariable logistic regression models (using generalised estimation equation to take into account the cluster nature of sample), this study aims to examine the impact of Hib vaccination on child anthropometric outcomes (stunting, underweight and wasting) in India. Bivariate result shows that, a higher percent of children were stunted and underweight among those who were not vaccinated against Hib (39% & 48% respectively) as compare to those who were vaccinated (31% and 39% respectively).The risk of childhood stunting and underweight was significantly lower among children who were vaccinated against Hib (odds ratio: 0.77, 95% CI: 0.62-0.96 and odds ratio: 0.79, 95% C.I: 0.64-0.98 respectively) as compare to the unvaccinated children. No significant association was found between vaccination status against Hib and childhood wasting. Moreover, in the statistical models, about 13% of stunting and 12% of underweight could be attributable to lack of vaccination against Hib in India. Study concludes that vaccination against Hib- in addition to being a major intervention for reducing childhood infectious disease and mortality- can be consider as a potential tool for reducing the burden of undernutrition in India. Therefore, the Government of India must include the vaccine against Hib into the Universal Immunization Programme in India.

Keywords: Haemophilus influenzae Type-B, Stunting, Underweight, Wasting, Young Lives Study (YLS), India

Procedia PDF Downloads 338
4997 Modeling Driving Distraction Considering Psychological-Physical Constraints

Authors: Yixin Zhu, Lishengsa Yue, Jian Sun, Lanyue Tang

Abstract:

Modeling driving distraction in microscopic traffic simulation is crucial for enhancing simulation accuracy. Current driving distraction models are mainly derived from physical motion constraints under distracted states, in which distraction-related error terms are added to existing microscopic driver models. However, the model accuracy is not very satisfying, due to a lack of modeling the cognitive mechanism underlying the distraction. This study models driving distraction based on the Queueing Network Human Processor model (QN-MHP). This study utilizes the queuing structure of the model to perform task invocation and switching for distracted operation and control of the vehicle under driver distraction. Based on the assumption of the QN-MHP model about the cognitive sub-network, server F is a structural bottleneck. The latter information must wait for the previous information to leave server F before it can be processed in server F. Therefore, the waiting time for task switching needs to be calculated. Since the QN-MHP model has different information processing paths for auditory information and visual information, this study divides driving distraction into two types: auditory distraction and visual distraction. For visual distraction, both the visual distraction task and the driving task need to go through the visual perception sub-network, and the stimuli of the two are asynchronous, which is called stimulus on asynchrony (SOA), so when calculating the waiting time for switching tasks, it is necessary to consider it. In the case of auditory distraction, the auditory distraction task and the driving task do not need to compete for the server resources of the perceptual sub-network, and their stimuli can be synchronized without considering the time difference in receiving the stimuli. According to the Theory of Planned Behavior for drivers (TPB), this study uses risk entropy as the decision criterion for driver task switching. A logistic regression model is used with risk entropy as the independent variable to determine whether the driver performs a distraction task, to explain the relationship between perceived risk and distraction. Furthermore, to model a driver’s perception characteristics, a neurophysiological model of visual distraction tasks is incorporated into the QN-MHP, and executes the classical Intelligent Driver Model. The proposed driving distraction model integrates the psychological cognitive process of a driver with the physical motion characteristics, resulting in both high accuracy and interpretability. This paper uses 773 segments of distracted car-following in Shanghai Naturalistic Driving Study data (SH-NDS) to classify the patterns of distracted behavior on different road facilities and obtains three types of distraction patterns: numbness, delay, and aggressiveness. The model was calibrated and verified by simulation. The results indicate that the model can effectively simulate the distracted car-following behavior of different patterns on various roadway facilities, and its performance is better than the traditional IDM model with distraction-related error terms. The proposed model overcomes the limitations of physical-constraints-based models in replicating dangerous driving behaviors, and internal characteristics of an individual. Moreover, the model is demonstrated to effectively generate more dangerous distracted driving scenarios, which can be used to construct high-value automated driving test scenarios.

Keywords: computational cognitive model, driving distraction, microscopic traffic simulation, psychological-physical constraints

Procedia PDF Downloads 91
4996 Comparative Study of Non-Identical Firearms with Priority to Repair Subject to Inspection

Authors: A. S. Grewal, R. S. Sangwan, Dharambir, Vikas Dhanda

Abstract:

The purpose of this paper is to develop and analyze two reliability models for a system of non-identical firearms – one is standard firearm (called as original unit) and the other is a country-made firearm (called as duplicate /substandard unit). There is a single server who comes immediately to do inspection and repair whenever needed. On the failure of standard firearm, the server inspects the operative country-made firearm to see whether the unit is capable of performing the desired function well or not. If country-made firearm is not capable to do so, the operation of the system is stopped and server starts repair of the standard firearms immediately. However, no inspection is done at the failure of the country-made firearm as the country-made firearm alone is capable of performing the given task well. In model I, priority to repair the standard firearm is given in case system fails completely and country-made firearm is already under repair, whereas in model II there is no such priority. The failure and repair times of each unit are assumed to be independent and uncorrelated random variables. The distributions of failure time of the units are taken as negative exponential while that of repair and inspection times are general. By using semi-Markov process and regenerative point technique some econo-reliability measures are obtained. Graphs are plotted to compare the MTSF (mean time to system failure), availability and profit of the models for a particular case.

Keywords: non-identical firearms, inspection, priority to repair, semi-Markov process, regenerative point

Procedia PDF Downloads 425
4995 Bias Prevention in Automated Diagnosis of Melanoma: Augmentation of a Convolutional Neural Network Classifier

Authors: Kemka Ihemelandu, Chukwuemeka Ihemelandu

Abstract:

Melanoma remains a public health crisis, with incidence rates increasing rapidly in the past decades. Improving diagnostic accuracy to decrease misdiagnosis using Artificial intelligence (AI) continues to be documented. Unfortunately, unintended racially biased outcomes, a product of lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone, have increasingly been recognized as a problem.Resulting in noted limitations of the accuracy of the Convolutional neural network (CNN)models. CNN models are prone to biased output due to biases in the dataset used to train them. Our aim in this study was the optimization of convolutional neural network algorithms to mitigate bias in the automated diagnosis of melanoma. We hypothesized that our proposed training algorithms based on a data augmentation method to optimize the diagnostic accuracy of a CNN classifier by generating new training samples from the original ones will reduce bias in the automated diagnosis of melanoma. We applied geometric transformation, including; rotations, translations, scale change, flipping, and shearing. Resulting in a CNN model that provided a modifiedinput data making for a model that could learn subtle racial features. Optimal selection of the momentum and batch hyperparameter increased our model accuracy. We show that our augmented model reduces bias while maintaining accuracy in the automated diagnosis of melanoma.

Keywords: bias, augmentation, melanoma, convolutional neural network

Procedia PDF Downloads 210