Search results for: dyeable layer
767 Prediction of Oil Recovery Factor Using Artificial Neural Network
Authors: O. P. Oladipo, O. A. Falode
Abstract:
The determination of Recovery Factor is of great importance to the reservoir engineer since it relates reserves to the initial oil in place. Reserves are the producible portion of reservoirs and give an indication of the profitability of a field Development. The core objective of this project is to develop an artificial neural network model using selected reservoir data to predict Recovery Factors (RF) of hydrocarbon reservoirs and compare the model with a couple of the existing correlations. The type of Artificial Neural Network model developed was the Single Layer Feed Forward Network. MATLAB was used as the network simulator and the network was trained using the supervised learning method, Afterwards, the network was tested with input data never seen by the network. The results of the predicted values of the recovery factors of the Artificial Neural Network Model, API Correlation for water drive reservoirs (Sands and Sandstones) and Guthrie and Greenberger Correlation Equation were obtained and compared. It was noted that the coefficient of correlation of the Artificial Neural Network Model was higher than the coefficient of correlations of the other two correlation equations, thus making it a more accurate prediction tool. The Artificial Neural Network, because of its accurate prediction ability is helpful in the correct prediction of hydrocarbon reservoir factors. Artificial Neural Network could be applied in the prediction of other Petroleum Engineering parameters because it is able to recognise complex patterns of data set and establish a relationship between them.Keywords: recovery factor, reservoir, reserves, artificial neural network, hydrocarbon, MATLAB, API, Guthrie, Greenberger
Procedia PDF Downloads 439766 Mathematical Modelling of Slag Formation in an Entrained-Flow Gasifier
Authors: Girts Zageris, Vadims Geza, Andris Jakovics
Abstract:
Gasification processes are of great interest due to their generation of renewable energy in the form of syngas from biodegradable waste. It is, therefore, important to study the factors that play a role in the efficiency of gasification and the longevity of the machines in which gasification takes place. This study focuses on the latter, aiming to optimize an entrained-flow gasifier by reducing slag formation on its walls to reduce maintenance costs. A CFD mathematical model for an entrained-flow gasifier is constructed – the model of an actual gasifier is rendered in 3D and appropriately meshed. Then, the turbulent gas flow in the gasifier is modeled with the realizable k-ε approach, taking devolatilization, combustion and coal gasification into account. Various such simulations are conducted, obtaining results for different air inlet positions and by tracking particles of varying sizes undergoing devolatilization and gasification. The model identifies potential problematic zones where most particles collide with the gasifier walls, indicating risk regions where ash deposits could most likely form. In conclusion, the effects on the formation of an ash layer of air inlet positioning and particle size allowed in the main gasifier tank are discussed, and possible solutions for decreasing a number of undesirable deposits are proposed. Additionally, an estimate of the impact of different factors such as temperature, gas properties and gas content, and different forces acting on the particles undergoing gasification is given.Keywords: biomass particles, gasification, slag formation, turbulence k-ε modelling
Procedia PDF Downloads 283765 Shear Layer Investigation through a High-Load Cascade in Low-Pressure Gas Turbine Conditions
Authors: Mehdi Habibnia Rami, Shidvash Vakilipour, Mohammad H. Sabour, Rouzbeh Riazi, Hossein Hassannia
Abstract:
This paper deals with the steady and unsteady flow behavior on the separation bubble occurring on the rear portion of the suction side of T106A blade. The first phase was to implement the steady condition capturing the separation bubble. To accurately predict the separated region, the effects of three different turbulence models and computational grids were separately investigated. The results of Large Eddy Simulation (LES) model on the finest grid structure are acceptably in a good agreement with its relevant experimental results. The second phase is mainly to address the effects of wake entrance on bubble disappearance in unsteady situation. In the current simulations, from what was suggested in an experiment, simulating the flow unsteadiness, with concentrations on small scale disturbances instead of simulating a complete oncoming wake, is the key issue. Subsequently, the results from the current strategy to apply the effects of the wake and two other experimental work were compared to be in a good agreement. Between the two experiments, one of them deals with wake passing unsteady flow, and the other one implements experimentally the same approach as the current Computational Fluid Dynamics (CFD) simulation.Keywords: low-pressure turbine cascade, large-Eddy simulation (LES), RANS turbulence models, unsteady flow measurements, flow separation
Procedia PDF Downloads 304764 Wetting Treatement: Comparative Overview: Case of Polypropylene Top Sheet Layer on Disposable Baby Diaper
Authors: Tilouche Rahma, Sayeb Soumaya, Ben Hassen Mohamed
Abstract:
The wettability of materials is a very important aspect of surface science, it presents a key factor providing the best characteristic of product, especially in hygienic field. Hydrophobic polypropylene is used as nonwoven topsheet in disposable diaper, for its interesting properties (toughness, lightness...) by comparing with traditional product previously used. SURFACTANTs are widely used to reduce contact angle (water contact angles larger than 90° on smooth surfaces) and to change wetting properties. In the present work, we study ways to obtain hydrophilic polypropylene surface, by the deposition of a variety of surfactant on surfaces of varying morphology. We used two different methods for surface wetting: Spraying method and the coating method. The concentration of the wetting agent, the type of non-woven fabric and the parameters in the method for controlling, hugely affect the quality of treatment. Therefore need that the treatment is effective in terms of contact angle without affecting the mechanical properties of the nonwoven. For the assessment of the quality of treatment, two methods are used: The measurement of the contact angle and the strike trough time. Also, with subjective evaluation by Hedonic test (which involves the consumer preference (naive panel: group of moms). Finally, we selected the better treated topsheet referring to the assessment results.Keywords: SURFACTANT, topsheet polypropylene, hydrophilic, hydrophobic
Procedia PDF Downloads 541763 Preliminary Design of an Aerodynamic Protection for the Scramjet Engine Inlet of the Brazilian Technological Demonstrator Scramjet 14-X S
Authors: Gustavo J. Costa, Felipe J. Costa, Bruno L. Coelho, Ronaldo L. Cardoso, Rafael O. Santos, Israel S. Rêgo, Marco A. S. Minucci, Antonio C. Oliveira, Paulo G. P. Toro
Abstract:
The Prof. Henry T. Nagamatsu Aerothermodynamics and Hipersonics Laboratory, of the Institute for Advanced Studies (IEAv) conducts research and development (R&D) of the Technological Demonstrator scramjet 14-X S, aiming atmospheric flight at 30 km altitude with the speed correspondent to Mach number 7, using scramjet technology providing hypersonic propulsion system based on supersonic combustion. Hypersonic aerospace vehicles with air-breathing supersonic propulsion system face extremal environments for super/hypersonic flights in terms of thermal and aerodynamic loads. Thus, it is necessary to use aerodynamic protection at the scramjet engine inlet to face the thermal and aerodynamic loads without compromising the efficiency of scramjet engine, taking into account: i) inlet design (boundary layer, oblique shockwave and reflected oblique shockwave); ii) wall temperature of the cowl and of the compression ramp; iii) supersonic flow into the combustion chamber. The aerodynamic protection of the scramjet engine inlet will act to prevent the engine unstart and match the predictions made by theoretical-analytical, numerical analysis and experimental research, during the atmospheric flight of the Technological Demonstrator scramjet 14-X S.Keywords: 14-X, hypersonic, scramjet, supersonic combustion
Procedia PDF Downloads 424762 The Effect of Soil Reinforcement on Pullout Behaviour of Flat Under-Reamer Anchor Pile Placed in Sand
Authors: V. K. Arora, Amit Rastogi
Abstract:
To understand the anchor pile behaviour and to predict the capacity of piles under uplift loading are important concerns in foundation analysis. Experimental model tests have been conducted on single anchor pile embedded in cohesionless soil and subjected to pure uplift loading. A gravel-filled geogrid layer was located around the enlarged pile base. The experimental tests were conducted on straight-shafted vertical steel piles with an outer diameter of 20 mm in a steel soil tank. The tested piles have embedment depth-to-diameter ratios (L/D) of 2, 3, and 4. The sand bed is prepared at three different values of density of 1.67, 1.59, and 1.50gm/cc. Single piles embedded in sandy soil were tested and the results are presented and analysed in this paper. The influences of pile embedment ratio, reinforcement, relative density of soil on the uplift capacity of piles were investigated. The study revealed that the behaviour of single piles under uplift loading depends mainly on both the pile embedment depth-to-diameter ratio and the soil density. It is believed that the experimental results presented in this study would be beneficial to the professional understanding of the soil–pile-uplift interaction problem.Keywords: flat under-reamer anchor pile, geogrid, pullout reinforcement, soil reinforcement
Procedia PDF Downloads 467761 Evaluation of Geotechnical Parameters at Nubian Habitations in Kurkur Area, Aswan, Egypt
Authors: R. E. Fat-Helbary, A. A. Abdel-latief, M. S. Arfa, Alaa Mostafa
Abstract:
The Egyptian Government proposed a general plan, aiming at constructing new settlements for Nubian in south Aswan in different places around Nasser Lake, one of these settlements in Kurkur area. The Nubian habitations in Wadi Kurkur are located around 30 km southwest of Aswan City. This area are affecting by near distance earthquakes from Kalabsha faults system. The shallow seismic refraction technique was conducted at the study area, to evaluate the soil and rock material quality and geotechnical parameters, in addition to the detection of the subsurface ground model under the study area. The P and S-wave velocities were calculated. The surface layer has P-wave, velocity ranges from 900 m/sec to 1625 m/sec and S-wave velocity ranges from 650 m/sec to 1400 m/sec. On the other hand the bedrock has P-wave velocity ranges from 1300 m/sec to 1980 m/sec and S-wave velocity ranges from 1050 m/sec to1725 m/sec. Measuring Vp and Vs velocities together with bulk density are calculated and used to extract the mechanical properties and geotechnical parameters of the foundation material at the study area. Output of this study is very important for solving the problems, which associated with the construction of various civil engineering purposes, for land use planning and for earthquakes resistant structure design.Keywords: shallow seismic refraction technique, Kurkur area, p and s-wave velocities, geotechnical parameters, bulk density, Kalabsha faults
Procedia PDF Downloads 425760 Development of In Situ Permeability Test Using Constant Discharge Method for Sandy Soils
Authors: A. Rifa’i, Y. Takeshita, M. Komatsu
Abstract:
The post-rain puddles problem that occurs in the first yard of Prambanan Temple are often disturbing visitor activity. A poodle layer and a drainage system has ever built to avoid such a problem, but puddles still didn’t stop appearing after rain. Permeability parameter needs to be determined by using more simple procedure to find exact method of solution. The instrument modelling were proposed according to the development of field permeability testing instrument. This experiment used proposed Constant Discharge method. Constant Discharge method used a tube poured with constant water flow. The procedure were carried out from unsaturated until saturated soil condition. Volumetric water content (θ) were being monitored by soil moisture measurement device. The results were relationship between k and θ which drawn by numerical approach Van Genutchen model. Parameters θr optimum value obtained from the test was at very dry soil. Coefficient of permeability with a density of 19.8 kN/m3 for unsaturated conditions was in range of 3 x 10-6 cm/sec (Sr= 68 %) until 9.98 x 10-4 cm/sec (Sr= 82 %). The equipment and testing procedure developed in this research was quite effective, simple and easy to be implemented on determining field soil permeability coefficient value of sandy soil. Using constant discharge method in proposed permeability test, value of permeability coefficient under unsaturated condition can be obtained without establish soil water characteristic curve.Keywords: constant discharge method, in situ permeability test, sandy soil, unsaturated conditions
Procedia PDF Downloads 381759 Data Mining Approach: Classification Model Evaluation
Authors: Lubabatu Sada Sodangi
Abstract:
The rapid growth in exchange and accessibility of information via the internet makes many organisations acquire data on their own operation. The aim of data mining is to analyse the different behaviour of a dataset using observation. Although, the subset of the dataset being analysed may not display all the behaviours and relationships of the entire data and, therefore, may not represent other parts that exist in the dataset. There is a range of techniques used in data mining to determine the hidden or unknown information in datasets. In this paper, the performance of two algorithms Chi-Square Automatic Interaction Detection (CHAID) and multilayer perceptron (MLP) would be matched using an Adult dataset to find out the percentage of an/the adults that earn > 50k and those that earn <= 50k per year. The two algorithms were studied and compared using IBM SPSS statistics software. The result for CHAID shows that the most important predictors are relationship and education. The algorithm shows that those are married (husband) and have qualification: Bachelor, Masters, Doctorate or Prof-school whose their age is > 41<57 earn > 50k. Also, multilayer perceptron displays marital status and capital gain as the most important predictors of the income. It also shows that individuals that their capital gain is less than 6,849 and are single, separated or widow, earn <= 50K, whereas individuals with their capital gain is > 6,849, work > 35 hrs/wk, and > 27yrs their income will be > 50k. By comparing the two algorithms, it is observed that both algorithms are reliable but there is strong reliability in CHAID which clearly shows that relation and education contribute to the prediction as displayed in the data visualisation.Keywords: data mining, CHAID, multi-layer perceptron, SPSS, Adult dataset
Procedia PDF Downloads 376758 Long Standing Orbital Floor Fracture Repair: Case Report
Authors: Hisham A. Hashem, Sameh Galal, Bassem M. Moeshed
Abstract:
A 36 years old male patient presented to our unit with a history of motor-car accident from 7 months complaining of disfigurement and double vision. On examination and investigations, there was an orbital floor fracture in the left eye with inferior rectus muscle entrapment causing diplopia, dystopia and enophthalmos. Under general anesthesia, a sub-ciliary incision was performed, and the orbital floor fracture was repaired with a double layer Medpor sheet (30x50x15) with removing and freeing fibrosis that was present and freeing of the inferior rectus muscle. Remarkable improvement of the dystopia was noticed, however, there was a residual diplopia in upgaze and enophthalmos. He was then referred to a strabismologist, which upon examination found left hypotropia of 8 ΔD corrected by 8 ΔD base up prism and positive forced duction test on elevation and pseudoptosis. Under local anesthesia, a limbal incision approach with hangback 4mm recession of inferior rectus muscle was performed after identifying an inferior rectus muscle structure. Improvement was noted shortly postoperative with correction of both diplopia and pseudoptosis. Follow up after 1, 4 and 8 months was done showing a stable condition. Delayed surgery in cases of orbital floor fracture may still hold good results provided proper assessment of the case with management of each sign separately.Keywords: diplopia, dystopia, late surgery, orbital floor fracture
Procedia PDF Downloads 226757 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets
Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi
Abstract:
Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.Keywords: breast cancer, diagnosis, machine learning, biomarker classification, neural network
Procedia PDF Downloads 133756 Proposed Framework based on Classification of Vertical Handover Decision Strategies in Heterogeneous Wireless Networks
Authors: Shidrokh Goudarzi, Wan Haslina Hassan
Abstract:
Heterogeneous wireless networks are converging towards an all-IP network as part of the so-called next-generation network. In this paradigm, different access technologies need to be interconnected; thus, vertical handovers or vertical handoffs are necessary for seamless mobility. In this paper, we conduct a review of existing vertical handover decision-making mechanisms that aim to provide ubiquitous connectivity to mobile users. To offer a systematic comparison, we categorize these vertical handover measurement and decision structures based on their respective methodology and parameters. Subsequently, we analyze several vertical handover approaches in the literature and compare them according to their advantages and weaknesses. The paper compares the algorithms based on the network selection methods, complexity of the technologies used and efficiency in order to introduce our vertical handover decision framework. We find that vertical handovers on heterogeneous wireless networks suffer from the lack of a standard and efficient method to satisfy both user and network quality of service requirements at different levels including architectural, decision-making and protocols. Also, the consolidation of network terminal, cross-layer information, multi packet casting and intelligent network selection algorithm appears to be an optimum solution for achieving seamless service continuity in order to facilitate seamless connectivity.Keywords: heterogeneous wireless networks, vertical handovers, vertical handover metric, decision-making algorithms
Procedia PDF Downloads 392755 A Leaf-Patchable Reflectance Meter for in situ Continuous Monitoring of Chlorophyll Content
Authors: Kaiyi Zhang, Wenlong Li, Haicheng Li, Yifei Luo, Zheng Li, Xiaoshi Wang, Xiaodong Chen
Abstract:
Plant wearable sensors facilitate the real-time monitoring of plant physiological status. In situ monitoring of the plant chlorophyll content over days could provide valuable information on the photosynthetic capacity, nitrogen content, and general plant health. However, it cannot be achieved by current chlorophyll measuring methods. Here, a miniaturized and plant-wearable chlorophyll meter was developed for rapid, non-destructive, in situ, and long-term chlorophyll monitoring. This reflectance-based chlorophyll sensor with 1.5 mm thickness and 0.2 g weight (1000 times lighter than the commercial chlorophyll meter), includes a light emitting diode (LED) and two symmetric photodetectors (PDs) on a flexible substrate and is patched onto the leaf upper epidermis with a conformal light guiding layer. A chlorophyll content index (CCI) calculated based on this sensor shows a better linear relationship with the leaf chlorophyll content (r² > 0.9) than the traditional chlorophyll meter. This meter can wirelessly communicate with a smartphone to monitor the leaf chlorophyll change under various stresses and indicate the unhealthy status of plants for long-term application of plants under various stresses earlier than chlorophyll meter and naked-eye observation. This wearable chlorophyll sensing patch is promising in smart and precision agriculture.Keywords: plant wearable sensors, reflectance-based measurements, chlorophyll content monitoring, smart agriculture
Procedia PDF Downloads 113754 Development of capsaicin-loaded nanostructured lipid carriers for topical application
Authors: Kwanputtha Arunprasert, Chaiyakarn Pornpitchanarong, Praneet Opanasopit, , Prasopchai Patrojanasophon
Abstract:
Capsaicin, a recently FDA-approved drug for the topical treatment of neuropathic pain, is associated with several side effects like burning sensation and erythema leading to severe skin irritation and poor patient compliance. These unwanted side effects are due to the rapid penetration of capsaicin into the epidermis and low permeation to the dermis layer. The purpose of this study was to develop nanostructured lipid carriers (NLCs) that entrapped capsaicin for reducing dermal irritation. Solid lipid (glyceryl monostearate (GM), cetyl palmitate (CP), cetyl alcohol (COH), stearic acid (SA), and stearyl alcohol (SOH)) and surfactant (Tween®80, Tween®20, and Span®20) were varied to obtained optimal capsaicin-loaded NLCs. The formulation using CP as solid lipid and Tween®80 as a surfactant (F2) demonstrated the smallest size, excellent colloidal stability, and narrow range distribution of the particles as being analyzed using Zetasizer. The obtained capsaicin-loaded NLCs were then characterized by entrapment efficiency (EE) and loading capacity (LC). The release characteristics followed Higuchi kinetics, and the prolonged capsaicin release may result in the reduction in skin irritation. These results could demonstrate the potentials of capsaicinloaded lipid-based nanoparticles for topical drug delivery.Keywords: capsaicin, lipid-based nanoparticles, nanostructured lipid carriers, topical drug delivery system
Procedia PDF Downloads 73753 Numerical Homogenization of Nacre
Authors: M. Arunachalam, M. Pandey
Abstract:
Nacre, a biological material that forms the inner-layer of sea shells can achieve high toughness and strength by way of staggered arrangement of strong tablets with soft and weak organic interface. Under applied loads the tablets slide over the adjacent tablets, thus generating inelastic deformation and toughness on macroscopic scale. A two dimensional finite element based homogenization methodology is adopted for obtaining the effective material properties of Nacre using a representative volume element (RVE) at finite deformations. In this work, the material behaviour for tablet and interface are assumed to be Isotropic elastic and Isotropic elastic-perfectly plastic with strain softening respectively. Numerical experiments such as uniaxial tension test along X, Y directions and simple shear test are performed on the RVE with uniform displacement and periodic constraints applied at the RVE boundaries to obtain the anisotropic homogenized response and maximum local stresses within each constituents of Nacre. Homogenized material model is then tested for macroscopic structure under three point bending condition and the results obtained are comparable with the results obtained for detailed microstructure based structure, thus homogenization provides a bridge between macroscopic scale and microscopic scale and homogenized material properties obtained from microstructural (RVE) analysis could be used in large scale structural analysis.Keywords: finite element, homogenization, inelastic deformation, staggered arrangement
Procedia PDF Downloads 317752 Tillage and Manure Effects on Water Retention and Van Genuchten Parameters in Western Iran
Authors: Azadeh Safadoust, Ali Akbar Mahboubi, Mohammad Reza Mosaddeghi, Bahram Gharabaghi
Abstract:
A study was conducted to evaluate hydraulic properties of a sandy loam soil and corn (Zea mays L.) crop production under a short-term tillage and manure combinations field experiment carried out in west of Iran. Treatments included composted cattle manure application rates [0, 30, and 60 Mg (dry weight) ha⁻¹] and tillage systems [no-tillage (NT), chisel plowing (CP), and moldboard plowing (MP)] arranged in a split-plot design. Soil water characteristic curve (SWCC) and saturated hydraulic conductivity (Ks) were significantly affected by manure and tillage treatments. At any matric suction, the soil water content was in the order of MP>CP>NT. At all matric suctions, the amount of water retained by the soil increased as manure application rate increased (i.e. 60>30>0 Mg ha⁻¹). Similar to the tillage effects, at high suctions the differences of water retained due to manure addition were less than that at low suctions. The change of SWCC from tillage methods and manure applications may attribute to the change of pore size and aggregate size distributions. Soil Ks was in the order of CP>MP>NT for the first two layers and in the order of MP>CP and NT for the deeper soil layer. The Ks also increased with increasing rates of manure application (i.e. 60>30>0 Mg ha⁻¹). This was due to the increase in the total pore size and continuity.Keywords: corn, manure, saturated hydraulic conductivity, soil water characteristic curve, tillage
Procedia PDF Downloads 77751 Growth and Laying Performance of Commercial Hens Fed with Varying Levels of Trichanthera gigantea (Nees.) Leaf Meal
Authors: Carmel Khrisna Wong Moreno, Dinah M. Espina
Abstract:
The increasing price of feed ingredients has prompted farmers to seek feasible feed alternatives like the utilization of locally-grown protein-rich feedstuff which is cheaper but gives a positive result in poultry production. Trichanthera gigantea, a fodder tree which is an excellent alternative as feed ingredient in the Philippines has now gained popularity as feed supplement. This study was conducted to determine the growth and laying performance of commercial hens fed with varying levels of Trichanthera gigantea leaf meal. The incorporation of Trichanthera gigantea leaf meal at 5%, 10%, and 15% into the diet of commercial hens did not affect the growth and laying performance. Results of the study revealed that the weight gain of the birds fed with Trichanthera gigantea supplemented diets was not significantly different with the control (100% commercial layer mash). The voluntary feed intake, feed conversion ratio, weekly average egg weight and egg production of the commercial hens fed with T. gigantea leaf meal supplemented diets were not significantly different from the control. Results of the study showed that the supplementation of Trichanthera gigantea leaf meal of up to 15% into the diets of commercial hens is highly acceptable since it does not affect the growth and laying performance of the birds. In addition, it would mean a 15% savings in production cost from commercial feeds.Keywords: egg production, growth, laying performance, trichanthera gigantea (nees)
Procedia PDF Downloads 425750 Stability Characteristics of Angle Ply Bi-Stable Laminates by Considering the Effect of Resin Layers
Authors: Masih Moore, Saeed Ziaei-Rad
Abstract:
In this study, the stability characteristics of a bi-stable composite plate with different asymmetric composition are considered. The interest in bi-stable structures comes from their ability that these structures can have two different stable equilibrium configurations to define a discrete set of stable shapes. The structures can easily change the first stable shape to the second one by a simple snap action. The main purpose of the current research is to consider the effect of including resin layers on the stability characteristics of bi-stable laminates. To this end and In order to determine the magnitude of the loads that are responsible for snap through and snap back phenomena between two stable shapes of the laminate, a non-linear finite element method (FEM) is utilized. An experimental investigation was also carried out to study the critical loads that caused snapping between two different stable shapes. Several specimens were manufactured from T300/5208 graphite-epoxy with [0/90]T, [-30/60]T, [-20/70]T asymmetric stacking sequence. In order to create an accurate finite element model, different thickness of resin layers created during the manufacturing process of the laminate was measured and taken into account. The geometry of each lamina and the resin layers was characterized by optical microscopy from different locations of the laminates thickness. The exact thickness of each lamina and the resin layer in all specimens with [0/90]T,[-30/60]T, [-20/70]T stacking sequence were determined by using image processing technique.Keywords: bi-stable laminates, finite element method, graphite-epoxy plate, snap behavior
Procedia PDF Downloads 242749 Effect of Heat Treatment on Columnar Grain Growth and Goss Texture on Surface in Grain-Oriented Electrical Steels
Authors: Jungkyun Na, Jaesang Lee, Yang Mo Koo
Abstract:
In this study to find a replacement for expensive secondary recrystallization in GO electrical steel production, effect of heat treatment on the formation of columnar grain and Goss texture is investigated. The composition of the sample is Fe-2.0Si-0.2C. This process involves repeating of cold rolling and decarburization as a replacement for secondary recrystallization. By cold-rolling shear band is made and Goss grain grows from shear band by decarburization. By doing another cold rolling, some Goss texture is newly formed from the shear band, and some Goss texture is retained in microbands. To determine whether additional heat treatment with H2 atmosphere is needed on decarburization process for growth of Goss texture, comparing between decarburization and heat treatment with H2 atmosphere is performed. Also, to find optimum condition for heat treatment, heat treatment with various time and temperature is performed. It was found that increase in the number of cold rolling and heat treatment increases Goss texture. Both high Goss texture and good columnar structure is achieved at 900℃, and this temperature is within a+r phase region. Heat treatment at a temperature higher than a+r phase region caused carbon diffusion and this made layer with Goss grain decrease.Keywords: electrical steel, Goss texture, columnar structure, normal grain growth
Procedia PDF Downloads 217748 Development and Verification of the Idom Shielding Optimization Tool
Authors: Omar Bouhassoun, Cristian Garrido, César Hueso
Abstract:
The radiation shielding design is an optimization problem with multiple -constrained- objective functions (radiation dose, weight, price, etc.) that depend on several parameters (material, thickness, position, etc.). The classical approach for shielding design consists of a brute force trial-and-error process subject to previous designer experience. Therefore, the result is an empirical solution but not optimal, which can degrade the overall performance of the shielding. In order to automate the shielding design procedure, the IDOM Shielding Optimization Tool (ISOT) has been developed. This software combines optimization algorithms with the capabilities to read/write input files, run calculations, as well as parse output files for different radiation transport codes. In the first stage, the software was established to adjust the input files for two well-known Monte Carlo codes (MCNP and Serpent) and optimize the result (weight, volume, price, dose rate) using multi-objective genetic algorithms. Nevertheless, its modular implementation easily allows the inclusion of more radiation transport codes and optimization algorithms. The work related to the development of ISOT and its verification on a simple 3D multi-layer shielding problem using both MCNP and Serpent will be presented. ISOT looks very promising for achieving an optimal solution to complex shielding problems.Keywords: optimization, shielding, nuclear, genetic algorithm
Procedia PDF Downloads 109747 Quantitative Assessment of Different Formulations of Antimalarials in Sentinel Sites of India
Authors: Taruna Katyal Arora, Geeta Kumari, Hari Shankar, Neelima Mishra
Abstract:
Substandard and counterfeit antimalarials is a major problem in malaria endemic areas. The availability of counterfeit/ substandard medicines is not only decreasing the efficacy in patients, but it is also one of the contributing factors for developing antimalarial drug resistance. Owing to this, a pilot study was conducted to survey quality of drugs collected from different malaria endemic areas of India. Artesunate+Sulphadoxine-Pyrimethamine (AS+SP), Artemether-Lumefantrine (AL), Chloroquine (CQ) tablets were randomly picked from public health facilities in selected states of India. The quality of antimalarial drugs from these areas was assessed by using Global Pharma Health Fund Minilab test kit. This includes physical/visual inspection and disintegration test. Thin-layer chromatography (TLC) was carried out for semi-quantitative assessment of active pharmaceutical ingredients. A total of 45 brands, out of which 21 were for CQ, 14 for AL and 10 for AS+SP were tested from Uttar Pradesh (U.P.), Mizoram, Meghalaya and Gujrat states. One out of 45 samples showed variable disintegration and retension factor. The variable disintegration and retention factor which would have been due to substandard quality or other factors including storage. However, HPLC analysis confirms standard active pharmaceutical ingredient, but may be due to humid temperature and moisture in storage may account for the observed result.Keywords: antimalarial medicines, counterfeit, substandard, TLC
Procedia PDF Downloads 320746 The Coalescence Process of Droplet Pairs in Different Junctions
Authors: Xiang Wang, Yan Pang, Zhaomiao Liu
Abstract:
Droplet-based microfluidics have been studied extensively with the development of the Micro-Electro-Mechanical System (MEMS) which bears the advantages of high throughput, high efficiency, low cost and low polydispersity. Droplets, worked as versatile carriers, could provide isolated chambers as the internal dispersed phase is protected from the outside continuous phase. Droplets are used to add reagents to start or end bio-chemical reactions, to generate concentration gradients, to realize hydrate crystallization or protein analyses, while droplets coalescence acts as an important control technology. In this paper, deionized water is used as the dispersed phase, and several kinds of oil are used as the continuous phase to investigate the influence of the viscosity ratio of the two phases on the coalescence process. The microchannels are fabricated by coating a polydimethylsiloxane (PDMS) layer onto another PDMS flat plate after corona treatment. All newly made microchannels are rinsed with the continuous oil phase for hours before experiments to ensure the swelling fully developed. High-speed microscope system is used to document the serial videos with a maximum speed of 2000 frames per second. The critical capillary numbers (Ca*) of droplet pairs in various junctions are studied and compared. Ca* varies with different junctions or different liquids within the range of 0.002 to 0.01. However, droplets without extra control would have the problem of synchronism which reduces the coalescence efficiency.Keywords: coalescence, concentration, critical capillary number, droplet pair, split
Procedia PDF Downloads 249745 Aerodynamic Design Optimization of High-Speed Hatchback Cars for Lucrative Commercial Applications
Authors: A. Aravind, M. Vetrivel, P. Abhimanyu, C. A. Akaash Emmanuel Raj, K. Sundararaj, V. R. S. Kumar
Abstract:
The choice of high-speed, low budget hatchback car with diversified options is increasing for meeting the new generation buyers trend. This paper is aimed to augment the current speed of the hatchback cars through the aerodynamic drag reduction technique. The inverted airfoils are facilitated at the bottom of the car for generating the downward force for negating the lift while increasing the current speed range for achieving a better road performance. The numerical simulations have been carried out using a 2D steady pressure-based k-ɛ realizable model with enhanced wall treatment. In our numerical studies, Reynolds-averaged Navier-Stokes model and its code of solution are used. The code is calibrated and validated using the exact solution of the 2D boundary layer displacement thickness at the Sanal flow choking condition for adiabatic flows. We observed through the parametric analytical studies that the inverted airfoil integrated with the bottom surface at various predesigned locations of Hatchback cars can improve its overall aerodynamic efficiency through drag reduction, which obviously decreases the fuel consumption significantly and ensure an optimum road performance lucratively with maximum permissible speed within the framework of the manufactures constraints.Keywords: aerodynamics of commercial cars, downward force, hatchback car, inverted airfoil
Procedia PDF Downloads 274744 Dynamic Analysis of a Moderately Thick Plate on Pasternak Type Foundation under Impact and Moving Loads
Authors: Neslihan Genckal, Reha Gursoy, Vedat Z. Dogan
Abstract:
In this study, dynamic responses of composite plates on elastic foundations subjected to impact and moving loads are investigated. The first order shear deformation (FSDT) theory is used for moderately thick plates. Pasternak-type (two-parameter) elastic foundation is assumed. Elastic foundation effects are integrated into the governing equations. It is assumed that plate is first hit by a mass as an impact type loading then the mass continues to move on the composite plate as a distributed moving loading, which resembles the aircraft landing on airport pavements. Impact and moving loadings are modeled by a mass-spring-damper system with a wheel. The wheel is assumed to be continuously in contact with the plate after impact. The governing partial differential equations of motion for displacements are converted into the ordinary differential equations in the time domain by using Galerkin’s method. Then, these sets of equations are solved by using the Runge-Kutta method. Several parameters such as vertical and horizontal velocities of the aircraft, volume fractions of the steel rebar in the reinforced concrete layer, and the different touchdown locations of the aircraft tire on the runway are considered in the numerical simulation. The results are compared with those of the ABAQUS, which is a commercial finite element code.Keywords: elastic foundation, impact, moving load, thick plate
Procedia PDF Downloads 312743 Investigation on 3D Printing of Calcium silicate Bioceramic Slurry for Bone Tissue Engineering
Authors: Amin Jabbari
Abstract:
The state of the art in major 3D printing technologies, such as powder-based and slurry based, has led researchers to investigate the ability to fabricate bone scaffolds for bone tissue engineering using biomaterials. In addition, 3D printing technology can simulate mechanical and biological surface properties and print with high precision complex internal and external structures that match their functional properties. Polymer matrix composites reinforced with particulate bioceramics, hydrogels reinforced with particulate bioceramics, polymers coated with bioceramics, and non-porous bioceramics are among the materials that can be investigated for bone scaffold printing. Furthermore, it was shown that the introduction of high-density micropores into the sparingly dissolvable CSiMg10 and dissolvable CSiMg4 shell layer inevitably leads to a nearly 30% reduction in compressive strength, but such micropores can easily influence the ion release behavior of the scaffolds. Also, biocompatibility tests such as cytotoxicity, hemocompatibility and genotoxicity were tested on printed parts. The printed part was tested in vitro, and after 24-26 h for cytotoxicity, and 4h for hemocompatibility test, the CSiMg4@CSiMg10-p scaffolds were found to have significantly higher osteogenic capability than the other scaffolds of implantation. Overall, these experimental studies demonstrate that 3D printed, additively-manufactured bioceramic calcium (Ca)-silicate scaffolds with appropriate pore dimensions are promising to guide new bone ingrowth.Keywords: AM, 3D printed implants, bioceramic, tissue engineering
Procedia PDF Downloads 64742 From Edible Products to Disinfecting Currency Notes
Authors: Aniruddha Hore, Saptarshi Mitra, Sandip Ghosh, Sujoy Bose, Avijit Ghosh
Abstract:
The Indian rupee is the official currency of India. With time, science and technology got advanced, and our society is slowly making its way to a cashless mode of transaction. But as India is still a developing country, a large part of our society still depends on transaction through cash. During times of pandemics, we came to understand that everything that we touch is not safe from microbial contamination. The Indian currency is also not an exception. The Indian currency is the modern-day medium of harmful bacterial as well as other microbial contaminations resulting in diseases in human bodies. Therefore, the need came to make the currency disinfectant to give our people a healthier lifestyle. The main focus of the study is to develop a solution that, when applied to the currency notes, will kill the persisting bacteria or microbes present in the notes. So various natural edible products were used in order to prepare the solution, which is highly effective against the presence of harmful bacteria such as E. coli and S. aureus. The antibacterial activity of these natural ingredients is not unknown to us, so extracts from those products were mixed together to form a solution which was made the Indian currency notes antibacterial for 20min approx. The solution was creating a layer on the surface of currency notes, therefore, making it antibacterial for a given duration of time, i.e., no bacterial growth was seen during the time period of 20 minutes, therefore, making it safe for the usage of human hands.Keywords: Indian currency, antibacterial property of Indian currency, surface coating, currency disinfectant
Procedia PDF Downloads 124741 Ultrasonic Techniques to Characterize and Monitor Water-in-Oil Emulsion
Authors: E. A. Alshaafi, A. Prakash
Abstract:
Oil-water emulsions are commonly encountered in various industrial operations and at different stages of crude oil production and processing. Emulsions are often difficult to track and treat and can cause a number of costly problems which need to be avoided. The characteristics of the emulsion phase can vary with crude composition and types of impurities present in oil. The objectives of this study are the development of ultrasonic techniques to track and characterize emulsion phase generated during production and cleaning of crude oil. The position of emulsion layer is monitored with the help of ultrasonic probes suitably placed in the vessel. The sensitivity of the technique and its potential has been demonstrated based on extensive testing with different oil samples. The technique is also being developed to monitor emulsion phase characteristics such as stability, composition, and droplet size distribution. The ultrasonic parameters recorded are changes in acoustic velocity, signal attenuation and its frequency spectrum. Emulsion has been prepared with light mineral oil sample and the effects of various factors including mixing speed, temperature, surfactant, and solid particles concentrations have been investigated. The applied frequency for ultrasonic waves has been varied from 1 to 5 MHz to carry out a sensitivity analysis. Emulsion droplet structure is observed with optical microscopy and stability is examined by tracking the changes in ultrasonic parameters with time. A model based on ultrasonic attenuation spectroscopy is being developed and tested to track changes in droplet size distribution with time.Keywords: ultrasonic techniques, emulsion, characterization, droplet size
Procedia PDF Downloads 172740 Nano-emulsion/Nano-suspension as Precursors for Oral Dissolvable Film to Enhance Bioavalabilty for Poor-water Solubility Drugs
Authors: Yuan Yang, Mickey Lam
Abstract:
Oral dissolvable films have been considered as a unique alternative approach to conventional oral dosage forms. The films could be administrated via the gastrointestinal tract as conventional dosages or through sublingual/buccal mucosa membranes, which could enhance drug bioavailability by avoiding the first-pass effect and improving permeability due to high blood flow and lymphatic circulation. This work has described a state-of-art technic using nano-emulsion/nano-suspension as a precursor for the film to enhance the bioavailability of BCS class II drugs. The drug molecules are consequentially processed through the emulsification, gelation, and film-casting processes. The gelation process is critical to stabilizing the nano-emulsion for the film-casting as well as controlling the drug release process. Furthermore, the size of the nanoparticle on the film has a strong correlation with the size of the micelles in the precursor and the condition of the gelation process. It has been discovered that nanoparticle from 200 nm to 300 nm has shown the highest permeability for sublingual administration. In one example shown in work, the bioavailability of a low solubilize drug has been increased from 10% to 24% via sublingual administration of the film. The increasing of the bioavailability was thought to be associated with the enhancement of the diffusion process of the drug in the saliva layer above the mucosa membrane and the fact that the presents of the emulsifier help lose the rigid junction of the mucosa cells.Keywords: oral dissolvable film, nano-suspension, nano-emulsion, bioavailability
Procedia PDF Downloads 181739 Influence of AAR-Induced Expansion Level on Confinement Efficiency of CFRP Wrapping Applied to Damaged Circular Concrete Columns
Authors: Thamer Kubat, Riadh Al Mahiadi, Ahmad Shayan
Abstract:
The alkali-aggregate reaction (AAR) in concrete has a negative influence on the mechanical properties and durability of concrete. Confinement by carbon fiber reinforced polymer (CFRP) is an effective method of treatment for some AAR-affected elements. Eighteen reinforced columns affected by different levels of expansion due to AAR were confined using CFRP to evaluate the effect of expansion level on confinement efficiency. Strength and strain capacities (axial and circumferential) were measured using photogrammetry under uniaxial compressive loading to evaluate the efficiency of CFRP wrapping for the rehabilitation of affected columns. In relation to uniaxial compression capacity, the results indicated that the confinement of AAR-affected columns by one layer of CFRP is sufficient to reach and exceed the load capacity of unaffected sound columns. Parallel to the experimental study, finite element (FE) modeling using ATENA software was employed to predict the behavior of CFRP-confined damaged concrete and determine the possibility of using the model in a parametric study by simulating the number of CFRP layers. A comparison of the experimental results with the results of the theoretical models showed that FE modeling could be used for the prediction of the behavior of confined AAR-damaged concrete.Keywords: ATENA, carbon fiber reinforced polymer (CFRP), confinement efficiency, finite element (FE)
Procedia PDF Downloads 74738 An Electrocardiography Deep Learning Model to Detect Atrial Fibrillation on Clinical Application
Authors: Jui-Chien Hsieh
Abstract:
Background:12-lead electrocardiography(ECG) is one of frequently-used tools to detect atrial fibrillation (AF), which might degenerate into life-threaten stroke, in clinical Practice. Based on this study, the AF detection by the clinically-used 12-lead ECG device has only 0.73~0.77 positive predictive value (ppv). Objective: It is on great demand to develop a new algorithm to improve the precision of AF detection using 12-lead ECG. Due to the progress on artificial intelligence (AI), we develop an ECG deep model that has the ability to recognize AF patterns and reduce false-positive errors. Methods: In this study, (1) 570-sample 12-lead ECG reports whose computer interpretation by the ECG device was AF were collected as the training dataset. The ECG reports were interpreted by 2 senior cardiologists, and confirmed that the precision of AF detection by the ECG device is 0.73.; (2) 88 12-lead ECG reports whose computer interpretation generated by the ECG device was AF were used as test dataset. Cardiologist confirmed that 68 cases of 88 reports were AF, and others were not AF. The precision of AF detection by ECG device is about 0.77; (3) A parallel 4-layer 1 dimensional convolutional neural network (CNN) was developed to identify AF based on limb-lead ECGs and chest-lead ECGs. Results: The results indicated that this model has better performance on AF detection than traditional computer interpretation of the ECG device in 88 test samples with 0.94 ppv, 0.98 sensitivity, 0.80 specificity. Conclusions: As compared to the clinical ECG device, this AI ECG model promotes the precision of AF detection from 0.77 to 0.94, and can generate impacts on clinical applications.Keywords: 12-lead ECG, atrial fibrillation, deep learning, convolutional neural network
Procedia PDF Downloads 113