Search results for: complex interactions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7074

Search results for: complex interactions

5334 Molecular and Electronic Structure of Chromium (III) Cyclopentadienyl Complexes

Authors: Salem El-Tohami Ashoor

Abstract:

Here we show that the reduction of [Cr(ArN(CH2)3NAr)2Cl2] (1) where (Ar = 2,6-Pri2C6H3) and in presence of NaCp (2) (Cp= C5H5 = cyclopentadien), with a center coordination η5 interaction between Cp as co-ligand and chromium metal center, this was optimization by using density functional theory (DFT) and then was comparing with experimental data, also other possibility of Cp interacted with ion metal were tested like η1 ,η2 ,η3 and η4 under optimization system. These were carried out under investigation of density functional theory (DFT) calculation, and comparing together. Other methods, explicitly including electron correlation, are necessary for more accurate calculations; MB3LYP ( Becke)( Lee–Yang–Parr ) level of theory often being used to obtain more exact results. These complexes were estimated of electronic energy for molecular system, because it accounts for all electron correlation interactions. The optimised of [Cr(ArN(CH2)3NAr)2(η5-Cp)] (Ar = 2,6-Pri2C6H3 and Cp= C5H5) was found to be thermally more stable than others of chromium cyclopentadienyl. By using Dewar-Chatt-Duncanson model, as a basis of the molecular orbital (MO) analysis and showed the highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital LUMO.

Keywords: Chromium(III) cyclopentadienyl complexes, DFT, MO, HOMO, LUMO

Procedia PDF Downloads 508
5333 Dynamics of a Reaction-Diffusion Problems Modeling Two Predators Competing for a Prey

Authors: Owolabi Kolade Matthew

Abstract:

In this work, we investigate both the analytical and numerical studies of the dynamical model comprising of three species system. We analyze the linear stability of stationary solutions in the one-dimensional multi-system modeling the interactions of two predators and one prey species. The stability analysis has a lot of implications for understanding the various spatiotemporal and chaotic behaviors of the species in the spatial domain. The analysis results presented have established the possibility of the three interacting species to coexist harmoniously, this feat is achieved by combining the local and global analyzes to determine the global dynamics of the system. In the presence of diffusion, a viable exponential time differencing method is applied to multi-species nonlinear time-dependent partial differential equation to address the points and queries that may naturally arise. The scheme is described in detail, and justified by a number of computational experiments.

Keywords: asymptotically stable, coexistence, exponential time differencing method, global and local stability, predator-prey model, nonlinear, reaction-diffusion system

Procedia PDF Downloads 416
5332 Brain-Computer Interfaces That Use Electroencephalography

Authors: Arda Ozkurt, Ozlem Bozkurt

Abstract:

Brain-computer interfaces (BCIs) are devices that output commands by interpreting the data collected from the brain. Electroencephalography (EEG) is a non-invasive method to measure the brain's electrical activity. Since it was invented by Hans Berger in 1929, it has led to many neurological discoveries and has become one of the essential components of non-invasive measuring methods. Despite the fact that it has a low spatial resolution -meaning it is able to detect when a group of neurons fires at the same time-, it is a non-invasive method, making it easy to use without possessing any risks. In EEG, electrodes are placed on the scalp, and the voltage difference between a minimum of two electrodes is recorded, which is then used to accomplish the intended task. The recordings of EEGs include, but are not limited to, the currents along dendrites from synapses to the soma, the action potentials along the axons connecting neurons, and the currents through the synaptic clefts connecting axons with dendrites. However, there are some sources of noise that may affect the reliability of the EEG signals as it is a non-invasive method. For instance, the noise from the EEG equipment, the leads, and the signals coming from the subject -such as the activity of the heart or muscle movements- affect the signals detected by the electrodes of the EEG. However, new techniques have been developed to differentiate between those signals and the intended ones. Furthermore, an EEG device is not enough to analyze the data from the brain to be used by the BCI implication. Because the EEG signal is very complex, to analyze it, artificial intelligence algorithms are required. These algorithms convert complex data into meaningful and useful information for neuroscientists to use the data to design BCI devices. Even though for neurological diseases which require highly precise data, invasive BCIs are needed; non-invasive BCIs - such as EEGs - are used in many cases to help disabled people's lives or even to ease people's lives by helping them with basic tasks. For example, EEG is used to detect before a seizure occurs in epilepsy patients, which can then prevent the seizure with the help of a BCI device. Overall, EEG is a commonly used non-invasive BCI technique that has helped develop BCIs and will continue to be used to detect data to ease people's lives as more BCI techniques will be developed in the future.

Keywords: BCI, EEG, non-invasive, spatial resolution

Procedia PDF Downloads 78
5331 The Impacts of Digital Marketing Activities on Customers' Purchase Intention via Brand Reputation and Awareness: Empirical Study

Authors: Radwan Al Dwairi, Sara Melhem

Abstract:

Today’s billions of individuals are linked together in real-time using different types of social platforms. Despite the increasing importance of social media marketing activities in enhancing customers’ intention to purchase online; still, the majority of research has concentrated on the impact of such tools on customer satisfaction or retention and neglecting its real role in enhancing brand reputation and awareness, which in turn impact customers’ intention to purchase online. In response, this study aims to close this gap by conducting an empirical study using a qualitative approach by collecting a sample of data from 216 respondents in this domain. Results of the study reveal the significant impact of word-of-mouth, interactions, and influencers on a brand reputation, where the latter positively and significantly impacted customers’ intention to purchase via social platforms. In addition, results show the significant impact of brand reputation on enhancing customers' purchase intention.

Keywords: brand awareness, brand reputation, EWOM, influencers, interaction

Procedia PDF Downloads 100
5330 The Effectiveness of Psychodrama in the Reduction of Social Anxiety Disorder among Male Adolescents

Authors: Saeed Dehnavi, Zahra Hadadi, Marzieh Rezabeigi, Nader Monirpoor

Abstract:

This study has been performed with the goal of investigating the effectiveness of psychodrama in the reduction of social anxiety among the male adolescents in Kermanshah. 210 adolescents (13-14 year-olds) from four junior high schools in Kermanshah filled Liebowitz Social Anxiety Scale for Children and Adolescents (LSAS-CA) (Masia-Warner, Klien & Liebowitz, 2003). 30 of the adolescents who obtained the highest scores in LSAS-CA scale were chosen as the sample and were randomly assigned as experimental group (15 people) and control group (15 people). The experimental group participated in two-hour sessions of psychodrama twice a week for 6 weeks. The control group received no intervention. The findings of this study showed a significant reduction in the symptoms of social anxiety among the adolescents in experimental group in comparison to that of the control group. Also a three-month follow-up confirmed the stability of the results. Adolescents’ interactions in the psychodrama group, talking about their problems to the group, and achieving appropriate solutions by themselves are the useful factors of this intervention.

Keywords: psychodrama, social anxiety disorder, adolescents, male adolescents

Procedia PDF Downloads 465
5329 Overall Student Satisfaction at Tabor School of Education: An Examination of Key Factors Based on the AUSSE SEQ

Authors: Francisco Ben, Tracey Price, Chad Morrison, Victoria Warren, Willy Gollan, Robyn Dunbar, Frank Davies, Mark Sorrell

Abstract:

This paper focuses particularly on the educational aspects that contribute to the overall educational satisfaction rated by Tabor School of Education students who participated in the Australasian Survey of Student Engagement (AUSSE) conducted by the Australian Council for Educational Research (ACER) in 2010, 2012 and 2013. In all three years of participation, Tabor ranked first especially in the area of overall student satisfaction. By using a single level path analysis in relation to the AUSSE datasets collected using the Student Engagement Questionnaire (SEQ) for Tabor School of Education, seven aspects that contribute to overall student satisfaction have been identified. There appears to be a direct causal link between aspects of the Supportive Learning Environment, Work Integrated Learning, Career Readiness, Academic Challenge, and overall educational satisfaction levels. A further three aspects, being Student and Staff Interactions, Active Learning, and Enriching Educational Experiences, indirectly influence overall educational satisfaction levels.

Keywords: attrition, retention, educational experience, pre-service teacher education, student satisfaction

Procedia PDF Downloads 356
5328 Propagation of Ultra-High Energy Cosmic Rays through Extragalactic Magnetic Fields: An Exploratory Study of the Distance Amplification from Rectilinear Propagation

Authors: Rubens P. Costa, Marcelo A. Leigui de Oliveira

Abstract:

The comprehension of features on the energy spectra, the chemical compositions, and the origins of Ultra-High Energy Cosmic Rays (UHECRs) - mainly atomic nuclei with energies above ~1.0 EeV (exa-electron volts) - are intrinsically linked to the problem of determining the magnitude of their deflections in cosmic magnetic fields on cosmological scales. In addition, as they propagate from the source to the observer, modifications are expected in their original energy spectra, anisotropy, and the chemical compositions due to interactions with low energy photons and matter. This means that any consistent interpretation of the nature and origin of UHECRs has to include the detailed knowledge of their propagation in a three-dimensional environment, taking into account the magnetic deflections and energy losses. The parameter space range for the magnetic fields in the universe is very large because the field strength and especially their orientation have big uncertainties. Particularly, the strength and morphology of the Extragalactic Magnetic Fields (EGMFs) remain largely unknown, because of the intrinsic difficulty of observing them. Monte Carlo simulations of charged particles traveling through a simulated magnetized universe is the straightforward way to study the influence of extragalactic magnetic fields on UHECRs propagation. However, this brings two major difficulties: an accurate numerical modeling of charged particles diffusion in magnetic fields, and an accurate numerical modeling of the magnetized Universe. Since magnetic fields do not cause energy losses, it is important to impose that the particle tracking method conserve the particle’s total energy and that the energy changes are results of the interactions with background photons only. Hence, special attention should be paid to computational effects. Additionally, because of the number of particles necessary to obtain a relevant statistical sample, the particle tracking method must be computationally efficient. In this work, we present an analysis of the propagation of ultra-high energy charged particles in the intergalactic medium. The EGMFs are considered to be coherent within cells of 1 Mpc (mega parsec) diameter, wherein they have uniform intensities of 1 nG (nano Gauss). Moreover, each cell has its field orientation randomly chosen, and a border region is defined such that at distances beyond 95% of the cell radius from the cell center smooth transitions have been applied in order to avoid discontinuities. The smooth transitions are simulated by weighting the magnetic field orientation by the particle's distance to the two nearby cells. The energy losses have been treated in the continuous approximation parameterizing the mean energy loss per unit path length by the energy loss length. We have shown, for a particle with the typical energy of interest the integration method performance in the relative error of Larmor radius, without energy losses and the relative error of energy. Additionally, we plotted the distance amplification from rectilinear propagation as a function of the traveled distance, particle's magnetic rigidity, without energy losses, and particle's energy, with energy losses, to study the influence of particle's species on these calculations. The results clearly show when it is necessary to use a full three-dimensional simulation.

Keywords: cosmic rays propagation, extragalactic magnetic fields, magnetic deflections, ultra-high energy

Procedia PDF Downloads 129
5327 Bridging Minds and Nature: Revolutionizing Elementary Environmental Education Through Artificial Intelligence

Authors: Hoora Beheshti Haradasht, Abooali Golzary

Abstract:

Environmental education plays a pivotal role in shaping the future stewards of our planet. Leveraging the power of artificial intelligence (AI) in this endeavor presents an innovative approach to captivate and educate elementary school children about environmental sustainability. This paper explores the application of AI technologies in designing interactive and personalized learning experiences that foster curiosity, critical thinking, and a deep connection to nature. By harnessing AI-driven tools, virtual simulations, and personalized content delivery, educators can create engaging platforms that empower children to comprehend complex environmental concepts while nurturing a lifelong commitment to protecting the Earth. With the pressing challenges of climate change and biodiversity loss, cultivating an environmentally conscious generation is imperative. Integrating AI in environmental education revolutionizes traditional teaching methods by tailoring content, adapting to individual learning styles, and immersing students in interactive scenarios. This paper delves into the potential of AI technologies to enhance engagement, comprehension, and pro-environmental behaviors among elementary school children. Modern AI technologies, including natural language processing, machine learning, and virtual reality, offer unique tools to craft immersive learning experiences. Adaptive platforms can analyze individual learning patterns and preferences, enabling real-time adjustments in content delivery. Virtual simulations, powered by AI, transport students into dynamic ecosystems, fostering experiential learning that goes beyond textbooks. AI-driven educational platforms provide tailored content, ensuring that environmental lessons resonate with each child's interests and cognitive level. By recognizing patterns in students' interactions, AI algorithms curate customized learning pathways, enhancing comprehension and knowledge retention. Utilizing AI, educators can develop virtual field trips and interactive nature explorations. Children can navigate virtual ecosystems, analyze real-time data, and make informed decisions, cultivating an understanding of the delicate balance between human actions and the environment. While AI offers promising educational opportunities, ethical concerns must be addressed. Safeguarding children's data privacy, ensuring content accuracy, and avoiding biases in AI algorithms are paramount to building a trustworthy learning environment. By merging AI with environmental education, educators can empower children not only with knowledge but also with the tools to become advocates for sustainable practices. As children engage in AI-enhanced learning, they develop a sense of agency and responsibility to address environmental challenges. The application of artificial intelligence in elementary environmental education presents a groundbreaking avenue to cultivate environmentally conscious citizens. By embracing AI-driven tools, educators can create transformative learning experiences that empower children to grasp intricate ecological concepts, forge an intimate connection with nature, and develop a strong commitment to safeguarding our planet for generations to come.

Keywords: artificial intelligence, environmental education, elementary children, personalized learning, sustainability

Procedia PDF Downloads 88
5326 Functional Traits and Agroecosystem Multifunctionality in Summer Cover Crop Mixtures and Monocultures

Authors: Etienne Herrick

Abstract:

As an economically and ecologically feasible method for farmers to introduce greater diversity into their crop rotations, cover cropping presents a valuable opportunity for improving the sustainability of food production. Planted in-between cash crop growing seasons, cover crops serve to enhance agroecosystem functioning, rather than being destined for sale or consumption. In fact, cover crops may hold the capacity to deliver multiple ecosystem functions or services simultaneously (multifunctionality). Building upon this line of research will not only benefit society at present, but also support its continued survival through its potential for restoring depleted soils and reducing the need for energy-intensive and harmful external inputs like fertilizers and pesticides. This study utilizes a trait-based approach to explore the influence of inter- and intra-specific interactions in summer cover crop mixtures and monocultures on functional trait expression and ecosystem services. Functional traits that enhance ecosystem services related to agricultural production include height, specific leaf area (SLA), root, shoot ratio, leaf C and N concentrations, and flowering phenology. Ecosystem services include biomass production, weed suppression, reduced N leaching, N recycling, and support of pollinators. Employing a trait-based approach may allow for the elucidation of mechanistic links between plant structure and resulting ecosystem service delivery. While relationships between some functional traits and the delivery of particular ecosystem services may be readily apparent through existing ecological knowledge (e.g. height positively correlating with weed suppression), this study will begin to quantify those relationships so as to gain further understanding of whether and how measurable variation in functional trait expression across cover crop mixtures and monocultures can serve as a reliable predictor of variation in the types and abundances of ecosystem services delivered. Six cover crop species, including legume, grass, and broadleaf functional types, were selected for growth in six mixtures and their component monocultures based upon the principle of trait complementarity. The tricultures (three-way mixtures) are comprised of a legume, grass, and broadleaf species, and include cowpea/sudex/buckwheat, sunnhemp/sudex/buckwheat, and chickling vetch/oat/buckwheat combinations; the dicultures contain the same legume and grass combinations as above, without the buckwheat broadleaf. By combining species with expectedly complimentary traits (for example, legumes are N suppliers and grasses are N acquirers, creating a nutrient cycling loop) the cover crop mixtures may elicit a broader range of ecosystem services than that provided by a monoculture, though trade-offs could exist. Collecting functional trait data will enable the investigation of the types of interactions driving these ecosystem service outcomes. It also allows for generalizability across a broader range of species than just those selected for this study, which may aid in informing further research efforts exploring species and ecosystem functioning, as well as on-farm management decisions.

Keywords: agroecology, cover crops, functional traits, multifunctionality, trait complementarity

Procedia PDF Downloads 256
5325 Nabokov’s Lolita: Externalization of Contemporary Mind in the Configuration of Hedonistic Aesthetics

Authors: Saima Murtaza

Abstract:

Ethics and aesthetics have invariably remained the two closely integrated artistic appurtenances for the production of any work of art. These artistic devices configure themselves into a complex synthesis in our contemporary literature. The labyrinthine integration of ethics and aesthetics, operating in the lives of human characters, to the extent of transcending all limits has resulted in an artistic puzzle for the readers. Art, no doubt, is an extrinsic expression of the intrinsic life of man. The use of aesthetics in literature pertaining to human existence; aesthetic solipsism, has resulted in the artistic objectification of these characters. The practice of the like aestheticism deprives the characters of their souls, rendering them as mere objects of aesthetic gaze at the hands of their artists-creators. Artists orchestrate their lives founding it on a plot which deviates from normal social and ethical standards. Their perverse attitude can be seen in dealing with characters, their feelings and the incidents of their lives. Morality is made to appear not as a religious construct but as an individual’s private affair. Furthermore, the idea of beauty incarnated, in other words hedonistic aesthetic does not placate a true aesthete. Ethics and aesthetics are the two most recurring motifs of our contemporary literature, especially of Nabokov’s world. The purpose of this study is to peruse these aforementioned motifs in Nabokov’s most enigmatic novel Lolita, a story of pedophilia, which is in fact reflective of our complex individual psychic and societal patterns. The narrative subverts all the traditional and hitherto known notions of aesthetics and ethics. When applied to literature, aesthetic does not simply mean ‘beautiful’ in the text. It refers to an intricate relationship between feelings and perception and also incorporates within its range wide-ranging emotional reactions to text. The term aesthetics in literature is connected with the readers whose critical responses to the text determine the merit of any work to be really a piece of art. Aestheticism is the child of ethics. Morality sets the grounds for the production of any work and the idea of aesthetics gives it transcendence.

Keywords: ethics, aesthetics and hedonistic aesthetic, nymphet syndrome, pedophilia

Procedia PDF Downloads 163
5324 Predictors, Barriers, and Facilitators to Refugee Women’s Employment and Economic Inclusion: A Mixed Methods Systematic Review

Authors: Areej Al-Hamad, Yasin Yasin, Kateryna Metersky

Abstract:

This mixed-method systematic review and meta-analysis provide an encompassing understanding of the barriers, facilitators, and predictors of refugee women's employment and economic inclusion. The study sheds light on the complex interplay of sociocultural, personal, political, and environmental factors influencing these outcomes, underlining the urgent need for a multifaceted, tailored approach to devising strategies, policies, and interventions aimed at boosting refugee women's economic empowerment. Our findings suggest that sociocultural factors, including gender norms, societal attitudes, language proficiency, and social networks, profoundly shape refugee women's access to and participation in the labor market. Personal factors such as age, educational attainment, health status, skills, and previous work experience also play significant roles. Political factors like immigration policies, regulations, and rights to work, alongside environmental factors like labor market conditions, availability of employment opportunities, and access to resources and support services, further contribute to the complex dynamics influencing refugee women's economic inclusion. The significant variability observed in the impacts of these factors across different contexts underscores the necessity of adopting population and region-specific strategies. A one-size-fits-all approach may prove to be ineffective due to the diversity and unique circumstances of refugee women across different geographical, cultural, and political contexts. The study's findings have profound implications for policy-making, practice, education, and research. The insights garnered a call for coordinated efforts across these domains to bolster refugee women's economic participation. In policy-making, the findings necessitate a reassessment of current immigration and labor market policies to ensure they adequately support refugee women's employment and economic integration. In practice, they highlight the need for comprehensive, tailored employment services and interventions that address the specific barriers and leverage the facilitators identified. In education, they underline the importance of language and skills training programs that cater to the unique needs and circumstances of refugee women. Lastly, in research, they emphasize the need for ongoing investigations into the multifaceted factors influencing refugee women's employment experiences, allowing for continuous refinement of our understanding and interventions. Through this comprehensive exploration, the study contributes to ongoing efforts aimed at creating more inclusive, equitable societies. By continually refining our understanding of the complex factors influencing refugee women's employment experiences, we can pave the way toward enhanced economic empowerment for this vulnerable population.

Keywords: refugee women, employment barriers, systematic review, employment facilitators

Procedia PDF Downloads 85
5323 Enhancing Scalability in Ethereum Network Analysis: Methods and Techniques

Authors: Stefan K. Behfar

Abstract:

The rapid growth of the Ethereum network has brought forth the urgent need for scalable analysis methods to handle the increasing volume of blockchain data. In this research, we propose efficient methodologies for making Ethereum network analysis scalable. Our approach leverages a combination of graph-based data representation, probabilistic sampling, and parallel processing techniques to achieve unprecedented scalability while preserving critical network insights. Data Representation: We develop a graph-based data representation that captures the underlying structure of the Ethereum network. Each block transaction is represented as a node in the graph, while the edges signify temporal relationships. This representation ensures efficient querying and traversal of the blockchain data. Probabilistic Sampling: To cope with the vastness of the Ethereum blockchain, we introduce a probabilistic sampling technique. This method strategically selects a representative subset of transactions and blocks, allowing for concise yet statistically significant analysis. The sampling approach maintains the integrity of the network properties while significantly reducing the computational burden. Graph Convolutional Networks (GCNs): We incorporate GCNs to process the graph-based data representation efficiently. The GCN architecture enables the extraction of complex spatial and temporal patterns from the sampled data. This combination of graph representation and GCNs facilitates parallel processing and scalable analysis. Distributed Computing: To further enhance scalability, we adopt distributed computing frameworks such as Apache Hadoop and Apache Spark. By distributing computation across multiple nodes, we achieve a significant reduction in processing time and enhanced memory utilization. Our methodology harnesses the power of parallelism, making it well-suited for large-scale Ethereum network analysis. Evaluation and Results: We extensively evaluate our methodology on real-world Ethereum datasets covering diverse time periods and transaction volumes. The results demonstrate its superior scalability, outperforming traditional analysis methods. Our approach successfully handles the ever-growing Ethereum data, empowering researchers and developers with actionable insights from the blockchain. Case Studies: We apply our methodology to real-world Ethereum use cases, including detecting transaction patterns, analyzing smart contract interactions, and predicting network congestion. The results showcase the accuracy and efficiency of our approach, emphasizing its practical applicability in real-world scenarios. Security and Robustness: To ensure the reliability of our methodology, we conduct thorough security and robustness evaluations. Our approach demonstrates high resilience against adversarial attacks and perturbations, reaffirming its suitability for security-critical blockchain applications. Conclusion: By integrating graph-based data representation, GCNs, probabilistic sampling, and distributed computing, we achieve network scalability without compromising analytical precision. This approach addresses the pressing challenges posed by the expanding Ethereum network, opening new avenues for research and enabling real-time insights into decentralized ecosystems. Our work contributes to the development of scalable blockchain analytics, laying the foundation for sustainable growth and advancement in the domain of blockchain research and application.

Keywords: Ethereum, scalable network, GCN, probabilistic sampling, distributed computing

Procedia PDF Downloads 81
5322 Box Counting Dimension of the Union L of Trinomial Curves When α ≥ 1

Authors: Kaoutar Lamrini Uahabi, Mohamed Atounti

Abstract:

In the present work, we consider one category of curves denoted by L(p, k, r, n). These curves are continuous arcs which are trajectories of roots of the trinomial equation zn = αzk + (1 − α), where z is a complex number, n and k are two integers such that 1 ≤ k ≤ n − 1 and α is a real parameter greater than 1. Denoting by L the union of all trinomial curves L(p, k, r, n) and using the box counting dimension as fractal dimension, we will prove that the dimension of L is equal to 3/2.

Keywords: feasible angles, fractal dimension, Minkowski sausage, trinomial curves, trinomial equation

Procedia PDF Downloads 195
5321 Electron Density Analysis and Nonlinear Optical Properties of Zwitterionic Compound

Authors: A. Chouaih, N. Benhalima, N. Boukabcha, R. Rahmani, F. Hamzaoui

Abstract:

Zwitterionic compounds have received the interest of chemists and physicists due to their applications as nonlinear optical materials. Recently, zwitterionic compounds exhibiting high nonlinear optical activity have been investigated. In this context, the molecular electron charge density distribution of the title compound is described accurately using the multipolar model of Hansen and Coppens. The net atomic charge and the molecular dipole moment have been determined in order to understand the nature of inter- and intramolecular charge transfer. The study reveals the nature of intermolecular interactions including charge transfer and hydrogen bonds in the title compound. In this crystal, the molecules form dimers via intermolecular hydrogen bonds. The dimers are further linked by C–H...O hydrogen bonds into chains along the c crystallographic axis. This study has also allowed us to determine various nonlinear optical properties such as molecular electrostatic potential, polarizability, and hyperpolarizability of the title compound.

Keywords: organic compounds, polarizability, hyperpolarizability, dipole moment

Procedia PDF Downloads 422
5320 The Role of Smartphones on Iranian Couples' Relationship: An Analysis

Authors: Niloofar Hooman

Abstract:

The present study aims at investigating the positive and negative effects of using Smartphones on couples committed relationships. Despite the fact that many couples may benefit from the positive aspects of Smartphones, it is not clear how their feeling of trust, intimacy and connection in their relationships get affected by Smartphones. This is important as it highlights the ambivalent influences of Smartphones on couple’s relationships. On the one hand, Smartphones can enhance their social and emotional interactions and on the other hand, they can cause mistrust and isolation between them. Trust, intimacy and honesty are of important factors through which a stable relationship can be constructed. Nevertheless, some characteristics of Smartphones such as being fluid and personalized can harm the relationship and consequently destroy it. Thus, it is necessary to investigate how Iranian couples in committed relationships use Smartphone to manage their relationship and how couples feel Smartphone have enhanced or detracted a sense of trust, intimacy and connection with their partner? In the first phase of the study, in-depth-interview will be conducted with 30 couples and data will be analyzed using NVIVO software. In the next phase of the study, 1500 participants aged 20 and above will be selected based on cluster sampling. Data will be analyzed both qualitatively and quantitatively.

Keywords: couple, family, internet, intimacy, Smartphone, trust

Procedia PDF Downloads 393
5319 Insights on Nitric Oxide Interaction with Phytohormones in Rice Root System Response to Metal Stress

Authors: Piacentini Diego, Della Rovere Federica, Fattorini Laura, Lanni Francesca, Cittadini Martina, Altamura Maria Maddalena, Falasca Giuseppina

Abstract:

Plants have evolved sophisticated mechanisms to cope with environmental cues. Changes in intracellular content and distribution of phytohormones, such as the auxin indole-3-acetic acid (IAA), have been involved in morphogenic adaptation to environmental stresses. In addition to phytohormones, plants can rely on a plethora of small signal molecules able to promptly sense and transduce the stress signals, resulting in morpho/physiological responses thanks also to their capacity to modulate the levels/distribution/reception of most hormones. Among these signaling molecules, nitrogen monoxide (nitric oxide – NO) is a critical component in several plant acclimation strategies to both biotic and abiotic stresses. Depending on its levels, NO increases plant adaptation by enhancing the enzymatic or non-enzymatic antioxidant systems or by acting as a direct scavenger of reactive oxygen/nitrogen (ROS/RNS) species produced during the stress. In addition, exogenous applications of NO-specific donor compounds showed the involvement of the signal molecule in auxin metabolism, transport, and signaling, under both physiological and stress conditions. However, the complex mechanisms underlying NO action in interacting with phytohormones, such as auxins, during metal stress responses are still poorly understood and need to be better investigated. Emphasis must be placed on the response of the root system since it is the first plant organ system to be exposed to metal soil pollution. The monocot Oryza sativa L. (rice) has been chosen given its importance as a stable food for some 4 billion people worldwide. In addition, increasing evidence has shown that rice is often grown in contaminated paddy soils with high levels of heavy metal cadmium (Cd) and metalloid arsenic (As). The facility through which these metals are taken up by rice roots and transported to the aerial organs up to the edible caryopses makes rice one of the most relevant sources of these pollutants for humans. This study aimed to evaluate if NO has a mitigatory activity in the roots of rice seedlings against Cd or As toxicity and to understand if this activity requires interactions with auxin. Our results show that exogenous treatments with the NO-donor SNP alleviate the stress induced by Cd, but not by As, in in-vitro-grown rice seedlings through increased intracellular root NO levels. The damages induced by the pollutants include root growth inhibition, root histological alterations and ROS (H2O2, O2●ˉ), and RNS (ONOOˉ) production. Also, SNP treatments mitigate both the root increase in root IAA levels and the IAA alteration in distribution monitored by the OsDR5::GUS system due to the toxic metal exposure. Notably, the SNP-induced mitigation of the IAA homeostasis altered by the pollutants does not involve changes in the expression of OsYUCCA1 and ASA2 IAA-biosynthetic genes. Taken together, the results highlight a mitigating role of NO in the rice root system, which is pollutant-specific, and involves the interaction of the signal molecule with both IAA and brassinosteroids at different (i.e., transport, levels, distribution) and multiple levels (i.e., transcriptional/post-translational levels). The research is supported by Progetti Ateneo Sapienza University of Rome, grant number: RG120172B773D1FF

Keywords: arsenic, auxin, cadmium, nitric oxide, rice, root system

Procedia PDF Downloads 83
5318 Growth of Droplet in Radiation-Induced Plasma of Own Vapour

Authors: P. Selyshchev

Abstract:

The theoretical approach is developed to describe the change of drops in the atmosphere of own steam and buffer gas under irradiation. It is shown that the irradiation influences on size of stable droplet and on the conditions under which the droplet exists. Under irradiation the change of drop becomes more complex: the not monotone and periodical change of size of drop becomes possible. All possible solutions are represented by means of phase portrait. It is found all qualitatively different phase portraits as function of critical parameters: rate generation of clusters and substance density.

Keywords: irradiation, steam, plasma, cluster formation, liquid droplets, evolution

Procedia PDF Downloads 445
5317 Wastewater Treatment Using Ternary Hybrid Advanced Oxidation Processes Through Heterogeneous Fenton

Authors: komal verma, V. S. Moholkar

Abstract:

In this current study, the challenge of effectively treating and mineralizing industrial wastewater prior to its discharge into natural water bodies, such as rivers and lakes, is being addressed. Particularly, the focus is on the wastewater produced by chemical process industries, including refineries, petrochemicals, fertilizer, pharmaceuticals, pesticides, and dyestuff industries. These wastewaters often contain stubborn organic pollutants that conventional techniques, such as microbial processes cannot efficiently degrade. To tackle this issue, a ternary hybrid technique comprising of adsorption, heterogeneous Fenton process, and sonication has been employed. The study aims to evaluate the effectiveness of this approach for treating and mineralizing wastewater from a fertilizer industry located in Northeast India. The study comprises several key components, starting with the synthesis of the Fe3O4@AC nanocomposite using the co-precipitation method. The nanocomposite is then subjected to comprehensive characterization through various standard techniques, including FTIR, FE-SEM, EDX, TEM, BET surface area analysis, XRD, and magnetic property determination using VSM. Next, the process parameters of wastewater treatment are statistically optimized, focusing on achieving a high level of COD (Chemical Oxygen Demand) removal as the response variable. The Fe3O4@AC nanocomposite's adsorption characteristics and kinetics are also assessed in detail. The remarkable outcome of this study is the successful application of the ternary hybrid technique, combining adsorption, Fenton process, and sonication. This approach proves highly effective, leading to nearly complete mineralization (or TOC removal) of the fertilizer industry wastewater. The results highlight the potential of the Fe3O4@AC nanocomposite and the ternary hybrid technique as a promising solution for tackling challenging wastewater pollutants from various chemical process industries. This paper reports investigations in the mineralization of industrial wastewater (COD = 3246 mg/L, TOC = 2500 mg/L) using a ternary (ultrasound + Fenton + adsorption) hybrid advanced oxidation process. Fe3O4 decorated activated charcoal (Fe3O4@AC) nanocomposites (surface area = 538.88 m2/g; adsorption capacity = 294.31 mg/g) were synthesized using co-precipitation. The wastewater treatment process was optimized using central composite statistical design. At optimum conditions, viz. pH = 4.2, H2O2 loading = 0.71 M, adsorbent dose = 0.34 g/L, reduction in COD and TOC of wastewater were 94.75% and 89%, respectively. This result results from synergistic interactions among the adsorption of pollutants onto activated charcoal and surface Fenton reactions induced due to the leaching of Fe2+/Fe3+ ions from the Fe3O4 nanoparticles. Micro-convection generated due to sonication assisted faster mass transport (adsorption/desorption) of pollutants between Fe3O4@AC nanocomposite and the solution. The net result of this synergism was high interactions and reactions among and radicals and pollutants that resulted in the effective mineralization of wastewater. The Fe3O4@AC showed excellent recovery (> 90 wt%) and reusability (> 90% COD removal) in 5 successive cycles of treatment. LC-MS analysis revealed effective (> 50%) degradation of more than 25 significant contaminants (in the form of herbicides and pesticides) after the treatment with ternary hybrid AOP. Similarly, the toxicity analysis test using the seed germination technique revealed ~ 60% reduction in the toxicity of the wastewater after treatment.

Keywords: chemical oxygen demand (cod), fe3o4@ac nanocomposite, kinetics, lc-ms, rsm, toxicity

Procedia PDF Downloads 76
5316 Heat Transfer of an Impinging Jet on a Plane Surface

Authors: Jian-Jun Shu

Abstract:

A cold, thin film of liquid impinging on an isothermal hot, horizontal surface has been investigated. An approximate solution for the velocity and temperature distributions in the flow along the horizontal surface is developed, which exploits the hydrodynamic similarity solution for thin film flow. The approximate solution may provide a valuable basis for assessing flow and heat transfer in more complex settings.

Keywords: flux, free impinging jet, solid-surface, uniform wall temperature

Procedia PDF Downloads 484
5315 Clustering and Modelling Electricity Conductors from 3D Point Clouds in Complex Real-World Environments

Authors: Rahul Paul, Peter Mctaggart, Luke Skinner

Abstract:

Maintaining public safety and network reliability are the core objectives of all electricity distributors globally. For many electricity distributors, managing vegetation clearances from their above ground assets (poles and conductors) is the most important and costly risk mitigation control employed to meet these objectives. Light Detection And Ranging (LiDAR) is widely used by utilities as a cost-effective method to inspect their spatially-distributed assets at scale, often captured using high powered LiDAR scanners attached to fixed wing or rotary aircraft. The resulting 3D point cloud model is used by these utilities to perform engineering grade measurements that guide the prioritisation of vegetation cutting programs. Advances in computer vision and machine-learning approaches are increasingly applied to increase automation and reduce inspection costs and time; however, real-world LiDAR capture variables (e.g., aircraft speed and height) create complexity, noise, and missing data, reducing the effectiveness of these approaches. This paper proposes a method for identifying each conductor from LiDAR data via clustering methods that can precisely reconstruct conductors in complex real-world configurations in the presence of high levels of noise. It proposes 3D catenary models for individual clusters fitted to the captured LiDAR data points using a least square method. An iterative learning process is used to identify potential conductor models between pole pairs. The proposed method identifies the optimum parameters of the catenary function and then fits the LiDAR points to reconstruct the conductors.

Keywords: point cloud, LİDAR data, machine learning, computer vision, catenary curve, vegetation management, utility industry

Procedia PDF Downloads 104
5314 Advances in Mathematical Sciences: Unveiling the Power of Data Analytics

Authors: Zahid Ullah, Atlas Khan

Abstract:

The rapid advancements in data collection, storage, and processing capabilities have led to an explosion of data in various domains. In this era of big data, mathematical sciences play a crucial role in uncovering valuable insights and driving informed decision-making through data analytics. The purpose of this abstract is to present the latest advances in mathematical sciences and their application in harnessing the power of data analytics. This abstract highlights the interdisciplinary nature of data analytics, showcasing how mathematics intersects with statistics, computer science, and other related fields to develop cutting-edge methodologies. It explores key mathematical techniques such as optimization, mathematical modeling, network analysis, and computational algorithms that underpin effective data analysis and interpretation. The abstract emphasizes the role of mathematical sciences in addressing real-world challenges across different sectors, including finance, healthcare, engineering, social sciences, and beyond. It showcases how mathematical models and statistical methods extract meaningful insights from complex datasets, facilitating evidence-based decision-making and driving innovation. Furthermore, the abstract emphasizes the importance of collaboration and knowledge exchange among researchers, practitioners, and industry professionals. It recognizes the value of interdisciplinary collaborations and the need to bridge the gap between academia and industry to ensure the practical application of mathematical advancements in data analytics. The abstract highlights the significance of ongoing research in mathematical sciences and its impact on data analytics. It emphasizes the need for continued exploration and innovation in mathematical methodologies to tackle emerging challenges in the era of big data and digital transformation. In summary, this abstract sheds light on the advances in mathematical sciences and their pivotal role in unveiling the power of data analytics. It calls for interdisciplinary collaboration, knowledge exchange, and ongoing research to further unlock the potential of mathematical methodologies in addressing complex problems and driving data-driven decision-making in various domains.

Keywords: mathematical sciences, data analytics, advances, unveiling

Procedia PDF Downloads 97
5313 Sustainability Communications Across Multi-Stakeholder Groups: A Critical Review of the Findings from the Hospitality and Tourism Sectors

Authors: Frederica Pettit

Abstract:

Contribution: Stakeholder involvement in CSR is essential to ensuring pro-environmental attitudes and behaviours across multi-stakeholder groups. Despite increased awareness of the benefits surrounding a collaborative approach to sustainability communications, its success is limited by difficulties engaging with active online conversations with stakeholder groups. Whilst previous research defines the effectiveness of sustainability communications; this paper contributes to knowledge through the development of a theoretical framework that explores the processes to achieving pro-environmental attitudes and behaviours in stakeholder groups. The research will also consider social media as an opportunity to communicate CSR information to all stakeholder groups. Approach: A systematic review was chosen to investigate the effectiveness of the types of sustainability communications used in the hospitality and tourism industries. The systematic review was completed using Web of Science and Scopus using the search terms “sustainab* communicat*” “effective or effectiveness,” and “hospitality or tourism,” limiting the results to peer-reviewed research. 133 abstracts were initially read, with articles being excluded for irrelevance, duplicated articles, non-empirical studies, and language. A total of 45 papers were included as part of the systematic review. 5 propositions were created based on the results of the systematic review, helping to develop a theoretical framework of the processes needed for companies to encourage pro-environmental behaviours across multi-stakeholder groups. Results: The theoretical framework developed in the paper determined the processes necessary for companies to achieve pro-environmental behaviours in stakeholders. The processes to achieving pro-environmental attitudes and behaviours are stakeholder-focused, identifying the need for communications to be specific to their targeted audience. Collaborative communications that enable stakeholders to engage with CSR information and provide feedback lead to a higher awareness of CSR shared visions and pro-environmental attitudes and behaviours. These processes should also aim to improve their relationships with stakeholders through transparency of CSR, CSR strategies that match stakeholder values and ethics whilst prioritizing sustainability as part of their job role. Alternatively, companies can prioritize pro-environmental behaviours using choice editing by mainstreaming sustainability as the only option. In recent years, there has been extensive research on social media as a viable source of sustainability communications, with benefits including direct interactions with stakeholders, the ability to enforce the authenticity of CSR activities and encouragement of pro-environmental behaviours. Despite this, there are challenges to implementing CSR, including difficulties controlling stakeholder criticisms, negative stakeholder influences and comments left on social media platforms. Conclusion: A lack of engagement with CSR information is a reoccurring reason for preventing pro-environmental attitudes and behaviours across stakeholder groups. Traditional CSR strategies contribute to this due to their inability to engage with their intended audience. Hospitality and tourism companies are improving stakeholder relationships through collaborative processes which reduce single-use plastic consumption. A collaborative approach to communications can lead to stakeholder satisfaction, leading to changes in attitudes and behaviours. Different sources of communications are accessed by different stakeholder groups, identifying the need for targeted sustainability messaging, creating benefits such as direct interactions with stakeholders, the ability to enforce the authenticity of CSR activities, and encouraging engagement with sustainability information.

Keywords: hospitality, pro-environmental attitudes and behaviours, sustainability communication, social media

Procedia PDF Downloads 142
5312 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions

Authors: Vikrant Gupta, Amrit Goswami

Abstract:

The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.

Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition

Procedia PDF Downloads 140
5311 Structural Behaviour of Concrete Energy Piles in Thermal Loadings

Authors: E. H. N. Gashti, M. Malaska, K. Kujala

Abstract:

The thermo-mechanical behaviour of concrete energy pile foundations with different single and double U-tube shapes incorporated was analysed using the Comsol Multi-physics package. For the analysis, a 3D numerical model in real scale of the concrete pile and surrounding soil was simulated regarding actual operation of ground heat exchangers (GHE) and the surrounding ambient temperature. Based on initial ground temperature profile measured in situ, tube inlet temperature was considered to range from 6°C to 0°C (during the contraction process) over a 30-day period. Extra thermal stresses and deformations were calculated during the simulations and differences arising from the use of two different systems (single-tube and double-tube) were analysed. The results revealed no significant difference for extra thermal stresses at the centre of the pile in either system. However, displacements over the pile length were found to be up to 1.5-fold higher in the double-tube system than the single-tube system.

Keywords: concrete energy piles, stresses, displacements, thermo-mechanical behaviour, soil-structure interactions

Procedia PDF Downloads 218
5310 A Platform to Screen Targeting Molecules of Ligand-EGFR Interactions

Authors: Wei-Ting Kuo, Feng-Huei Lin

Abstract:

Epidermal growth factor receptor (EGFR) is often constitutively stimulated in cancer owing to the binding of ligands such as epidermal growth factor (EGF), so it is necessary to investigate the interaction between EGFR and its targeting biomolecules which were over ligands binding. This study would focus on the binding affinity and adhesion force of two targeting products anti-EGFR monoclonal antibody (mAb) and peptide A to EGFR comparing with EGF. Surface plasmon resonance (SPR) was used to obtain the equilibrium dissociation constant to evaluate the binding affinity. Atomic force microscopy (AFM) was performed to detect adhesion force. The result showed that binding affinity of mAb to EGFR was higher than that of EGF to EGFR, and peptide A to EGFR was lowest. The adhesion force between EGFR and mAb that was higher than EGF and peptide A to EGFR was lowest. From the studies, we could conclude that mAb had better adhesion force and binding affinity to EGFR than that of EGF and peptide A. SPR and AFM could confirm the interaction between receptor and targeting ligand easily and carefully. It provide a platform to screen ligands for receptor targeting and drug delivery.

Keywords: adhesion force, binding affinity, epidermal growth factor receptor, target molecule

Procedia PDF Downloads 436
5309 A Mixed-Method Exploration of the Interrelationship between Corporate Governance and Firm Performance

Authors: Chen Xiatong

Abstract:

The study aims to explore the interrelationship between corporate governance factors and firm performance in Mainland China using a mixed-method approach. To clarify the current effectiveness of corporate governance, uncover the complex interrelationships between governance factors and firm performance, and enhance understanding of corporate governance strategies in Mainland China. The research involves quantitative methods like statistical analysis of governance factors and firm performance data, as well as qualitative approaches including policy research, case studies, and interviews with staff members. The study aims to reveal the current effectiveness of corporate governance in Mainland China, identify complex interrelationships between governance factors and firm performance, and provide suggestions for companies to enhance their governance practices. The research contributes to enriching the literature on corporate governance by providing insights into the effectiveness of governance practices in Mainland China and offering suggestions for improvement. Quantitative data will be gathered through surveys and sampling methods, focusing on governance factors and firm performance indicators. Qualitative data will be collected through policy research, case studies, and interviews with staff members. Quantitative data will be analyzed using statistical, mathematical, and computational techniques. Qualitative data will be analyzed through thematic analysis and interpretation of policy documents, case study findings, and interview responses. The study addresses the effectiveness of corporate governance in Mainland China, the interrelationship between governance factors and firm performance, and staff members' perceptions of corporate governance strategies. The research aims to enhance understanding of corporate governance effectiveness, enrich the literature on governance practices, and contribute to the field of business management and human resources management in Mainland China.

Keywords: corporate governance, business management, human resources management, board of directors

Procedia PDF Downloads 58
5308 Optical Properties of Tetrahydrofuran Clathrate Hydrates at Terahertz Frequencies

Authors: Hyery Kang, Dong-Yeun Koh, Yun-Ho Ahn, Huen Lee

Abstract:

Terahertz time-domain spectroscopy (THz-TDS) was used to observe the THF clathrate hydrate system with dosage of polyvinylpyrrolidone (PVP) with three different average molecular weights (10,000 g/mol, 40,000 g/mol, 360,000 g/mol). Distinct footprints of phase transition in the THz region (0.4 - 2.2 THz) were analyzed and absorption coefficients and complex refractive indices are obtained and compared in the temperature range of 253 K to 288 K. Along with the optical properties, ring breathing and stretching modes for different molecular weights of PVP in THF hydrate are analyzed by Raman spectroscopy.

Keywords: clathrate hydrate, terahertz, polyvinylpyrrolidone (PVP), THz-TDS, inhibitor

Procedia PDF Downloads 383
5307 Facility Anomaly Detection with Gaussian Mixture Model

Authors: Sunghoon Park, Hank Kim, Jinwon An, Sungzoon Cho

Abstract:

Internet of Things allows one to collect data from facilities which are then used to monitor them and even predict malfunctions in advance. Conventional quality control methods focus on setting a normal range on a sensor value defined between a lower control limit and an upper control limit, and declaring as an anomaly anything falling outside it. However, interactions among sensor values are ignored, thus leading to suboptimal performance. We propose a multivariate approach which takes into account many sensor values at the same time. In particular Gaussian Mixture Model is used which is trained to maximize likelihood value using Expectation-Maximization algorithm. The number of Gaussian component distributions is determined by Bayesian Information Criterion. The negative Log likelihood value is used as an anomaly score. The actual usage scenario goes like a following. For each instance of sensor values from a facility, an anomaly score is computed. If it is larger than a threshold, an alarm will go off and a human expert intervenes and checks the system. A real world data from Building energy system was used to test the model.

Keywords: facility anomaly detection, gaussian mixture model, anomaly score, expectation maximization algorithm

Procedia PDF Downloads 277
5306 On the Internal Structure of the ‘Enigmatic Electrons’

Authors: Natarajan Tirupattur Srinivasan

Abstract:

Quantum mechanics( QM) and (special) relativity (SR) have indeed revolutionized the very thinking of physicists, and the spectacular successes achieved over a century due to these two theories are mind-boggling. However, there is still a strong disquiet among some physicists. While the mathematical structure of these two theories has been established beyond any doubt, their physical interpretations are still being contested by many. Even after a hundred years of their existence, we cannot answer a very simple question, “What is an electron”? Physicists are struggling even now to come to grips with the different interpretations of quantum mechanics with all their ramifications. However, it is indeed strange that the (special) relativity theory of Einstein enjoys many orders of magnitude of “acceptance”, though both theories have their own stocks of weirdness in the results, like time dilation, mass increase with velocity, the collapse of the wave function, quantum jump, tunnelling, etc. Here, in this paper, it would be shown that by postulating an intrinsic internal motion to these enigmatic electrons, one can build a fairly consistent picture of reality, revealing a very simple picture of nature. This is also evidenced by Schrodinger’s ‘Zitterbewegung’ motion, about which so much has been written. This leads to a helical trajectory of electrons when they move in a laboratory frame. It will be shown that the helix is a three-dimensional wave having all the characteristics of our familiar 2D wave. Again, the helix, being a geodesic on an imaginary cylinder, supports ‘quantization’, and its representation is just the complex exponentials matching with the wave function of quantum mechanics. By postulating the instantaneous velocity of the electrons to be always ‘c’, the velocity of light, the entire relativity comes alive, and we can interpret the ‘time dilation’, ‘mass increase with velocity’, etc., in a very simple way. Thus, this model unifies both QM and SR without the need for a counterintuitive postulate of Einstein about the constancy of the velocity of light for all inertial observers. After all, if the motion of an inertial frame cannot affect the velocity of light, the converse that this constant also cannot affect the events in the frame must be true. But entire relativity is about how ‘c’ affects time, length, mass, etc., in different frames.

Keywords: quantum reconstruction, special theory of relativity, quantum mechanics, zitterbewegung, complex wave function, helix, geodesic, Schrodinger’s wave equations

Procedia PDF Downloads 78
5305 Freight Time and Cost Optimization in Complex Logistics Networks, Using a Dimensional Reduction Method and K-Means Algorithm

Authors: Egemen Sert, Leila Hedayatifar, Rachel A. Rigg, Amir Akhavan, Olha Buchel, Dominic Elias Saadi, Aabir Abubaker Kar, Alfredo J. Morales, Yaneer Bar-Yam

Abstract:

The complexity of providing timely and cost-effective distribution of finished goods from industrial facilities to customers makes effective operational coordination difficult, yet effectiveness is crucial for maintaining customer service levels and sustaining a business. Logistics planning becomes increasingly complex with growing numbers of customers, varied geographical locations, the uncertainty of future orders, and sometimes extreme competitive pressure to reduce inventory costs. Linear optimization methods become cumbersome or intractable due to a large number of variables and nonlinear dependencies involved. Here we develop a complex systems approach to optimizing logistics networks based upon dimensional reduction methods and apply our approach to a case study of a manufacturing company. In order to characterize the complexity in customer behavior, we define a “customer space” in which individual customer behavior is described by only the two most relevant dimensions: the distance to production facilities over current transportation routes and the customer's demand frequency. These dimensions provide essential insight into the domain of effective strategies for customers; direct and indirect strategies. In the direct strategy, goods are sent to the customer directly from a production facility using box or bulk trucks. In the indirect strategy, in advance of an order by the customer, goods are shipped to an external warehouse near a customer using trains and then "last-mile" shipped by trucks when orders are placed. Each strategy applies to an area of the customer space with an indeterminate boundary between them. Specific company policies determine the location of the boundary generally. We then identify the optimal delivery strategy for each customer by constructing a detailed model of costs of transportation and temporary storage in a set of specified external warehouses. Customer spaces help give an aggregate view of customer behaviors and characteristics. They allow policymakers to compare customers and develop strategies based on the aggregate behavior of the system as a whole. In addition to optimization over existing facilities, using customer logistics and the k-means algorithm, we propose additional warehouse locations. We apply these methods to a medium-sized American manufacturing company with a particular logistics network, consisting of multiple production facilities, external warehouses, and customers along with three types of shipment methods (box truck, bulk truck and train). For the case study, our method forecasts 10.5% savings on yearly transportation costs and an additional 4.6% savings with three new warehouses.

Keywords: logistics network optimization, direct and indirect strategies, K-means algorithm, dimensional reduction

Procedia PDF Downloads 147