Search results for: Fe efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6393

Search results for: Fe efficiency

4653 Estimating Water Balance at Beterou Watershed, Benin Using Soil and Water Assessment Tool (SWAT) Model

Authors: Ella Sèdé Maforikan

Abstract:

Sustained water management requires quantitative information and the knowledge of spatiotemporal dynamics of hydrological system within the basin. This can be achieved through the research. Several studies have investigated both surface water and groundwater in Beterou catchment. However, there are few published papers on the application of the SWAT modeling in Beterou catchment. The objective of this study was to evaluate the performance of SWAT to simulate the water balance within the watershed. The inputs data consist of digital elevation model, land use maps, soil map, climatic data and discharge records. The model was calibrated and validated using the Sequential Uncertainty Fitting (SUFI2) approach. The calibrated started from 1989 to 2006 with four years warming up period (1985-1988); and validation was from 2007 to 2020. The goodness of the model was assessed using five indices, i.e., Nash–Sutcliffe efficiency (NSE), the ratio of the root means square error to the standard deviation of measured data (RSR), percent bias (PBIAS), the coefficient of determination (R²), and Kling Gupta efficiency (KGE). Results showed that SWAT model successfully simulated river flow in Beterou catchment with NSE = 0.79, R2 = 0.80 and KGE= 0.83 for the calibration process against validation process that provides NSE = 0.78, R2 = 0.78 and KGE= 0.85 using site-based streamflow data. The relative error (PBIAS) ranges from -12.2% to 3.1%. The parameters runoff curve number (CN2), Moist Bulk Density (SOL_BD), Base Flow Alpha Factor (ALPHA_BF), and the available water capacity of the soil layer (SOL_AWC) were the most sensitive parameter. The study provides further research with uncertainty analysis and recommendations for model improvement and provision of an efficient means to improve rainfall and discharges measurement data.

Keywords: watershed, water balance, SWAT modeling, Beterou

Procedia PDF Downloads 42
4652 Inhibition of Mild Steel Corrosion in Hydrochloric Acid Medium Using an Aromatic Hydrazide Derivative

Authors: Preethi Kumari P., Shetty Prakasha, Rao Suma A.

Abstract:

Mild steel has been widely employed as construction materials for pipe work in the oil and gas production such as down hole tubular, flow lines and transmission pipelines, in chemical and allied industries for handling acids, alkalis and salt solutions due to its excellent mechanical property and low cost. Acid solutions are widely used for removal of undesirable scale and rust in many industrial processes. Among the commercially available acids hydrochloric acid is widely used for pickling, cleaning, de-scaling and acidization of oil process. Mild steel exhibits poor corrosion resistance in presence of hydrochloric acid. The high reactivity of mild steel in presence of hydrochloric acid is due to the soluble nature of ferrous chloride formed and the cementite phase (Fe3C) normally present in the steel is also readily soluble in hydrochloric acid. Pitting attack is also reported to be a major form of corrosion in mild steel in the presence of high concentrations of acids and thereby causing the complete destruction of metal. Hydrogen from acid reacts with the metal surface and makes it brittle and causes cracks, which leads to pitting type of corrosion. The use of chemical inhibitor to minimize the rate of corrosion has been considered to be the first line of defense against corrosion. In spite of long history of corrosion inhibition, a highly efficient and durable inhibitor that can completely protect mild steel in aggressive environment is yet to be realized. It is clear from the literature review that there is ample scope for the development of new organic inhibitors, which can be conveniently synthesized from relatively cheap raw materials and provide good inhibition efficiency with least risk of environmental pollution. The aim of the present work is to evaluate the electrochemical parameters for the corrosion inhibition behavior of an aromatic hydrazide derivative, 4-hydroxy- N '-[(E)-1H-indole-2-ylmethylidene)] benzohydrazide (HIBH) on mild steel in 2M hydrochloric acid using Tafel polarization and electrochemical impedance spectroscopy (EIS) techniques at 30-60 °C. The results showed that inhibition efficiency increased with increase in inhibitor concentration and decreased marginally with increase in temperature. HIBH showed a maximum inhibition efficiency of 95 % at 8×10-4 M concentration at 30 °C. Polarization curves showed that HIBH act as a mixed-type inhibitor. The adsorption of HIBH on mild steel surface obeys the Langmuir adsorption isotherm. The adsorption process of HIBH at the mild steel/hydrochloric acid solution interface followed mixed adsorption with predominantly physisorption at lower temperature and chemisorption at higher temperature. Thermodynamic parameters for the adsorption process and kinetic parameters for the metal dissolution reaction were determined.

Keywords: electrochemical parameters, EIS, mild steel, tafel polarization

Procedia PDF Downloads 322
4651 Nonconventional Method for Separation of Rosmarinic Acid: Synergic Extraction

Authors: Lenuta Kloetzer, Alexandra C. Blaga, Dan Cascaval, Alexandra Tucaliuc, Anca I. Galaction

Abstract:

Rosmarinic acid, an ester of caffeic acid and 3-(3,4-dihydroxyphenyl) lactic acid, is considered a valuable compound for the pharmaceutical and cosmetic industries due to its antimicrobial, antioxidant, antiviral, anti-allergic, and anti-inflammatory effects. It can be obtained by extraction from vegetable or animal materials, by chemical synthesis and biosynthesis. Indifferent of the method used for rosmarinic acid production, the separation and purification process implies high amount of raw materials and laborious stages leading to high cost for and limitations of the separation technology. This study focused on separation of rosmarinic acid by synergic reactive extraction with a mixture of two extractants, one acidic (acid di-(2ethylhexyl) phosphoric acid, D2EHPA) and one with basic character (Amberlite LA-2). The studies were performed in experimental equipment consisting of an extraction column where the phases’ mixing was made by mean of a perforated disk with 45 mm diameter and 20% free section, maintained at the initial contact interface between the aqueous and organic phases. The vibrations had a frequency of 50 s⁻¹ and 5 mm amplitude. The extraction was carried out in two solvents with different dielectric constants (n-heptane and dichloromethane) in which the extractants mixture of varying concentration was dissolved. The pH-value of initial aqueous solution was varied between 1 and 7. The efficiency of the studied extraction systems was quantified by distribution and synergic coefficients. For calculating these parameters, the rosmarinic acid concentration in the initial aqueous solution and in the raffinate have been measured by HPLC. The influences of extractants concentrations and solvent polarity on the efficiency of rosmarinic acid separation by synergic extraction with a mixture of Amberlite LA-2 and D2EHPA have been analyzed. In the reactive extraction system with a constant concentration of Amberlite LA-2 in the organic phase, the increase of D2EHPA concentration leads to decrease of the synergic coefficient. This is because the increase of D2EHPA concentration prevents the formation of amine adducts and, consequently, affects the hydrophobicity of the interfacial complex with rosmarinic acid. For these reasons, the diminution of synergic coefficient is more important for dichloromethane. By maintaining a constant value of D2EHPA concentration and increasing the concentration of Amberlite LA-2, the synergic coefficient could become higher than 1, its highest values being reached for n-heptane. Depending on the solvent polarity and D2EHPA amount in the solvent phase, the synergic effect is observed for Amberlite LA-2 concentrations over 20 g/l dissolved in n-heptane. Thus, by increasing the concentration of D2EHPA from 5 to 40 g/l, the minimum concentration value of Amberlite LA-2 corresponding to synergism increases from 20 to 40 g/l for the solvent with lower polarity, namely, n-heptane, while there is no synergic effect recorded for dichloromethane. By analysing the influences of the main factors (organic phase polarity, extractant concentration in the mixture) on the efficiency of synergic extraction of rosmarinic acid, the most important synergic effect was found to correspond to the extractants mixture containing 5 g/l D2EHPA and 40 g/l Amberlite LA-2 dissolved in n-heptane.

Keywords: Amberlite LA-2, di(2-ethylhexyl) phosphoric acid, rosmarinic acid, synergic effect

Procedia PDF Downloads 275
4650 Design and Implementation of 3kVA Grid-Tied Transformerless Power Inverter for Solar Photovoltaic Application

Authors: Daniel O. Johnson, Abiodun A. Ogunseye, Aaron Aransiola, Majors Samuel

Abstract:

Power Inverter is a very important device in renewable energy use particularly for solar photovoltaic power application because it is the effective interface between the DC power generator and the load or the grid. Transformerless inverter is getting more and more preferred to the power converter with galvanic isolation transformer and may eventually supplant it. Transformerless inverter offers advantages of improved DC to AC conversion and power delivery efficiency; and reduced system cost, weight and complexity. This work presents thorough analysis of the design and prototyping of 3KVA grid-tie transformerless inverter. The inverter employs electronic switching method with minimised heat generation in the system and operates based on the principle of pulse-width modulation (PWM). The design is such that it can take two inputs, one from PV arrays and the other from Battery Energy Storage BES and addresses the safety challenge of leakage current. The inverter system was designed around microcontroller system, modeled with Proteus® software for simulation and testing of the viability of the designed inverter circuit. The firmware governing the operation of the grid-tied inverter is written in C language and was developed using MicroC software by Mikroelectronica® for writing sine wave signal code for synchronization to the grid. The simulation results show that the designed inverter circuit performs excellently with very high efficiency, good quality sinusoidal output waveform, negligible harmonics and gives very stable performance under voltage variation from 36VDC to 60VDC input. The prototype confirmed the simulated results and was successfully synchronized with the utility supply. The comprehensive analyses of the circuit design, the prototype and explanation on overall performance will be presented.

Keywords: grid-tied inverter, leakage current, photovoltaic system, power electronic, transformerless inverter

Procedia PDF Downloads 273
4649 Effects of Irrigation Scheduling and Soil Management on Maize (Zea mays L.) Yield in Guinea Savannah Zone of Nigeria

Authors: I. Alhassan, A. M. Saddiq, A. G. Gashua, K. K. Gwio-Kura

Abstract:

The main objective of any irrigation program is the development of an efficient water management system to sustain crop growth and development and avoid physiological water stress in the growing plants. Field experiment to evaluate the effects of some soil moisture conservation practices on yield and water use efficiency (WUE) of maize was carried out in three locations (i.e. Mubi and Yola in the northern Guinea Savannah and Ganye in the southern Guinea Savannah of Adamawa State, Nigeria) during the dry seasons of 2013 and 2014. The experiment consisted of three different irrigation levels (7, 10 and 12 day irrigation intervals), two levels of mulch (mulch and un-mulched) and two tillage practices (no tillage and minimum tillage) arranged in a randomized complete block design with split-split plot arrangement and replicated three times. The Blaney-Criddle method was used for measuring crop evapotranspiration. The results indicated that seven-day irrigation intervals and mulched treatment were found to have significant effect (P>0.05) on grain yield and water use efficiency in all the locations. The main effect of tillage was non-significant (P<0.05) on grain yield and WUE. The interaction effects of irrigation and mulch were significant (P>0.05) on grain yield and WUE at Mubi and Yola. Generally, higher grain yield and WUE were recorded on mulched and seven-day irrigation intervals, whereas lower values were recorded on un-mulched with 12-day irrigation intervals. Tillage exerts little influence on the yield and WUE. Results from Ganye were found to be generally higher than those recorded in Mubi and Yola; it also showed that an irrigation interval of 10 days with mulching could be adopted for the Ganye area, while seven days interval is more appropriate for Mubi and Yola.

Keywords: irrigation, maize, mulching, tillage, savanna

Procedia PDF Downloads 196
4648 Conception of Increasing the Efficiency of Excavation Shoring by Prestressing Diaphragm Walls

Authors: Mateusz Frydrych

Abstract:

The construction of diaphragm walls as excavation shoring as well as part of deep foundations is widely used in geotechnical engineering. Today's design challenges lie in the optimal dimensioning of the cross-section, which is demanded by technological considerations. Also in force is the issue of optimization and sustainable use of construction materials, including reduction of carbon footprint, which is currently a relevant challenge for the construction industry. The author presents the concept of an approach to achieving increased efficiency of diaphragm wall excavation shoring by using structural compression technology. The author proposes to implement prestressed tendons in a non-linear manner in the reinforcement cage. As a result bending moment is reduced, which translates into a reduction in the amount of steel needed in the section, a reduction in displacements, and a reduction in the scratching of the casing, including the achievement of better tightness. This task is rarely seen and has not yet been described in a scientific way in the literature. The author has developed a dynamic numerical model that allows the dimensioning of the cross-section of a prestressed shear wall, as well as the study of casing displacements and cross-sectional forces in any defined computational situation. Numerical software from the Sofistik - open source development environment - was used for the study, and models were validated in Plaxis software . This is an interesting idea that allows for optimizing the execution of construction works and reducing the required resources by using fewer materials and saving time. The author presents the possibilities of a prestressed diaphragm wall, among others, using. The example of a diaphragm wall working as a cantilever at the height of two underground floors without additional strutting or stability protection by using ground anchors. This makes the execution of the work more criminal for the contractor and, as a result, cheaper for the investor.

Keywords: prestressed diaphragm wall, Plaxis, Sofistik, innovation, FEM, optimisation

Procedia PDF Downloads 58
4647 Synthesis of Highly Stable Near-Infrared FAPbI₃ Perovskite Doped with 5-AVA and Its Applications in NIR Light-Emitting Diodes for Bioimaging

Authors: Nasrud Din, Fawad Saeed, Sajid Hussain, Rai Muhammad Dawood Sultan, Premkumar Sellan, Qasim Khan, Wei Lei

Abstract:

The continuously increasing external quantum efficiencies of Perovskite light-emitting diodes (LEDs) have received significant interest in the scientific community. The need for monitoring and medical diagnostics has experienced a steady growth in recent years, primarily caused by older people and an increasing number of heart attacks, tumors, and cancer disorders among patients. The application of Perovskite near-infrared light-emitting diode (PeNIRLEDs) has exhibited considerable efficacy in bioimaging, particularly in the visualization and examination of blood arteries, blood clots, and tumors. PeNIRLEDs exhibit exciting potential in the field of blood vessel imaging because of their advantageous attributes, including improved depth penetration and less scattering in comparison to visible light. In this study, we synthesized FAPbI₃ Perovskite doped with different concentrations of 5-Aminovaleric acid (5-AVA) 1-6 mg. The incorporation of 5-AVA as a dopant during the FAPbI₃ Perovskite formation influences the FAPbI3 Perovskite’s structural and optical properties, improving its stability, photoluminescence efficiency, and charge transport characteristics. We found a resulting PL emission peak wavelength of 850 nm and bandwidth of 44 nm, along with a calculated quantum yield of 75%. The incorporation of 5-AVA-modified FAPbI₃ Perovskite into LEDs will show promising results, enhancing device efficiency, color purity, and stability. Making it suitable for various medical applications, including subcutaneous deep vein imaging, blood flow visualization, and tumor illumination.

Keywords: perovskite light-emitting diodes, deep vein imaging, blood flow visualization, tumor illumination

Procedia PDF Downloads 32
4646 Solar Energy for Decontamination of Ricinus communis

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale

Abstract:

The solar energy was used as a source of heating in Ricinus communis pie with the objective of eliminating or minimizing the percentage of the poison in it, so that it can be used as animal feed. A solar cylinder and plane collector were used as heating system. In the focal area of the solar concentrator a gutter support endowed with stove effect was placed. Parameters that denote the efficiency of the systems for the proposed objective was analyzed.

Keywords: solar energy, concentrate, Ricinus communis, temperature

Procedia PDF Downloads 410
4645 The Application of Line Balancing Technique and Simulation Program to Increase Productivity in Hard Disk Drive Components

Authors: Alonggot Limcharoen, Jintana Wannarat, Vorawat Panich

Abstract:

This study aims to investigate the balancing of the number of operators (Line Balancing technique) in the production line of hard disk drive components in order to increase efficiency. At present, the trend of using hard disk drives has continuously declined leading to limits in a company’s revenue potential. It is important to improve and develop the production process to create market share and to have the ability to compete with competitors with a higher value and quality. Therefore, an effective tool is needed to support such matters. In this research, the Arena program was applied to analyze the results both before and after the improvement. Finally, the precedent was used before proceeding with the real process. There were 14 work stations with 35 operators altogether in the RA production process where this study was conducted. In the actual process, the average production time was 84.03 seconds per product piece (by timing 30 times in each work station) along with a rating assessment by implementing the Westinghouse principles. This process showed that the rating was 123% underlying an assumption of 5% allowance time. Consequently, the standard time was 108.53 seconds per piece. The Takt time was calculated from customer needs divided by working duration in one day; 3.66 seconds per piece. Of these, the proper number of operators was 30 people. That meant five operators should be eliminated in order to increase the production process. After that, a production model was created from the actual process by using the Arena program to confirm model reliability; the outputs from imitation were compared with the original (actual process) and this comparison indicated that the same output meaning was reliable. Then, worker numbers and their job responsibilities were remodeled into the Arena program. Lastly, the efficiency of production process enhanced from 70.82% to 82.63% according to the target.

Keywords: hard disk drive, line balancing, ECRS, simulation, arena program

Procedia PDF Downloads 210
4644 Efficiency Validation of Hybrid Cooling Application in Hot and Humid Climate Houses of KSA

Authors: Jamil Hijazi, Stirling Howieson

Abstract:

Reducing energy consumption and CO2 emissions are probably the greatest challenge now facing mankind. From considerations surrounding global warming and CO2 production, it has to be recognized that oil is a finite resource and the KSA like many other oil-rich countries will have to start to consider a horizon where hydro-carbons are not the dominant energy resource. The employment of hybrid ground-cooling pipes in combination with the black body solar collection and radiant night cooling systems may have the potential to displace a significant proportion of oil currently used to run conventional air conditioning plant. This paper presents an investigation into the viability of such hybrid systems with the specific aim of reducing cooling load and carbon emissions while providing all year-round thermal comfort in a typical Saudi Arabian urban housing block. Soil temperatures were measured in the city of Jeddah. A parametric study then was carried out by computational simulation software (DesignBuilder) that utilized the field measurements and predicted the cooling energy consumption of both a base case and an ideal scenario (typical block retro-fitted with insulation, solar shading, ground pipes integrated with hypocaust floor slabs/stack ventilation and radiant cooling pipes embed in floor). Initial simulation results suggest that careful ‘ecological design’ combined with hybrid radiant and ground pipe cooling techniques can displace air conditioning systems, producing significant cost and carbon savings (both capital and running) without appreciable deprivation of amenity.

Keywords: cooling load, energy efficiency, ground pipe cooling, hybrid cooling strategy, hydronic radiant systems, low carbon emission, passive designs, thermal comfort

Procedia PDF Downloads 221
4643 Pellet Feed Improvements through Vitamin C Supplementation for Snakehead (Channa striata) Culture in Vietnam

Authors: Pham Minh Duc, Tran Thi Thanh Hien, David A. Bengtson

Abstract:

Laboratory feeding trial: the study was conducted to find out the optimal dietary vitamin C, or ascorbic acid (AA) levels in terms of the growth performance of snakehead. The growth trial included six treatments with five replications. Each treatment contained 0, 125, 250, 500, 1000 and 2000 mg AA equivalent kg⁻¹ diet which included six iso-nitrogenous (45% protein), iso-lipid (9% lipid) and isocaloric (4.2 Kcal.g¹). Eighty snakehead fingerlings (6.24 ± 0.17 g.fish¹) were assigned randomly in 0.5 m³ composite tanks. Fish were fed twice daily on demand for 8 weeks. The result showed that growth rates increased, protein efficiency ratio increased and the feed conversion ratio decreased in treatments with AA supplementation compared with control treatment. The survival rate of fish tends to increase with increase AA level. The number of RBCs, lysozyme in treatments with AA supplementation tended to rise significantly proportional to the concentration of AA. The number of WBCs of snakehead in treatments with AA supplementation was higher 2.1-3.6 times. In general, supplementation of AA in the diets for snakehead improved growth rate, feed efficiency and immune response. Hapa on-farm trial: based on the results of the laboratory feeding trial, the effects of AA on snakehead in hapas to simulate farm conditions, was tested using the following treatments: commercial feed; commercial feed plus hand mixed AA at 500; 750 and 1000 mg AA.kg⁻¹; SBM diet without AA; SBM diet plus 500; 750 and 1000 mg AA.kg⁻¹. The experiment was conducted in two experimental ponds (only SBM diet without AA placed in one pond and the rest in the other pond) with four replicate hapa each. Stocking density was 150 fish.m² and culture period was 5 months until market size was attained. The growth performance of snakehead and economic aspects were examined in this research.

Keywords: fish health, growth rate, snakehead, Vitamin C

Procedia PDF Downloads 86
4642 Comparative Assessment of Geocell and Geogrid Reinforcement for Flexible Pavement: Numerical Parametric Study

Authors: Anjana R. Menon, Anjana Bhasi

Abstract:

Development of highways and railways play crucial role in a nation’s economic growth. While rigid concrete pavements are durable with high load bearing characteristics, growing economies mostly rely on flexible pavements which are easier in construction and more economical. The strength of flexible pavement is based on the strength of subgrade and load distribution characteristics of intermediate granular layers. In this scenario, to simultaneously meet economy and strength criteria, it is imperative to strengthen and stabilize the load transferring layers, namely subbase and base. Geosynthetic reinforcement in planar and cellular forms have been proven effective in improving soil stiffness and providing a stable load transfer platform. Studies have proven the relative superiority of cellular form-geocells over planar geosynthetic forms like geogrid, owing to the additional confinement of infill material and pocket effect arising from vertical deformation. Hence, the present study investigates the efficiency of geocells over single/multiple layer geogrid reinforcements by a series of three-dimensional model analyses of a flexible pavement section under a standard repetitive wheel load. The stress transfer mechanism and deformation profiles under various reinforcement configurations are also studied. Geocell reinforcement is observed to take up a higher proportion of stress caused by the traffic loads compared to single and double-layer geogrid reinforcements. The efficiency of single geogrid reinforcement reduces with an increase in embedment depth. The contribution of lower geogrid is insignificant in the case of the double-geogrid reinforced system.

Keywords: Geocell, Geogrid, Flexible Pavement, Repetitive Wheel Load, Numerical Analysis

Procedia PDF Downloads 63
4641 Study of Synergetic Effect by Combining Dielectric Barrier Discharge (DBD) Plasma and Photocatalysis for Abatement of Pollutants in Air Mixture System: Influence of Some Operating Conditions and Identification of Byproducts

Authors: Wala Abou Saoud, Aymen Amine Assadi, Monia Guiza, Abdelkrim Bouzaza, Wael Aboussaoud, Abdelmottaleb Ouederni, Dominique Wolbert

Abstract:

Volatile organic compounds (VOCs) constitute one of the most important families of chemicals involved in atmospheric pollution, causing damage to the environment and human health, and need, consequently, to be eliminated. Among the promising technologies, dielectric barrier discharge (DBD) plasma - photocatalysis coupling reveals very interesting prospects in terms of process synergy of compounds mineralization’s, with low energy consumption. In this study, the removal of organic compounds such butyraldehyde (BUTY) and dimethyl disulfide (DMDS) (exhaust gasses from animal quartering centers.) in air mixture using DBD plasma coupled with photocatalysis was tested, in order to determine whether or not synergy effect was present. The removal efficiency of these pollutants, a selectivity of CO₂ and CO, and byproducts formation such as ozone formation were investigated in order to evaluate the performance of the combined process. For this purpose, a series of experiments were carried out in a continuous reactor. Many operating parameters were also investigated such as the specific energy of discharge, the inlet concentration of pollutant and the flowrate. It appears from this study that, the performance of the process has enhanced and a synergetic effect is observed. In fact, we note an enhancement of 10 % on removal efficiency. It is interesting to note that the combined system leads to better CO₂ selectivity than for plasma. Consequently, intermediates by-products have been reduced due to various other species (O•, N, OH•, O₂•-, O₃, NO₂, NOx, etc.). Additionally, the behavior of combining DBD plasma and photocatalysis has shown that the ozone can be easily also decomposed in presence of photocatalyst.

Keywords: combined process, DBD plasma, photocatalysis, pilot scale, synergetic effect, VOCs

Procedia PDF Downloads 320
4640 Understanding the Impact of Li- bis(trifluoromethanesulfonyl)imide Doping on Spiro-OMeTAD Properties and Perovskite Solar Cell Performance

Authors: Martin C. Eze, Gao Min

Abstract:

Lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI) dopant is beneficial in improving the properties of 2,2′,7,7′-Tetrakis (N, N-di-p-methoxyphenylamino)-9,9′-spiro-bifluorene (Spiro-OMETAD) transport layer used in perovskite solar cells (PSCs). Properties such as electrical conductivity, band energy mismatch, and refractive index of Spiro-OMETAD layers are believed to play key roles in PSCs performance but only the dependence of electrical conductivity on Li-TFSI doping has been extensively studied. In this work, the effect of Li-TFSI doping level on highest occupied molecular orbital (HOMO) energy, electrical conductivity, and refractive index of Spiro-OMETAD film and PSC performance was demonstrated. The Spiro-OMETAD films were spin-coated at 4000 rpm for 30 seconds from solutions containing 73.4 mM of Spiro-OMeTAD, 23.6 mM of 4-tert-butylpyridine, 7.6 mM of tris(2-(1H-pyrazol-1-yl)-4-tert-butylpyridine) cobalt(III) tri[bis(trifluoromethane) sulfonimide] (FK209) dopant and Li-TFSI dopant varying from 37 to 62 mM in 1 ml of chlorobenzene. From ultraviolet photoelectron spectroscopy (UPS), ellipsometry, and 4-probe studies, the results show that films deposition from Spiro-OMETAD solution doped with 40 mM of Li-TFSI shows the highest electrical conductivity of 6.35×10-6 S/cm, the refractive index of 1.87 at 632.32 nm, HOMO energy of -5.22 eV and the lowest HOMO energy mismatch of 0.21 eV compared to HOMO energy of perovskite layer. The PSCs fabricated show the best power conversion efficiency, open-circuit voltage, and fill factor of 17.10 %, 1.1 V, and 70.12%, respectively, for devices based on Spiro-OMETAD solution doped with 40 mM of Li-TFSI. This study demonstrates that the optimum Spiro-OMETAD/ Li-TFSI doping ratio of 1.84 is the optimum doping level for Spiro-OMETAD layer preparation.

Keywords: electrical conductivity, homo energy mismatch, lithium bis(trifluoromethanesulfonyl)imide, power conversion efficiency, refractive index

Procedia PDF Downloads 110
4639 Power Generation and Treatment potential of Microbial Fuel Cell (MFC) from Landfill Leachate

Authors: Beenish Saba, Ann D. Christy

Abstract:

Modern day municipal solid waste landfills are operated and controlled to protect the environment from contaminants during the biological stabilization and degradation of the solid waste. They are equipped with liners, caps, gas and leachate collection systems. Landfill gas is passively or actively collected and can be used as bio fuel after necessary purification, but leachate treatment is the more difficult challenge. Leachate, if not recirculated in a bioreactor landfill system, is typically transported to a local wastewater treatment plant for treatment. These plants are designed for sewage treatment, and often charge additional fees for higher strength wastewaters such as leachate if they accept them at all. Different biological, chemical, physical and integrated techniques can be used to treat the leachate. Treating that leachate with simultaneous power production using microbial fuel cells (MFC) technology has been a recent innovation, reported its application in its earliest starting phase. High chemical oxygen demand (COD), ionic strength and salt concentration are some of the characteristics which make leachate an excellent substrate for power production in MFCs. Different materials of electrodes, microbial communities, carbon co-substrates and temperature conditions are some factors that can be optimized to achieve simultaneous power production and treatment. The advantage of the MFC is its dual functionality but lower power production and high costs are the hurdles in its commercialization and more widespread application. The studies so far suggest that landfill leachate MFCs can produce 1.8 mW/m2 with 79% COD removal, while amendment with food leachate or domestic wastewater can increase performance up to 18W/m3 with 90% COD removal. The columbic efficiency is reported to vary between 2-60%. However efforts towards biofilm optimization, efficient electron transport system studies and use of genetic tools can increase the efficiency of the MFC and can determine its future potential in treating landfill leachate.

Keywords: microbial fuel cell, landfill leachate, power generation, MFC

Procedia PDF Downloads 302
4638 Study of the Anaerobic Degradation Potential of High Strength Molasses Wastewater

Authors: M. Mischopoulou, P. Naidis, S. Kalamaras, T. Kotsopoulos, P. Samaras

Abstract:

The treatment of high strength wastewater by an Upflow Anaerobic Sludge Blanket (UASB) reactor has several benefits, such as high organic removal efficiency, short hydraulic retention time along with low operating costs. In addition, high volumes of biogas are released in these reactors, which can be utilized in several industrial facilities for energy production. This study aims at the examination of the application potential of anaerobic treatment of wastewater, with high molasses content derived from yeast manufacturing, by a lab-scale UASB reactor. The molasses wastewater and the sludge used in the experiments were collected from the wastewater treatment plant of a baker’s yeast manufacturing company. The experimental set-up consisted of a 15 L thermostated UASB reactor at 37 ◦C. Before the reactor start-up, the reactor was filled with sludge and molasses wastewater at a ratio 1:1 v/v. Influent was fed to the reactor at a flowrate of 12 L/d, corresponding to a hydraulic residence time of about 30 h. Effluents were collected from the system outlet and were analyzed for the determination of the following parameters: COD, pH, total solids, volatile solids, ammonium, phosphates and total nitrogen according to the standard methods of analysis. In addition, volatile fatty acid (VFA) composition of the effluent was determined by a gas chromatograph equipped with a flame ionization detector (FID), as an indicator to evaluate the process efficiency. The volume of biogas generated in the reactor was daily measured by the water displacement method, while gas composition was analyzed by a gas chromatograph equipped with a thermal conductivity detector (TCD). The effluent quality was greatly enhanced due to the use of the UASB reactor and high rate of biogas production was observed. The anaerobic treatment of the molasses wastewater by the UASB reactor improved the biodegradation potential of the influent, resulting at high methane yields and an effluent with better quality than the raw wastewater.

Keywords: anaerobic digestion, biogas production, molasses wastewater, UASB reactor

Procedia PDF Downloads 260
4637 Stochastic Approach for Technical-Economic Viability Analysis of Electricity Generation Projects with Natural Gas Pressure Reduction Turbines

Authors: Roberto M. G. Velásquez, Jonas R. Gazoli, Nelson Ponce Jr, Valério L. Borges, Alessandro Sete, Fernanda M. C. Tomé, Julian D. Hunt, Heitor C. Lira, Cristiano L. de Souza, Fabio T. Bindemann, Wilmar Wounnsoscky

Abstract:

Nowadays, society is working toward reducing energy losses and greenhouse gas emissions, as well as seeking clean energy sources, as a result of the constant increase in energy demand and emissions. Energy loss occurs in the gas pressure reduction stations at the delivery points in natural gas distribution systems (city gates). Installing pressure reduction turbines (PRT) parallel to the static reduction valves at the city gates enhances the energy efficiency of the system by recovering the enthalpy of the pressurized natural gas, obtaining in the pressure-lowering process shaft work and generating electrical power. Currently, the Brazilian natural gas transportation network has 9,409 km in extension, while the system has 16 national and 3 international natural gas processing plants, including more than 143 delivery points to final consumers. Thus, the potential of installing PRT in Brazil is 66 MW of power, which could yearly avoid the emission of 235,800 tons of CO2 and generate 333 GWh/year of electricity. On the other hand, an economic viability analysis of these energy efficiency projects is commonly carried out based on estimates of the project's cash flow obtained from several variables forecast. Usually, the cash flow analysis is performed using representative values of these variables, obtaining a deterministic set of financial indicators associated with the project. However, in most cases, these variables cannot be predicted with sufficient accuracy, resulting in the need to consider, to a greater or lesser degree, the risk associated with the calculated financial return. This paper presents an approach applied to the technical-economic viability analysis of PRTs projects that explicitly considers the uncertainties associated with the input parameters for the financial model, such as gas pressure at the delivery point, amount of energy generated by TRP, the future price of energy, among others, using sensitivity analysis techniques, scenario analysis, and Monte Carlo methods. In the latter case, estimates of several financial risk indicators, as well as their empirical probability distributions, can be obtained. This is a methodology for the financial risk analysis of PRT projects. The results of this paper allow a more accurate assessment of the potential PRT project's financial feasibility in Brazil. This methodology will be tested at the Cuiabá thermoelectric plant, located in the state of Mato Grosso, Brazil, and can be applied to study the potential in other countries.

Keywords: pressure reduction turbine, natural gas pressure drop station, energy efficiency, electricity generation, monte carlo methods

Procedia PDF Downloads 100
4636 Trends, Status, and Future Directions of Artificial Intelligence in Human Resources Disciplines: A Bibliometric Analysis

Authors: Gertrude I. Hewapathirana, Loi A. Nguyen, Mohammed M. Mostafa

Abstract:

Artificial intelligence (AI) technologies and tools are swiftly integrating into many functions of all organizations as a competitive drive to enhance innovations, productivity, efficiency, faster and precise decision making to keep up with rapid changes in the global business arena. Despite increasing research on AI technologies in production, manufacturing, and information management, AI in human resource disciplines is still lagging. Though a few research studies on HR informatics, recruitment, and HRM in general, how to integrate AI in other HR functional disciplines (e.g., compensation, training, mentoring and coaching, employee motivation) is rarely researched. Many inconsistencies of research hinder developing up-to-date knowledge on AI in HR disciplines. Therefore, exploring eight research questions, using bibliometric network analysis combined with a meta-analysis of published research literature. The authors attempt to generate knowledge on the role of AI in improving the efficiency of HR functional disciplines. To advance the knowledge for the benefit of researchers, academics, policymakers, and practitioners, the study highlights the types of AI innovations and outcomes, trends, gaps, themes and topics, fast-moving disciplines, key players, and future directions.AI in HR informatics in high tech firms is the dominant theme in many research publications. While there is increasing attention from researchers and practitioners, there are many gaps between the promise, potential, and real AI applications in HR disciplines. A higher knowledge gap raised many unanswered questions regarding legal, ethical, and morale aspects of AI in HR disciplines as well as the potential contributions of AI in HR disciplines that may guide future research directions. Though the study provides the most current knowledge, it is limited to peer-reviewed empirical, theoretical, and conceptual research publications stored in the WoS database. The implications for theory, practice, and future research are discussed.

Keywords: artificial intelligence, human resources, bibliometric analysis, research directions

Procedia PDF Downloads 78
4635 Numerical Investigation of Combustion Chamber Geometry on Combustion Performance and Pollutant Emissions in an Ammonia-Diesel Common Rail Dual-Fuel Engine

Authors: Youcef Sehili, Khaled Loubar, Lyes Tarabet, Mahfoudh Cerdoun, Clement Lacroix

Abstract:

As emissions regulations grow more stringent and traditional fuel sources become increasingly scarce, incorporating carbon-free fuels in the transportation sector emerges as a key strategy for mitigating the impact of greenhouse gas emissions. While the utilization of hydrogen (H2) presents significant technological challenges, as evident in the engine limitation known as knocking, ammonia (NH3) provides a viable alternative that overcomes this obstacle and offers convenient transportation, storage, and distribution. Moreover, the implementation of a dual-fuel engine using ammonia as the primary gas is promising, delivering both ecological and economic benefits. However, when employing this combustion mode, the substitution of ammonia at high rates adversely affects combustion performance and leads to elevated emissions of unburnt NH3, especially under high loads, which requires special treatment of this mode of combustion. This study aims to simulate combustion in a common rail direct injection (CRDI) dual-fuel engine, considering the fundamental geometry of the combustion chamber as well as fifteen (15) alternative proposed geometries to determine the configuration that exhibits superior engine performance during high-load conditions. The research presented here focuses on improving the understanding of the equations and mechanisms involved in the combustion of finely atomized jets of liquid fuel and on mastering the CONVERGETM code, which facilitates the simulation of this combustion process. By analyzing the effect of piston bowl shape on the performance and emissions of a diesel engine operating in dual fuel mode, this work combines knowledge of combustion phenomena with proficiency in the calculation code. To select the optimal geometry, an evaluation of the Swirl, Tumble, and Squish flow patterns was conducted for the fifteen (15) studied geometries. Variations in-cylinder pressure, heat release rate, turbulence kinetic energy, turbulence dissipation rate, and emission rates were observed, while thermal efficiency and specific fuel consumption were estimated as functions of crankshaft angle. To maximize thermal efficiency, a synergistic approach involving the enrichment of intake air with oxygen (O2) and the enrichment of primary fuel with hydrogen (H2) was implemented. Based on the results obtained, it is worth noting that the proposed geometry (T8_b8_d0.6/SW_8.0) outperformed the others in terms of flow quality, reduction of pollutants emitted with a reduction of more than 90% in unburnt NH3, and an impressive improvement in engine efficiency of more than 11%.

Keywords: ammonia, hydrogen, combustion, dual-fuel engine, emissions

Procedia PDF Downloads 57
4634 A Ku/K Band Power Amplifier for Wireless Communication and Radar Systems

Authors: Meng-Jie Hsiao, Cam Nguyen

Abstract:

Wide-band devices in Ku band (12-18 GHz) and K band (18-27 GHz) have received significant attention for high-data-rate communications and high-resolution sensing. Especially, devices operating around 24 GHz is attractive due to the 24-GHz unlicensed applications. One of the most important components in RF systems is power amplifier (PA). Various PAs have been developed in the Ku and K bands on GaAs, InP, and silicon (Si) processes. Although the PAs using GaAs or InP process could have better power handling and efficiency than those realized on Si, it is very hard to integrate the entire system on the same substrate for GaAs or InP. Si, on the other hand, facilitates single-chip systems. Hence, good PAs on Si substrate are desirable. Especially, Si-based PA having good linearity is necessary for next generation communication protocols implemented on Si. We report a 16.5 to 25.5 GHz Si-based PA having flat saturated power of 19.5 ± 1.5 dBm, output 1-dB power compression (OP1dB) of 16.5 ± 1.5 dBm, and 15-23 % power added efficiency (PAE). The PA consists of a drive amplifier, two main amplifiers, and lump-element Wilkinson power divider and combiner designed and fabricated in TowerJazz 0.18µm SiGe BiCMOS process having unity power gain frequency (fMAX) of more than 250 GHz. The PA is realized as a cascode amplifier implementing both heterojunction bipolar transistor (HBT) and n-channel metal–oxide–semiconductor field-effect transistor (NMOS) devices for gain, frequency response, and linearity consideration. Particularly, a body-floating technique is utilized for the NMOS devices to improve the voltage swing and eliminate parasitic capacitances. The developed PA has measured flat gain of 20 ± 1.5 dB across 16.5-25.5 GHz. At 24 GHz, the saturated power, OP1dB, and maximum PAE are 20.8 dBm, 18.1 dBm, and 23%, respectively. Its high performance makes it attractive for use in Ku/K-band, especially 24 GHz, communication and radar systems. This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Keywords: power amplifiers, amplifiers, communication systems, radar systems

Procedia PDF Downloads 94
4633 Soil Reinforcement by Stone Columns

Authors: Saou Mohamed Amine

Abstract:

The construction industry has been identified as a user of substantial amount of materials and energy resources that has an enormous impact on environment. The energy efficient in refurbishment project is being considered as one of the approaches to achieve sustainability in construction industry. The increasing concern for environment has made building owners and designers to incorporate the energy efficiency features into their building projects.

Keywords: construction industry, design team attributes, energy efficient performance, refurbishment projects characteristics

Procedia PDF Downloads 416
4632 Formulation of Famotidine Solid Lipid Nanoparticles (SLN): Preparation, Evaluation and Release Study

Authors: Rachmat Mauludin, Nurmazidah

Abstract:

Background and purpose: Famotidine is an H2 receptor blocker. Absorption orally is rapid enough, but famotidine can be degraded by stomach acid causing dose reduction until 35.8% after 50 minutes. This drug also undergoes first-pass metabolism which reduced its bio availability only until 40-50%. To overcome these problems, Solid Lipid Nano particles (SLNs) as alternative delivery systems can be formulated. SLNs is a lipid-based drug delivery technology with 50-1000 nm particle size, where the drug incorporated into the bio compatible lipids and the lipid particles are stabilized using appropriate stabilizers. When the particle size is 200 nm or below, lipid containing famotidine can be absorbed through the lymphatic vessels to the subclavian vein, so first-pass metabolism can be avoided. Method: Famotidine SLNs with various compositions of stabilizer was prepared using a high-speed homogenization and sonication method. Then, the particle size distribution, zeta potential, entrapment efficiency, particle morphology and in vitro release profiles were evaluated. Optimization of sonication time also carried out. Result: Particle size of SLN by Particle Size Analyzer was in range 114.6 up to 455.267 nm. Ultrasonicated SLNs within 5 minutes generated smaller particle size than SLNs which was ultrasonicated for 10 and 15 minutes. Entrapment efficiency of SLNs were 74.17 up to 79.45%. Particle morphology of the SLNs was spherical and distributed individually. Release study of Famotidine revealed that in acid medium, 28.89 up to 80.55% of famotidine could be released after 2 hours. Nevertheless in basic medium, famotidine was released 40.5 up to 86.88% in the same period. Conclusion: The best formula was SLNs which stabilized by 4% Poloxamer 188 and 1 % Span 20, that had particle size 114.6 nm in diameter, 77.14% famotidine entrapped, and the particle morphology was spherical and distributed individually. SLNs with the best drug release profile was SLNs which stabilized by 4% Eudragit L 100-55 and 1% Tween 80 which had released 36.34 % in pH 1.2 solution, and 74.13% in pH 7.4 solution after 2 hours. The optimum sonication time was 5 minutes.

Keywords: famotodine, SLN, high speed homogenization, particle size, release study

Procedia PDF Downloads 842
4631 Synthesis of Liposomal Vesicles by a Novel Supercritical Fluid Process

Authors: Wen-Chyan Tsai, Syed S. H. Rizvi

Abstract:

Organic solvent residues are always associated with liposomes produced by the traditional techniques like the thin film hydration and reverse phase evaporation methods, which limit the applications of these vesicles in the pharmaceutical, food and cosmetic industries. Our objective was to develop a novel and benign process of liposomal microencapsulation by using supercritical carbon dioxide (SC-CO2) as the sole phospholipid-dissolving medium and a green substitute for organic solvents. This process consists of supercritical fluid extraction followed by rapid expansion via a nozzle and automatic cargo suction. Lecithin and cholesterol mixed in 10:1 mass ratio were dissolved in SC-CO2 at 20 ± 0.5 MPa and 60 oC. After at least two hours of equilibrium, the lecithin/cholesterol-laden SC-CO2 was passed through a 1000-micron nozzle and immediately mixed with the cargo solution to form liposomes. Liposomal micro-encapsulation was conducted at three pressures (8.27, 12.41, 16.55 MPa), three temperatures (75, 83 and 90 oC) and two flow rates (0.25 ml/sec and 0.5 ml/sec). Liposome size, zeta potential and encapsulation efficiency were characterized as functions of the operating parameters. The average liposomal size varied from 400-500 nm to 1000-1200 nm when the pressure was increased from 8.27 to 16.55 MPa. At 12.41 MPa, 90 oC and 0.25 ml per second of 0.2 M glucose cargo loading rate, the highest encapsulation efficiency of 31.65 % was achieved. Under a confocal laser scanning microscope, large unilamellar vesicles and multivesicular vesicles were observed to make up a majority of the liposomal emulsion. This new approach is a rapid and continuous process for bulk production of liposomes using a green solvent. Based on the results to date, it is feasible to apply this technique to encapsulate hydrophilic compounds inside the aqueous core as well as lipophilic compounds in the phospholipid bilayers of the liposomes for controlled release, solubility improvement and targeted therapy of bioactive compounds.

Keywords: liposome, micro encapsulation, supercritical carbon dioxide, non-toxic process

Procedia PDF Downloads 418
4630 Analysis of Influencing Factors on Infield-Logistics: A Survey of Different Farm Types in Germany

Authors: Michael Mederle, Heinz Bernhardt

Abstract:

The Management of machine fleets or autonomous vehicle control will considerably increase efficiency in future agricultural production. Especially entire process chains, e.g. harvesting complexes with several interacting combine harvesters, grain carts, and removal trucks, provide lots of optimization potential. Organization and pre-planning ensure to get these efficiency reserves accessible. One way to achieve this is to optimize infield path planning. Particularly autonomous machinery requires precise specifications about infield logistics to be navigated effectively and process optimized in the fields individually or in machine complexes. In the past, a lot of theoretical optimization has been done regarding infield logistics, mainly based on field geometry. However, there are reasons why farmers often do not apply the infield strategy suggested by mathematical route planning tools. To make the computational optimization more useful for farmers this study focuses on these influencing factors by expert interviews. As a result practice-oriented navigation not only to the field but also within the field will be possible. The survey study is intended to cover the entire range of German agriculture. Rural mixed farms with simple technology equipment are considered as well as large agricultural cooperatives which farm thousands of hectares using track guidance and various other electronic assistance systems. First results show that farm managers using guidance systems increasingly attune their infield-logistics on direction giving obstacles such as power lines. In consequence, they can avoid inefficient boom flippings while doing plant protection with the sprayer. Livestock farmers rather focus on the application of organic manure with its specific requirements concerning road conditions, landscape terrain or field access points. Cultivation of sugar beets makes great demands on infield patterns because of its particularities such as the row crop system or high logistics demands. Furthermore, several machines working in the same field simultaneously influence each other, regardless whether or not they are of the equal type. Specific infield strategies always are based on interactions of several different influences and decision criteria. Single working steps like tillage, seeding, plant protection or harvest mostly cannot be considered each individually. The entire production process has to be taken into consideration to detect the right infield logistics. One long-term objective of this examination is to integrate the obtained influences on infield strategies as decision criteria into an infield navigation tool. In this way, path planning will become more practical for farmers which is a basic requirement for automatic vehicle control and increasing process efficiency.

Keywords: autonomous vehicle control, infield logistics, path planning, process optimizing

Procedia PDF Downloads 215
4629 The Dialectic between Effectiveness and Humanity in the Era of Open Knowledge from the Perspective of Pedagogy

Authors: Sophia Ming Lee Wen, Chao-Ching Kuo, Yu-Line Hu, Yu-Lung Ho, Chih-Cheng Huang, Yi-Hwa Lee

Abstract:

Teaching and learning should involve social issues by which effectiveness and humanity is due consideration as a guideline for sharing and co-creating knowledge. A qualitative method was used after a pioneer study to confirm pre-service teachers’ awareness of open knowledge. There are 17 in-service teacher candidates sampling from 181 schools in Taiwan. Two questions are to resolve: a) How did teachers change their educational ideas, in particular, their attitudes to meet the needs of knowledge sharing and co-creativity; and b) How did they acknowledge the necessity of working out an appropriate way between the educational efficiency and the nature of education for high performance management. This interview investigated teachers’ attitude of sharing and co-creating knowledge. The results show two facts in Taiwan: A) Individuals who must be able to express themselves will be capable of taking part in an open learning environment; and B) Teachers must lead the direction to inspire high performance and improve students’ capacity via knowledge sharing and co-creating knowledge, according to the student-centered philosophy. Collected data from interviewing showed that the teachers were well aware of changing their teaching methods and make some improvements to balance the educational efficiency and the nature of education. Almost all teachers acknowledge that ICT is helpful to motivate learning enthusiasm. Further, teaching integrated with ICT saves teachers’ time and energy on teaching preparation and promoting effectiveness. Teachers are willing to co-create knowledge with students, though using information is not easy due to the lack of operating skills of the website and ICT. Some teachers are against to co-create knowledge in the informational background since they hold that is not feasible for there being a knowledge gap between teachers and students. Technology would easily mislead teachers and students to the goal of instrumental rationality, which makes pedagogy dysfunctional and inhumane; however, any high quality of teaching should take a dialectical balance between effectiveness and humanity.

Keywords: critical thinking, dialectic between effectiveness and humanity, open knowledge, pedagogy

Procedia PDF Downloads 342
4628 Machine learning Assisted Selective Emitter design for Solar Thermophotovoltaic System

Authors: Ambali Alade Odebowale, Andargachew Mekonnen Berhe, Haroldo T. Hattori, Andrey E. Miroshnichenko

Abstract:

Solar thermophotovoltaic systems (STPV) have emerged as a promising solution to overcome the Shockley-Queisser limit, a significant impediment in the direct conversion of solar radiation into electricity using conventional solar cells. The STPV system comprises essential components such as an optical concentrator, selective emitter, and a thermophotovoltaic (TPV) cell. The pivotal element in achieving high efficiency in an STPV system lies in the design of a spectrally selective emitter or absorber. Traditional methods for designing and optimizing selective emitters are often time-consuming and may not yield highly selective emitters, posing a challenge to the overall system performance. In recent years, the application of machine learning techniques in various scientific disciplines has demonstrated significant advantages. This paper proposes a novel nanostructure composed of four-layered materials (SiC/W/SiO2/W) to function as a selective emitter in the energy conversion process of an STPV system. Unlike conventional approaches widely adopted by researchers, this study employs a machine learning-based approach for the design and optimization of the selective emitter. Specifically, a random forest algorithm (RFA) is employed for the design of the selective emitter, while the optimization process is executed using genetic algorithms. This innovative methodology holds promise in addressing the challenges posed by traditional methods, offering a more efficient and streamlined approach to selective emitter design. The utilization of a machine learning approach brings several advantages to the design and optimization of a selective emitter within the STPV system. Machine learning algorithms, such as the random forest algorithm, have the capability to analyze complex datasets and identify intricate patterns that may not be apparent through traditional methods. This allows for a more comprehensive exploration of the design space, potentially leading to highly efficient emitter configurations. Moreover, the application of genetic algorithms in the optimization process enhances the adaptability and efficiency of the overall system. Genetic algorithms mimic the principles of natural selection, enabling the exploration of a diverse range of emitter configurations and facilitating the identification of optimal solutions. This not only accelerates the design and optimization process but also increases the likelihood of discovering configurations that exhibit superior performance compared to traditional methods. In conclusion, the integration of machine learning techniques in the design and optimization of a selective emitter for solar thermophotovoltaic systems represents a groundbreaking approach. This innovative methodology not only addresses the limitations of traditional methods but also holds the potential to significantly improve the overall performance of STPV systems, paving the way for enhanced solar energy conversion efficiency.

Keywords: emitter, genetic algorithm, radiation, random forest, thermophotovoltaic

Procedia PDF Downloads 44
4627 The Effectiveness of Laser In situ Keratomileusis for Correction Various Types of Refractive Anomalies

Authors: Yuliya Markava

Abstract:

The laser in situ keratomileusis (LASIK) is widely common surgical procedure, which has become an alternative for patients who are not satisfied with the performance of other correction methods. A high level of patient satisfaction functional outcomes after refractive surgery confirms the high reliability and safety of LASIK and provides a significant improvement in the quality of life and social adaptation. Purpose: To perform clinical analysis of the results of correction made to the excimer laser system SCHWIND AMARIS 500E in patients with different types of refractive anomalies. Materials and Methods: This was a retrospective analysis of 1581 operations (812 patients): 413 males (50.86%) and 399 females (49.14%) at the age from 18 to 47 years with different types of ametropia. All operations were performed on excimer laser SCHWIND AMARIS 500E in the LASIK procedure. Formation of the corneal flap was made by mechanical microkeratome SCHWIND. Results: Analyzing the structure of refractive anomalies: The largest number of interventions accounted for myopia: 1505 eyes (95.2%), of which about a low myopia: 706 eyes (44.7%), moderate myopia: 562 eyes (35.5 %), high myopia: eyes 217 (13.7%) and supermyopia: 20 eyes (1.3%). Hyperopia was 0.7% (11 eyes), mixed astigmatism: 4.1% (65 eyes). The efficiency was 80% (in patients with supermyopia) to 91.6% and 95.4% (in groups with myopia low and moderate, respectively). Uncorrected visual acuity average values before and after laser operation was in groups: a low myopia 0.18 (up 0.05 to 0.31) and 0.80 (up 0.60 to 1.0); moderate myopia 0.08 (up 0.03 to 0.13) and 0.87 ( up 0.74 to 1.0); high myopia 0.05 (up 0.02 to 0.08) and 0.83 (up 0.66 to 1.0); supermyopia 0.03 (up 0.02 to 0.04) and 0.59 ( up 0.34 to 0.84); hyperopia 0.27 (up 0.16 to 0.38) and 0.57 (up 0.27 to 0.87); mixed astigmatism of 0.35 (up 0.19 to 0.51) and 0.69 (up 0.44 to 0.94). In all cases, after LASIK indicators uncorrected visual acuity significantly increased. Reoperation was 4.43%. Significance: Clinical results of refractive surgery at the excimer laser system SCHWIND AMARIS 500E in different ametropia correction is characterized by high efficiency.

Keywords: effectiveness of laser correction, LASIK, refractive anomalies, surgical treatment

Procedia PDF Downloads 239
4626 Rule of Natural Synthetic Chemical on Lead Immobilization in Polluted Sandy Soils

Authors: Saud S. AL Oud

Abstract:

Soil contamination can have dire consequences, such as loss of ecosystem and agricultural productivity, diminished food chain quality, tainted water resources, economic loss, and human and animal illness. In recent years, attention has focused on the development of in situ immobilization methods that are generally less expensive and disruptive to the natural landscape, hydrology, and ecosystems than are conventional excavation treatments, and disposal methods. Soft, inexpensive, and efficient agents were used in the present research to immobilize Pb in polluted sandy soil. Five agents, either naturally occurring or chemically prepared, were used for this purpose. These agents include; iron ore (72% Fe2O3), cement, a mixture of calcite and shale rich in aluminum (CASH), and two chemically prepared amorphous materials of Al- and Fe-gel. These agents were selected due to their ability to specifically adsorb heavy metals onto their surface OH functional groups, which provide permanent immobilization of metal pollutants and reduce the fraction that is potentially mobile or bioavailable. The efficiency of these agents in immobilizing Pb were examined in a laboratory experiment, in which two rates (0.5 and 1.0 %) of tested agents were added to the polluted soils containing total contents of Pb ranging from 17.4-49.8 mg/kg. The results show that all immobilizing agents were succeed in minimizing the mobile form of Pb as extracted by 0.5 N HNO3. The extracted Pb decreased with increasing addition rate of immobilizing agents. At addition rate of 0.5%, HNO3 extractable-Pb varied widely depending on the agents type and were found to represent 21-67% of the initial values. All agents were able to reduce mobile Pb to levels lower than that (2.0 mg/kg) reported for non polluted soil, particularly for soils had initials of mobile Pb less than 10 mg/kg. Both iron oxide and CASH had the highest efficiency in immobilizing Pb, followed by cement, then amorphous materials of Fe and Al hydroxides.

Keywords: soil, synthetic chemical, lead, immobilization, polluted

Procedia PDF Downloads 223
4625 Enhancing Sewage Sludge Management through Integrated Hydrothermal Liquefaction and Anaerobic Digestion: A Comparative Study

Authors: Harveen Kaur Tatla, Parisa Niknejad, Rajender Gupta, Bipro Ranjan Dhar, Mohd. Adana Khan

Abstract:

Sewage sludge management presents a pressing challenge in the realm of wastewater treatment, calling for sustainable and efficient solutions. This study explores the integration of Hydrothermal Liquefaction (HTL) and Anaerobic Digestion (AD) as a promising approach to address the complexities associated with sewage sludge treatment. The integration of these two processes offers a complementary and synergistic framework, allowing for the mitigation of inherent limitations, thereby enhancing overall efficiency, product quality, and the comprehensive utilization of sewage sludge. In this research, we investigate the optimal sequencing of HTL and AD within the treatment framework, aiming to discern which sequence, whether HTL followed by AD or AD followed by HTL, yields superior results. We explore a range of HTL working temperatures, including 250°C, 300°C, and 350°C, coupled with residence times of 30 and 60 minutes. To evaluate the effectiveness of each sequence, a battery of tests is conducted on the resultant products, encompassing Total Ammonia Nitrogen (TAN), Chemical Oxygen Demand (COD), and Volatile Fatty Acids (VFA). Additionally, elemental analysis is employed to determine which sequence maximizes energy recovery. Our findings illuminate the intricate dynamics of HTL and AD integration for sewage sludge management, shedding light on the temperature-residence time interplay and its impact on treatment efficiency. This study not only contributes to the optimization of sewage sludge treatment but also underscores the potential of integrated processes in sustainable waste management strategies. The insights gleaned from this research hold promise for advancing the field of wastewater treatment and resource recovery, addressing critical environmental and energy challenges.

Keywords: Anaerobic Digestion (AD), aqueous phase, energy recovery, Hydrothermal Liquefaction (HTL), sewage sludge management, sustainability.

Procedia PDF Downloads 56
4624 Overview of E-government Adoption and Implementation in Ghana

Authors: Isaac Kofi Mensah

Abstract:

E-government has been adopted and used by many governments/countries around the world including Ghana to provide citizens and businesses with more accurate, real-time, and high quality services and information. The objective of this paper is to present an overview of the Government of Ghana’s (GoG) adoption and implement of e-government and its usage by the Ministries, Departments and its agencies (MDAs) as well as other public sector institutions to deliver efficient public service to the general public i.e. citizens, business etc. Government implementation of e-government focused on facilitating effective delivery of government service to the public and ultimately to provide efficient government-wide electronic means of sharing information and knowledge through a network infrastructure developed to connect all major towns and cities, Ministries, Departments and Agencies and other public sector organizations in Ghana. One aim for the Government of Ghana use of ICT in public administration is to improve productivity in government administration and service by facilitating the exchange of information to enable better interaction and coordination of work among MDAs, citizens and private businesses. The study was prepared using secondary sources of data from government policy documents, national and international published reports, journal articles, and web sources. This study indicates that through the e-government initiative, currently citizens and businesses can access and pay for services such as renewal of driving license, business registration, payment of taxes, acquisition of marriage and birth certificates as well as application for passport through the GoG electronic service (eservice) and electronic payment (epay) portal. Further, this study shows that there is an enormous commitment from GoG to adopt and implement e-government as a tool not only to transform the business of government but also to bring efficiency in public services delivered by the MDAs. To ascertain this, a further study need to be carried out to determine if the use of e-government has brought about the anticipated improvements and efficiency in service delivery of MDAs and other state institutions in Ghana.

Keywords: electronic government, electronic services, electronic pay, MDAs

Procedia PDF Downloads 490