Search results for: well data integration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26769

Search results for: well data integration

25059 Identification of Risks Associated with Process Automation Systems

Authors: J. K. Visser, H. T. Malan

Abstract:

A need exists to identify the sources of risks associated with the process automation systems within petrochemical companies or similar energy related industries. These companies use many different process automation technologies in its value chain. A crucial part of the process automation system is the information technology component featuring in the supervisory control layer. The ever-changing technology within the process automation layers and the rate at which it advances pose a risk to safe and predictable automation system performance. The age of the automation equipment also provides challenges to the operations and maintenance managers of the plant due to obsolescence and unavailability of spare parts. The main objective of this research was to determine the risk sources associated with the equipment that is part of the process automation systems. A secondary objective was to establish whether technology managers and technicians were aware of the risks and share the same viewpoint on the importance of the risks associated with automation systems. A conceptual model for risk sources of automation systems was formulated from models and frameworks in literature. This model comprised six categories of risk which forms the basis for identifying specific risks. This model was used to develop a questionnaire that was sent to 172 instrument technicians and technology managers in the company to obtain primary data. 75 completed and useful responses were received. These responses were analyzed statistically to determine the highest risk sources and to determine whether there was difference in opinion between technology managers and technicians. The most important risks that were revealed in this study are: 1) the lack of skilled technicians, 2) integration capability of third-party system software, 3) reliability of the process automation hardware, 4) excessive costs pertaining to performing maintenance and migrations on process automation systems, and 5) requirements of having third-party communication interfacing compatibility as well as real-time communication networks.

Keywords: distributed control system, identification of risks, information technology, process automation system

Procedia PDF Downloads 139
25058 Implementation of a Low-Cost Driver Drowsiness Evaluation System Using a Thermal Camera

Authors: Isa Moazen, Ali Nahvi

Abstract:

Driver drowsiness is a major cause of vehicle accidents, and facial images are highly valuable to detect drowsiness. In this paper, we perform our research via a thermal camera to record drivers' facial images on a driving simulator. A robust real-time algorithm extracts the features using horizontal and vertical integration projection, contours, contour orientations, and cropping tools. The features are included four target areas on the cheeks and forehead. Qt compiler and OpenCV are used with two cameras with different resolutions. A high-resolution thermal camera is used for fifteen subjects, and a low-resolution one is used for a person. The results are investigated by four temperature plots and evaluated by observer rating of drowsiness.

Keywords: advanced driver assistance systems, thermal imaging, driver drowsiness detection, feature extraction

Procedia PDF Downloads 138
25057 Wage Differentiation Patterns of Households Revisited for Turkey in Same Industry Employment: A Pseudo-Panel Approach

Authors: Yasin Kutuk, Bengi Yanik Ilhan

Abstract:

Previous studies investigate the wage differentiations among regions in Turkey between couples who work in the same industry and those who work in different industries by using the models that is appropriate for cross sectional data. However, since there is no available panel data for this investigation in Turkey, pseudo panels using repeated cross-section data sets of the Household Labor Force Surveys 2004-2014 are employed in order to open a new way to examine wage differentiation patterns. For this purpose, household heads are separated into groups with respect to their household composition. These groups’ membership is assumed to be fixed over time such as age groups, education, gender, and NUTS1 (12 regions) Level. The average behavior of them can be tracked overtime same as in the panel data. Estimates using the pseudo panel data would be consistent with the estimates using genuine panel data on individuals if samples are representative of the population which has fixed composition, characteristics. With controlling the socioeconomic factors, wage differentiation of household income is affected by social, cultural and economic changes after global economic crisis emerged in US. It is also revealed whether wage differentiation is changing among the birth cohorts.

Keywords: wage income, same industry, pseudo panel, panel data econometrics

Procedia PDF Downloads 397
25056 A New Approach for Improving Accuracy of Multi Label Stream Data

Authors: Kunal Shah, Swati Patel

Abstract:

Many real world problems involve data which can be considered as multi-label data streams. Efficient methods exist for multi-label classification in non streaming scenarios. However, learning in evolving streaming scenarios is more challenging, as the learners must be able to adapt to change using limited time and memory. Classification is used to predict class of unseen instance as accurate as possible. Multi label classification is a variant of single label classification where set of labels associated with single instance. Multi label classification is used by modern applications, such as text classification, functional genomics, image classification, music categorization etc. This paper introduces the task of multi-label classification, methods for multi-label classification and evolution measure for multi-label classification. Also, comparative analysis of multi label classification methods on the basis of theoretical study, and then on the basis of simulation was done on various data sets.

Keywords: binary relevance, concept drift, data stream mining, MLSC, multiple window with buffer

Procedia PDF Downloads 584
25055 Secure Cryptographic Operations on SIM Card for Mobile Financial Services

Authors: Kerem Ok, Serafettin Senturk, Serdar Aktas, Cem Cevikbas

Abstract:

Mobile technology is very popular nowadays and it provides a digital world where users can experience many value-added services. Service Providers are also eager to offer diverse value-added services to users such as digital identity, mobile financial services and so on. In this context, the security of data storage in smartphones and the security of communication between the smartphone and service provider are critical for the success of these services. In order to provide the required security functions, the SIM card is one acceptable alternative. Since SIM cards include a Secure Element, they are able to store sensitive data, create cryptographically secure keys, encrypt and decrypt data. In this paper, we design and implement a SIM and a smartphone framework that uses a SIM card for secure key generation, key storage, data encryption, data decryption and digital signing for mobile financial services. Our frameworks show that the SIM card can be used as a controlled Secure Element to provide required security functions for popular e-services such as mobile financial services.

Keywords: SIM card, mobile financial services, cryptography, secure data storage

Procedia PDF Downloads 312
25054 WhatsApp Application and Challenges of Radio Broadcasting in Northern Nigeria: Special Interest on FRCN Kaduna

Authors: Aliyu Damri

Abstract:

This study analyzed the emergence of WhatsApp and how employees at the Federal Radio Corporation of Nigeria, Kaduna defined the concept base on their vast broadcasting experiences for over five decades and application of the phenomenon to the radio station. It also analyzed the nature, patterns, dimensions, features, challenges as well as the effects of WhatsApp as a social networking site with specific interest on the radio outlet. Also, the study identified how the radio organization responded to the challenges in an attempt to adapt to the new pattern of broadcasting characterized by many technological transformations. The study further explained in details such skills journalists need to function optimally using WhatsApp as well as the impacts of the WhatsApp on radio broadcasting. It used a combination of published materials, focus group discussion, in depth interviews and participant observation on the activities of the radio stations to address the research questions. The data generated provided insight to better understand the challenges posed to FRCN Kaduna as a result of WhatsApp application and how FRCN Kaduna responded to the challenges. It also provided information on the skills journalists need to function optimally in using WhatsApp application in the radio station. The interview and focus group discussion’s transcripts and the published materials were analyzed along thematic pattern related to the research questions in the study. The dominant response relied heavily on change in the radio station’s organizational and technical integration of newsrooms, the use of a multiskilled workforce, application of a flexible and user-friendly technology in all aspects of production, expansion of the station’s services in to new media such as internet and mobile phones as well as sharing of ideas across different units in the radio outfit.

Keywords: broadcasting, challenge, northern Nigeria, radio, WhatsApp application

Procedia PDF Downloads 129
25053 Context-Aware Point-Of-Interests Recommender Systems Using Integrated Sentiment and Network Analysis

Authors: Ho Yeon Park, Kyoung-Jae Kim

Abstract:

Recently, user’s interests for location-based social network service increases according to the advances of social web and location-based technologies. It may be easy to recommend preferred items if we can use user’s preference, context and social network information simultaneously. In this study, we propose context-aware POI (point-of-interests) recommender systems using location-based network analysis and sentiment analysis which consider context, social network information and implicit user’s preference score. We propose a context-aware POI recommendation system consisting of three sub-modules and an integrated recommendation system of them. First, we will develop a recommendation module based on network analysis. This module combines social network analysis and cluster-indexing collaboration filtering. Next, this study develops a recommendation module using social singular value decomposition (SVD) and implicit SVD. In this research, we will develop a recommendation module that can recommend preference scores based on the frequency of POI visits of user in POI recommendation process by using social and implicit SVD which can reflect implicit feedback in collaborative filtering. We also develop a recommendation module using them that can estimate preference scores based on the recommendation. Finally, this study will propose a recommendation module using opinion mining and emotional analysis using data such as reviews of POIs extracted from location-based social networks. Finally, we will develop an integration algorithm that combines the results of the three recommendation modules proposed in this research. Experimental results show the usefulness of the proposed model in relation to the recommended performance.

Keywords: sentiment analysis, network analysis, recommender systems, point-of-interests, business analytics

Procedia PDF Downloads 250
25052 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection

Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada

Abstract:

With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.

Keywords: machine learning, imbalanced data, data mining, big data

Procedia PDF Downloads 130
25051 Automatic Detection of Traffic Stop Locations Using GPS Data

Authors: Areej Salaymeh, Loren Schwiebert, Stephen Remias, Jonathan Waddell

Abstract:

Extracting information from new data sources has emerged as a crucial task in many traffic planning processes, such as identifying traffic patterns, route planning, traffic forecasting, and locating infrastructure improvements. Given the advanced technologies used to collect Global Positioning System (GPS) data from dedicated GPS devices, GPS equipped phones, and navigation tools, intelligent data analysis methodologies are necessary to mine this raw data. In this research, an automatic detection framework is proposed to help identify and classify the locations of stopped GPS waypoints into two main categories: signalized intersections or highway congestion. The Delaunay triangulation is used to perform this assessment in the clustering phase. While most of the existing clustering algorithms need assumptions about the data distribution, the effectiveness of the Delaunay triangulation relies on triangulating geographical data points without such assumptions. Our proposed method starts by cleaning noise from the data and normalizing it. Next, the framework will identify stoppage points by calculating the traveled distance. The last step is to use clustering to form groups of waypoints for signalized traffic and highway congestion. Next, a binary classifier was applied to find distinguish highway congestion from signalized stop points. The binary classifier uses the length of the cluster to find congestion. The proposed framework shows high accuracy for identifying the stop positions and congestion points in around 99.2% of trials. We show that it is possible, using limited GPS data, to distinguish with high accuracy.

Keywords: Delaunay triangulation, clustering, intelligent transportation systems, GPS data

Procedia PDF Downloads 275
25050 Gradient Boosted Trees on Spark Platform for Supervised Learning in Health Care Big Data

Authors: Gayathri Nagarajan, L. D. Dhinesh Babu

Abstract:

Health care is one of the prominent industries that generate voluminous data thereby finding the need of machine learning techniques with big data solutions for efficient processing and prediction. Missing data, incomplete data, real time streaming data, sensitive data, privacy, heterogeneity are few of the common challenges to be addressed for efficient processing and mining of health care data. In comparison with other applications, accuracy and fast processing are of higher importance for health care applications as they are related to the human life directly. Though there are many machine learning techniques and big data solutions used for efficient processing and prediction in health care data, different techniques and different frameworks are proved to be effective for different applications largely depending on the characteristics of the datasets. In this paper, we present a framework that uses ensemble machine learning technique gradient boosted trees for data classification in health care big data. The framework is built on Spark platform which is fast in comparison with other traditional frameworks. Unlike other works that focus on a single technique, our work presents a comparison of six different machine learning techniques along with gradient boosted trees on datasets of different characteristics. Five benchmark health care datasets are considered for experimentation, and the results of different machine learning techniques are discussed in comparison with gradient boosted trees. The metric chosen for comparison is misclassification error rate and the run time of the algorithms. The goal of this paper is to i) Compare the performance of gradient boosted trees with other machine learning techniques in Spark platform specifically for health care big data and ii) Discuss the results from the experiments conducted on datasets of different characteristics thereby drawing inference and conclusion. The experimental results show that the accuracy is largely dependent on the characteristics of the datasets for other machine learning techniques whereas gradient boosting trees yields reasonably stable results in terms of accuracy without largely depending on the dataset characteristics.

Keywords: big data analytics, ensemble machine learning, gradient boosted trees, Spark platform

Procedia PDF Downloads 240
25049 Analysis of Sediment Distribution around Karang Sela Coral Reef Using Multibeam Backscatter

Authors: Razak Zakariya, Fazliana Mustajap, Lenny Sharinee Sakai

Abstract:

A sediment map is quite important in the marine environment. The sediment itself contains thousands of information that can be used for other research. This study was conducted by using a multibeam echo sounder Reson T20 on 15 August 2020 at the Karang Sela (coral reef area) at Pulau Bidong. The study aims to identify the sediment type around the coral reef by using bathymetry and backscatter data. The sediment in the study area was collected as ground truthing data to verify the classification of the seabed. A dry sieving method was used to analyze the sediment sample by using a sieve shaker. PDS 2000 software was used for data acquisition, and Qimera QPS version 2.4.5 was used for processing the bathymetry data. Meanwhile, FMGT QPS version 7.10 processes the backscatter data. Then, backscatter data were analyzed by using the maximum likelihood classification tool in ArcGIS version 10.8 software. The result identified three types of sediments around the coral which were very coarse sand, coarse sand, and medium sand.

Keywords: sediment type, MBES echo sounder, backscatter, ArcGIS

Procedia PDF Downloads 86
25048 A Compact Wearable Slot Antenna for LTE and WLAN Applications

Authors: Haider K. Raad

Abstract:

In this paper, a compact wide-band, ultra-thin and flexible slot antenna intended for wearable applications is presented. The presented antenna is designed to provide Wireless Local Area Network (WLAN) and Long Term Evolution (LTE) connectivity. The presented design exhibits a relatively wide bandwidth (1600-3500 MHz below -6 dB impedance bandwidth limit). The antenna is positioned on a 33 mm x 30 mm flexible substrate with a thickness of 50 µm. Antenna properties, such as the far-field radiation patterns, scattering parameter S11 are provided. The presented compact, thin and flexible design along with excellent radiation characteristics are deemed suitable for integration into flexible and wearable devices.

Keywords: wearable electronics, slot Antenna, LTE, WLAN

Procedia PDF Downloads 234
25047 A Psychoanalytic Lens: Unmasked Layers of the Self among Post-Graduate Psychology Students in Surviving the COVID-19 Lockdown

Authors: Sharon Sibanda, Benny Motileng

Abstract:

The World Health Organisation (WHO) identified the Sars-Cov-2 (COVID-19) as a pandemic on the 12ᵗʰ of March 2020, with South Africa recording its first case on the 5ᵗʰ of March 2020. The rapidly spreading virus led the South African government to implement one of the strictest nationwide lockdowns globally, resulting in the closing down of all institutions of higher learning effective March 18ᵗʰ 2020. Thus, this qualitative study primarily aimed to explore whether post-graduate psychology students were in a state of a depleted or cohesive self, post the psychological isolation of COVID-19 risk-adjusted level 5 lockdown. Semi-structured interviews from a qualitative interpretive approach comprising N=6 psychology post-graduate students facilitated a rich understanding of their intra-psychic experiences of the self. Thematic analysis of data gathered from the interviews illuminated how students were forced into the self by the emotional isolation of hard lockdown, with the emergence of core psychic conflict often defended against through external self-object experiences. The findings also suggest that lockdown stripped off this sample of psychology post-graduate students’ defensive escape from the inner self through external self-object distractions. The external self was stripped to the core of the internal self by the isolation of hard lockdown, thereby uncovering the psychic function of roles and defenses amalgamated throughout modern cultural consciousness that dictates self-functioning. The study suggests modelling reflexivity skills in the integration of internal and external self-experience dynamics as part of a training model for continued personal and professional development for psychology students.

Keywords: COVID-19, fragmentation, self-object experience, true/false self

Procedia PDF Downloads 59
25046 A Named Data Networking Stack for Contiki-NG-OS

Authors: Sedat Bilgili, Alper K. Demir

Abstract:

The current Internet has become the dominant use with continuing growth in the home, medical, health, smart cities and industrial automation applications. Internet of Things (IoT) is an emerging technology to enable such applications in our lives. Moreover, Named Data Networking (NDN) is also emerging as a Future Internet architecture where it fits the communication needs of IoT networks. The aim of this study is to provide an NDN protocol stack implementation running on the Contiki operating system (OS). Contiki OS is an OS that is developed for constrained IoT devices. In this study, an NDN protocol stack that can work on top of IEEE 802.15.4 link and physical layers have been developed and presented.

Keywords: internet of things (IoT), named-data, named data networking (NDN), operating system

Procedia PDF Downloads 170
25045 A New Protocol Ensuring Users' Privacy in Pervasive Environment

Authors: Mohammed Nadir Djedid, Abdallah Chouarfia

Abstract:

Transparency of the system and its integration into the natural environment of the user are some of the important features of pervasive computing. But these characteristics that are considered as the strongest points of pervasive systems are also their weak points in terms of the user’s privacy. The privacy in pervasive systems involves more than the confidentiality of communications and concealing the identity of virtual users. The physical presence and behavior of the user in the pervasive space cannot be completely hidden and can reveal the secret of his/her identity and affect his/her privacy. This paper shows that the application of major techniques for protecting the user’s privacy still insufficient. A new solution named Shadow Protocol is proposed, which allows the users to authenticate and interact with the surrounding devices within an ubiquitous computing environment while preserving their privacy.

Keywords: pervasive systems, identification, authentication, privacy

Procedia PDF Downloads 482
25044 The Need For Higher Education Stem Integrated into the Social Science

Authors: Luis Fernando Calvo Prieto, Raul Herrero Martínez, Mónica Santamarta Llorente, Sergio Paniagua Bermejo

Abstract:

The project that is presented starts from the questioning about the compartmentalization of knowledge that occurs in university higher education. There are several authors who describe the problems associated with this reality (Rodamillans, M) indicating a lack of integration of the knowledge acquired by students throughout the subjects taken in their university degree. Furthermore, this disintegration is accentuated by the enrollment system of some Faculties and/or Schools of Engineering, which allows the student to take subjects outside the recommended curricular path. This problem is accentuated in an ostentatious way when trying to find an integration between humanistic subjects and the world of experimental sciences or engineering. This abrupt separation between humanities and sciences can be observed in any study plan of Spanish degrees. Except for subjects such as economics or English, in the Faculties of Sciences and the Schools of Engineering, the absence of any humanistic content is striking. At some point it was decided that the only value to take into account when designing their study plans was “usefulness”, considering the humanities systematically useless for their training, and therefore banishing them from the study plans. forgetting the role they have on the capacity of both Leadership and Civic Humanism in our professionals of tomorrow. The teaching guides for the different subjects in the branch of science or engineering do not include any competency, not even transversal, related to leadership capacity or the need, in today's world, for social, civic and humanitarian knowledge part of the people who will offer medical, pharmaceutical, environmental, biotechnological or engineering solutions to a society that is generated thanks to more or less complex relationships based on human relationships and historical events that have occurred so far. If we want professionals who know how to deal effectively and rationally with their leadership tasks and who, in addition, find and develop an ethically civic sense and a humanistic profile in their functions and scientific tasks, we must not leave aside the importance that it has, for the themselves, know the causes, facts and consequences of key events in the history of humanity. The words of the humanist Paul Preston are well known: “he who does not know his history is condemned to repeat the mistakes of the past.” The idea, therefore, that today there can be men of science in the way that the scientists of the Renaissance were, becomes, at the very least, difficult to conceive. To think that a Leonardo da Vinci can be repeated in current times is a more than crazy idea; and although at first it may seem that the specialization of a professional is inevitable but beneficial, there are authors who consider (Sánchez Inarejos) that it has an extremely serious negative side effect: the entrenchment behind the different postulates of each area of knowledge, disdaining everything. what is foreign to it.

Keywords: STEM, higher education, social sciences, history

Procedia PDF Downloads 66
25043 The Relation between Physical Health and Mental Health in Women of Reproductive Age

Authors: Hannah Yael Ephraim

Abstract:

During reproductive age (between 15 and 44), women are particularly susceptible to psychiatric illness. Depression and anxiety disorders are especially common for women during reproductive age. Women of reproductive age are also at greater risk for multiple physical conditions during this time. Existing literature focuses on the impact of mental health on physical health, showing that people with anxiety and depression repeatedly show greater physical health risk among those with developing chronic medical illness. However, there is limited research on the impact physical health has on mental health in women of reproductive age, a large and vulnerable population. For this reason, the current study seeks to ask the following questions: are women of reproductive age with a diagnosis of a chronic physical condition more likely to experience symptoms of mental illness than women without a diagnosis of a chronic physical condition? Does the type of physical illness relate to signs and symptoms of depression and anxiety? A quasi-experimental research design was implemented to compare the mental health outcomes of women with the diagnosis of chronic medical conditions and women without the diagnosis of a chronic medical condition. Quantitative data was collected through an anonymous ten-minute Qualtrics survey. The survey was sent out through multiple online platforms. The sample includes two groups of women: one group with the diagnosis of a chronic medical illness, and one group without a diagnosis and/or symptoms (N = 541). Participants identify as a woman and are between the ages of 15 and 44. A comparison of women with a diagnosis of a chronic physical condition and those without a diagnosis will be conducted to explore differences in depression and anxiety symptoms between women with and without a chronic medical diagnosis. The impact race, SES, and occupation will also be addressed in relation to anxiety and/or depression in women of reproductive age. This study will further the understanding of the relationship between mental illness in women of reproductive age with chronic medical conditions. The results of this study will have implications for the integration of mental health care in women’s health centers and perhaps training of clinicians and physicians providing psychological and medical care to women of reproductive age.

Keywords: mental health, physical health, reproductive age, women

Procedia PDF Downloads 315
25042 Location Privacy Preservation of Vehicle Data In Internet of Vehicles

Authors: Ying Ying Liu, Austin Cooke, Parimala Thulasiraman

Abstract:

Internet of Things (IoT) has attracted a recent spark in research on Internet of Vehicles (IoV). In this paper, we focus on one research area in IoV: preserving location privacy of vehicle data. We discuss existing location privacy preserving techniques and provide a scheme for evaluating these techniques under IoV traffic condition. We propose a different strategy in applying Differential Privacy using k-d tree data structure to preserve location privacy and experiment on real world Gowalla data set. We show that our strategy produces differentially private data, good preservation of utility by achieving similar regression accuracy to the original dataset on an LSTM (Long Term Short Term Memory) neural network traffic predictor.

Keywords: differential privacy, internet of things, internet of vehicles, location privacy, privacy preservation scheme

Procedia PDF Downloads 179
25041 Journey to the East: The Story of Ghanaian Migrants in Guangzhou, China

Authors: Mark Kwaku Mensah Obeng

Abstract:

In the late 1990s and early 2000s, nationals of sub-Saharan Africa who had initially settled in the Middle East and other parts of south east Asia moved to Guangzhou in response to the 1997/8 Asian financial crisis in numbers never witnessed. They were later joined by many more as the Chinese economy improved and as the economic relationship between China and Africa improved. This paper tells the story of identifiable sets of Ghanaians in Guangzhou, China in the 21st century. It details out their respective characteristics and their activities in China, their migratory trajectories and the motivations for travelling to China. Also analyzed is how they are coping with life in the unknown destination. It finally attempt predicting the future of the Ghanaian community in China in terms of their level of community participation and integration.

Keywords: Africa in China, Ghana, motivation, Guangzhou

Procedia PDF Downloads 447
25040 Encouraging Collaboration and Innovation: The New Engineering Oriented Educational Reform in Urban Planning, Tianjin University, China

Authors: Tianjie Zhang, Bingqian Cheng, Peng Zeng

Abstract:

Engineering science and technology progress and innovation have become an important engine to promote social development. The reform exploration of "new engineering" in China has drawn extensive attention around the world, with its connotation as "to cultivate future diversified, innovative and outstanding engineering talents by taking ‘fostering character and civic virtue’ as the guide, responding to changes and shaping the future as the construction concept, and inheritance and innovation, crossover and fusion, coordination and sharing as the principal approach". In this context, Tianjin University, as a traditional Chinese university with advantages in engineering, further launched the CCII (Coherent-Collaborative-Interdisciplinary-Innovation) program, raising the cultivation idea of integrating new liberal arts education, multidisciplinary engineering education and personalized professional education. As urban planning practice in China has undergone the evolution of "physical planning -- comprehensive strategic planning -- resource management-oriented planning", planning education has also experienced the transmutation process of "building foundation -- urban scientific foundation -- multi-disciplinary integration". As a characteristic and advantageous discipline of Tianjin University, the major of Urban and Rural Planning, in accordance with the "CCII Program of Tianjin University", aims to build China's top and world-class major, and implements the following educational reform measures: 1. Adding corresponding English courses, such as advanced course on GIS Analysis, courses on comparative studies in international planning involving ecological resources and the sociology of the humanities, etc. 2. Holding "Academician Forum", inviting international academicians to give lectures or seminars to track international frontier scientific research issues. 3. Organizing "International Joint Workshop" to provide students with international exchange and design practice platform. 4. Setting up a business practice base, so that students can find problems from practice and solve them in an innovative way. Through these measures, the Urban and Rural Planning major of Tianjin University has formed a talent training system with multi-disciplinary cross integration and orienting to the future science and technology.

Keywords: China, higher education reform, innovation, new engineering education, rural and urban planning, Tianjin University

Procedia PDF Downloads 121
25039 Investigating Data Normalization Techniques in Swarm Intelligence Forecasting for Energy Commodity Spot Price

Authors: Yuhanis Yusof, Zuriani Mustaffa, Siti Sakira Kamaruddin

Abstract:

Data mining is a fundamental technique in identifying patterns from large data sets. The extracted facts and patterns contribute in various domains such as marketing, forecasting, and medical. Prior to that, data are consolidated so that the resulting mining process may be more efficient. This study investigates the effect of different data normalization techniques, which are Min-max, Z-score, and decimal scaling, on Swarm-based forecasting models. Recent swarm intelligence algorithms employed includes the Grey Wolf Optimizer (GWO) and Artificial Bee Colony (ABC). Forecasting models are later developed to predict the daily spot price of crude oil and gasoline. Results showed that GWO works better with Z-score normalization technique while ABC produces better accuracy with the Min-Max. Nevertheless, the GWO is more superior that ABC as its model generates the highest accuracy for both crude oil and gasoline price. Such a result indicates that GWO is a promising competitor in the family of swarm intelligence algorithms.

Keywords: artificial bee colony, data normalization, forecasting, Grey Wolf optimizer

Procedia PDF Downloads 475
25038 Collision Theory Based Sentiment Detection Using Discourse Analysis in Hadoop

Authors: Anuta Mukherjee, Saswati Mukherjee

Abstract:

Data is growing everyday. Social networking sites such as Twitter are becoming an integral part of our daily lives, contributing a large increase in the growth of data. It is a rich source especially for sentiment detection or mining since people often express honest opinion through tweets. However, although sentiment analysis is a well-researched topic in text, this analysis using Twitter data poses additional challenges since these are unstructured data with abbreviations and without a strict grammatical correctness. We have employed collision theory to achieve sentiment analysis in Twitter data. We have also incorporated discourse analysis in the collision theory based model to detect accurate sentiment from tweets. We have also used the retweet field to assign weights to certain tweets and obtained the overall weightage of a topic provided in the form of a query. Hadoop has been exploited for speed. Our experiments show effective results.

Keywords: sentiment analysis, twitter, collision theory, discourse analysis

Procedia PDF Downloads 535
25037 ​​An Overview and Analysis of ChatGPT 3.5/4.0​

Authors: Sarah Mohammed, Huda Allagany, Ayah Barakat, Muna Elyas

Abstract:

This paper delves into the history and development of ChatGPT, tracing its evolution from its inception by OpenAI to its current state, and emphasizing its design improvements and strategic partnerships. It also explores the performance and applicability of ChatGPT versions 3.5 and 4 in various contexts, examining its capabilities and limitations in producing accurate and relevant responses. Utilizing a quantitative approach, user satisfaction, speed of response, learning capabilities, and overall utility in academic performance were assessed through surveys and analysis tools. Findings indicate that while ChatGPT generally delivers high accuracy and speed in responses, the need for clarification and more specific user instructions persists. The study highlights the tool's increasing integration across different sectors, showcasing its potential in educational and professional settings.

Keywords: artificial intelligence, chat GPT, analysis, education

Procedia PDF Downloads 50
25036 Advances in Mathematical Sciences: Unveiling the Power of Data Analytics

Authors: Zahid Ullah, Atlas Khan

Abstract:

The rapid advancements in data collection, storage, and processing capabilities have led to an explosion of data in various domains. In this era of big data, mathematical sciences play a crucial role in uncovering valuable insights and driving informed decision-making through data analytics. The purpose of this abstract is to present the latest advances in mathematical sciences and their application in harnessing the power of data analytics. This abstract highlights the interdisciplinary nature of data analytics, showcasing how mathematics intersects with statistics, computer science, and other related fields to develop cutting-edge methodologies. It explores key mathematical techniques such as optimization, mathematical modeling, network analysis, and computational algorithms that underpin effective data analysis and interpretation. The abstract emphasizes the role of mathematical sciences in addressing real-world challenges across different sectors, including finance, healthcare, engineering, social sciences, and beyond. It showcases how mathematical models and statistical methods extract meaningful insights from complex datasets, facilitating evidence-based decision-making and driving innovation. Furthermore, the abstract emphasizes the importance of collaboration and knowledge exchange among researchers, practitioners, and industry professionals. It recognizes the value of interdisciplinary collaborations and the need to bridge the gap between academia and industry to ensure the practical application of mathematical advancements in data analytics. The abstract highlights the significance of ongoing research in mathematical sciences and its impact on data analytics. It emphasizes the need for continued exploration and innovation in mathematical methodologies to tackle emerging challenges in the era of big data and digital transformation. In summary, this abstract sheds light on the advances in mathematical sciences and their pivotal role in unveiling the power of data analytics. It calls for interdisciplinary collaboration, knowledge exchange, and ongoing research to further unlock the potential of mathematical methodologies in addressing complex problems and driving data-driven decision-making in various domains.

Keywords: mathematical sciences, data analytics, advances, unveiling

Procedia PDF Downloads 93
25035 A Formal Approach for Instructional Design Integrated with Data Visualization for Learning Analytics

Authors: Douglas A. Menezes, Isabel D. Nunes, Ulrich Schiel

Abstract:

Most Virtual Learning Environments do not provide support mechanisms for the integrated planning, construction and follow-up of Instructional Design supported by Learning Analytic results. The present work aims to present an authoring tool that will be responsible for constructing the structure of an Instructional Design (ID), without the data being altered during the execution of the course. The visual interface aims to present the critical situations present in this ID, serving as a support tool for the course follow-up and possible improvements, which can be made during its execution or in the planning of a new edition of this course. The model for the ID is based on High-Level Petri Nets and the visualization forms are determined by the specific kind of the data generated by an e-course, a population of students generating sequentially dependent data.

Keywords: educational data visualization, high-level petri nets, instructional design, learning analytics

Procedia PDF Downloads 243
25034 Analysis of Users’ Behavior on Book Loan Log Based on Association Rule Mining

Authors: Kanyarat Bussaban, Kunyanuth Kularbphettong

Abstract:

This research aims to create a model for analysis of student behavior using Library resources based on data mining technique in case of Suan Sunandha Rajabhat University. The model was created under association rules, apriori algorithm. The results were found 14 rules and the rules were tested with testing data set and it showed that the ability of classify data was 79.24 percent and the MSE was 22.91. The results showed that the user’s behavior model by using association rule technique can use to manage the library resources.

Keywords: behavior, data mining technique, a priori algorithm, knowledge discovery

Procedia PDF Downloads 404
25033 Exploration of RFID in Healthcare: A Data Mining Approach

Authors: Shilpa Balan

Abstract:

Radio Frequency Identification, also popularly known as RFID is used to automatically identify and track tags attached to items. This study focuses on the application of RFID in healthcare. The adoption of RFID in healthcare is a crucial technology to patient safety and inventory management. Data from RFID tags are used to identify the locations of patients and inventory in real time. Medical errors are thought to be a prominent cause of loss of life and injury. The major advantage of RFID application in healthcare industry is the reduction of medical errors. The healthcare industry has generated huge amounts of data. By discovering patterns and trends within the data, big data analytics can help improve patient care and lower healthcare costs. The number of increasing research publications leading to innovations in RFID applications shows the importance of this technology. This study explores the current state of research of RFID in healthcare using a text mining approach. No study has been performed yet on examining the current state of RFID research in healthcare using a data mining approach. In this study, related articles were collected on RFID from healthcare journal and news articles. Articles collected were from the year 2000 to 2015. Significant keywords on the topic of focus are identified and analyzed using open source data analytics software such as Rapid Miner. These analytical tools help extract pertinent information from massive volumes of data. It is seen that the main benefits of adopting RFID technology in healthcare include tracking medicines and equipment, upholding patient safety, and security improvement. The real-time tracking features of RFID allows for enhanced supply chain management. By productively using big data, healthcare organizations can gain significant benefits. Big data analytics in healthcare enables improved decisions by extracting insights from large volumes of data.

Keywords: RFID, data mining, data analysis, healthcare

Procedia PDF Downloads 233
25032 The Importance of Knowledge Innovation for External Audit on Anti-Corruption

Authors: Adel M. Qatawneh

Abstract:

This paper aimed to determine the importance of knowledge innovation for external audit on anti-corruption in the entire Jordanian bank companies are listed in Amman Stock Exchange (ASE). The study importance arises from the need to recognize the Knowledge innovation for external audit and anti-corruption as the development in the world of business, the variables that will be affected by external audit innovation are: reliability of financial data, relevantly of financial data, consistency of the financial data, Full disclosure of financial data and protecting the rights of investors to achieve the objectives of the study a questionnaire was designed and distributed to the society of the Jordanian bank are listed in Amman Stock Exchange. The data analysis found out that the banks in Jordan have a positive importance of Knowledge innovation for external audit on anti-corruption. They agree on the benefit of Knowledge innovation for external audit on anti-corruption. The statistical analysis showed that Knowledge innovation for external audit had a positive impact on the anti-corruption and that external audit has a significantly statistical relationship with anti-corruption, reliability of financial data, consistency of the financial data, a full disclosure of financial data and protecting the rights of investors.

Keywords: knowledge innovation, external audit, anti-corruption, Amman Stock Exchange

Procedia PDF Downloads 464
25031 Automated End-to-End Pipeline Processing Solution for Autonomous Driving

Authors: Ashish Kumar, Munesh Raghuraj Varma, Nisarg Joshi, Gujjula Vishwa Teja, Srikanth Sambi, Arpit Awasthi

Abstract:

Autonomous driving vehicles are revolutionizing the transportation system of the 21st century. This has been possible due to intensive research put into making a robust, reliable, and intelligent program that can perceive and understand its environment and make decisions based on the understanding. It is a very data-intensive task with data coming from multiple sensors and the amount of data directly reflects on the performance of the system. Researchers have to design the preprocessing pipeline for different datasets with different sensor orientations and alignments before the dataset can be fed to the model. This paper proposes a solution that provides a method to unify all the data from different sources into a uniform format using the intrinsic and extrinsic parameters of the sensor used to capture the data allowing the same pipeline to use data from multiple sources at a time. This also means easy adoption of new datasets or In-house generated datasets. The solution also automates the complete deep learning pipeline from preprocessing to post-processing for various tasks allowing researchers to design multiple custom end-to-end pipelines. Thus, the solution takes care of the input and output data handling, saving the time and effort spent on it and allowing more time for model improvement.

Keywords: augmentation, autonomous driving, camera, custom end-to-end pipeline, data unification, lidar, post-processing, preprocessing

Procedia PDF Downloads 123
25030 Visual Text Analytics Technologies for Real-Time Big Data: Chronological Evolution and Issues

Authors: Siti Azrina B. A. Aziz, Siti Hafizah A. Hamid

Abstract:

New approaches to analyze and visualize data stream in real-time basis is important in making a prompt decision by the decision maker. Financial market trading and surveillance, large-scale emergency response and crowd control are some example scenarios that require real-time analytic and data visualization. This situation has led to the development of techniques and tools that support humans in analyzing the source data. With the emergence of Big Data and social media, new techniques and tools are required in order to process the streaming data. Today, ranges of tools which implement some of these functionalities are available. In this paper, we present chronological evolution evaluation of technologies for supporting of real-time analytic and visualization of the data stream. Based on the past research papers published from 2002 to 2014, we gathered the general information, main techniques, challenges and open issues. The techniques for streaming text visualization are identified based on Text Visualization Browser in chronological order. This paper aims to review the evolution of streaming text visualization techniques and tools, as well as to discuss the problems and challenges for each of identified tools.

Keywords: information visualization, visual analytics, text mining, visual text analytics tools, big data visualization

Procedia PDF Downloads 399