Search results for: urban growth prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11754

Search results for: urban growth prediction

10044 Posttraumatic Distress, Hope and Growth in Survivors of Commercial Sexual Exploitation and Sex Trafficking in Nepal

Authors: Rebekah Volgin, Jane Shakespeare-Finch, Ian Shochet

Abstract:

Commercial sexual exploitation (CSE) and sex trafficking affect between 5000-7000 girls and women in Nepal each year and can have devastating physical and psychological consequences. Much research has documented these effects, however, there is no published longitudinal research that focuses on whether healing and growth outcomes are possible for survivors of CSE and sex trafficking. The narratives of 27 girls and women (13-22 years) were taken at two-time points during participation in a six-week group psychoeducation and art therapy program which was delivered across three NGO’s in Kathmandu, Nepal. These narratives form part of a larger ethnographic project. Thematic analysis of the data was undertaken. Themes emerging from time point 1 were: psychological distress in the form of anxiety and grief over loss of family, psychosomatic symptoms, empathy and compassion, and posttraumatic growth (PTG) in the form of new possibilities, relating to others and personal strength. Posttraumatic growth refers to positive changes in the aftermath of trauma. The themes emerging from time point 2, were: empathy and compassion and PTG (cognitive restructuring, new possibilities, relating to others and personal strength). Alongside the distress that these participants experienced, they also experienced positive outcomes such as empathy and compassion and psychological growth. Future research would advance knowledge by further examining the process of PTG in this population, if the changes observed were lasting, and if so, ways in which PTG can be facilitated or promoted.

Keywords: commercial sexual exploitation, human trafficking, posttraumatic growth, sexual trauma

Procedia PDF Downloads 258
10043 Ethyl Methane Sulfonate-Induced Dunaliella salina KU11 Mutants Affected for Growth Rate, Cell Accumulation and Biomass

Authors: Vongsathorn Ngampuak, Yutachai Chookaew, Wipawee Dejtisakdi

Abstract:

Dunaliella salina has great potential as a system for generating commercially valuable products, including beta-carotene, pharmaceuticals, and biofuels. Our goal is to improve this potential by enhancing growth rate and other properties of D. salina under optimal growth conditions. We used ethyl methane sulfonate (EMS) to generate random mutants in D. salina KU11, a strain classified in Thailand. In a preliminary experiment, we first treated D. salina cells with 0%, 0.8%, 1.0%, 1.2%, 1.44% and 1.66% EMS to generate a killing curve. After that, we randomly picked 30 candidates from approximately 300 isolated survivor colonies from the 1.44% EMS treatment (which permitted 30% survival) as an initial test of the mutant screen. Among the 30 survivor lines, we found that 2 strains (mutant #17 and #24) had significantly improved growth rates and cell number accumulation at stationary phase approximately up to 1.8 and 1.45 fold, respectively, 2 strains (mutant #6 and #23) had significantly decreased growth rates and cell number accumulation at stationary phase approximately down to 1.4 and 1.35 fold, respectively, while 26 of 30 lines had similar growth rates compared with the wild type control. We also analyzed cell size for each strain and found there was no significant difference comparing all mutants with the wild type. In addition, mutant #24 had shown an increase of biomass accumulation approximately 1.65 fold compared with the wild type strain on day 5 that was entering early stationary phase. From these preliminary results, it could be feasible to identify D. salina mutants with significant improved growth rate, cell accumulation and biomass production compared to the wild type for the further study; this makes it possible to improve this microorganism as a platform for biotechnology application.

Keywords: Dunaliella salina, ethyl methyl sulfonate, growth rate, biomass

Procedia PDF Downloads 241
10042 Determining Best Fitting Distributions for Minimum Flows of Streams in Gediz Basin

Authors: Naci Büyükkaracığan

Abstract:

Today, the need for water sources is swiftly increasing due to population growth. At the same time, it is known that some regions will face with shortage of water and drought because of the global warming and climate change. In this context, evaluation and analysis of hydrological data such as the observed trends, drought and flood prediction of short term flow has great deal of importance. The most accurate selection probability distribution is important to describe the low flow statistics for the studies related to drought analysis. As in many basins In Turkey, Gediz River basin will be affected enough by the drought and will decrease the amount of used water. The aim of this study is to derive appropriate probability distributions for frequency analysis of annual minimum flows at 6 gauging stations of the Gediz Basin. After applying 10 different probability distributions, six different parameter estimation methods and 3 fitness test, the Pearson 3 distribution and general extreme values distributions were found to give optimal results.

Keywords: Gediz Basin, goodness-of-fit tests, minimum flows, probability distribution

Procedia PDF Downloads 271
10041 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 170
10040 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 160
10039 Assessment of the Effects of Urban Development on Urban Heat Islands and Community Perception in Semi-Arid Climates: Integrating Remote Sensing, GIS Tools, and Social Analysis - A Case Study of the Aures Region (Khanchela), Algeria

Authors: Amina Naidja, Zedira Khammar, Ines Soltani

Abstract:

This study investigates the impact of urban development on the urban heat island (UHI) effect in the semi-arid Aures region of Algeria, integrating remote sensing data with statistical analysis and community surveys to examine the interconnected environmental and social dynamics. Using Landsat 8 satellite imagery, temporal variations in the Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), and land use/land cover (LULC) changes are analyzed to understand patterns of urbanization and environmental transformation. These environmental metrics are correlated with land surface temperature (LST) data derived from remote sensing to quantify the UHI effect. To incorporate the social dimension, a structured questionnaire survey is conducted among residents in selected urban areas. The survey assesses community perceptions of urban heat, its impacts on daily life, health concerns, and coping strategies. Statistical analysis is employed to analyze survey responses, identifying correlations between demographic factors, socioeconomic status, and perceived heat stress. Preliminary findings reveal significant correlations between built-up areas (NDBI) and higher LST, indicating the contribution of urbanization to local warming. Conversely, areas with higher vegetation cover (NDVI) exhibit lower LST, highlighting the cooling effect of green spaces. Social survey results provide insights into how UHI affects different demographic groups, with vulnerable populations experiencing greater heat-related challenges. By integrating remote sensing analysis with statistical modeling and community surveys, this study offers a comprehensive understanding of the environmental and social implications of urban development in semi-arid climates. The findings contribute to evidence-based urban planning strategies that prioritize environmental sustainability and social well-being. Future research should focus on policy recommendations and community engagement initiatives to mitigate UHI impacts and promote climate-resilient urban development.

Keywords: urban heat island, remote sensing, social analysis, NDVI, NDBI, LST, community perception

Procedia PDF Downloads 43
10038 Nexus among Foreign Private Investment, CO2 Emissions, Energy Consumption and Sustainable Economic Growth

Authors: Aysha Zamir

Abstract:

This study examines to what extent foreign private investment (FPI) affects the clean industrial environment and sustainable economic growth through developed countries investment in China. Moreover, this study investiage an association among FPI, CO2 emission, energy consumption, and sustainable economic growth. This study uses random effects and generalized least squares (GLS) and panel VAR estimators for data analysis. The results indicate that the Chinese economy has a vastly positive influenced regarding the location and choice of emerging and developed countries’ investment in the domestic market. Furthermore, emerging and developed economies investment increases the contribution among domestic firms, environment sustainability toward the national economy. The further results show that foreign private investment and gross domestic investment have a positive impact on sustainable economic growth.

Keywords: clean industrial environment, energy consumption, CO2 emmission, foreign private investment, developed and emerging economies

Procedia PDF Downloads 129
10037 Cooperative Coevolution for Neuro-Evolution of Feed Forward Networks for Time Series Prediction Using Hidden Neuron Connections

Authors: Ravneil Nand

Abstract:

Cooperative coevolution uses problem decomposition methods to solve a larger problem. The problem decomposition deals with breaking down the larger problem into a number of smaller sub-problems depending on their method. Different problem decomposition methods have their own strengths and limitations depending on the neural network used and application problem. In this paper we are introducing a new problem decomposition method known as Hidden-Neuron Level Decomposition (HNL). The HNL method is competing with established problem decomposition method in time series prediction. The results show that the proposed approach has improved the results in some benchmark data sets when compared to the standalone method and has competitive results when compared to methods from literature.

Keywords: cooperative coevaluation, feed forward network, problem decomposition, neuron, synapse

Procedia PDF Downloads 338
10036 Numerical Prediction of Entropy Generation in Heat Exchangers

Authors: Nadia Allouache

Abstract:

The concept of second law is assumed to be important to optimize the energy losses in heat exchangers. The present study is devoted to the numerical prediction of entropy generation due to heat transfer and friction in a double tube heat exchanger partly or fully filled with a porous medium. The goal of this work is to find the optimal conditions that allow minimizing entropy generation. For this purpose, numerical modeling based on the control volume method is used to describe the flow and heat transfer phenomena in the fluid and the porous medium. Effects of the porous layer thickness, its permeability, and the effective thermal conductivity have been investigated. Unexpectedly, the fully porous heat exchanger yields a lower entropy generation than the partly porous case or the fluid case even if the friction increases the entropy generation.

Keywords: heat exchangers, porous medium, second law approach, turbulent flow

Procedia PDF Downloads 300
10035 Use of Different Plant Extracts in Fungal Disease Management of Onion (Allium cepa. L)

Authors: Shobha U. Jadhav

Abstract:

Onion is most important vegetable crop grown throughout the world. Onion suffers from pest and fungal diseases but these fungicides cause pollution and disturb microbial balance of soil. Under integrated fungal disease management programme cost effective and eco- friendly component like plant extract are used to control plant pathogens. Alternaria porri, Fusarium oxysporium, Stemphylium vesicarium are soil-borne pathogens of onion. Effect of three different plant extracts (Ocimum sanctum L., Xanthium strumarium B. and H. Withania somnifera Dunal)at five different concentration Viz, 10, 25, 50, 75, and 100 percentage on these pathogens was studied by food poisoning technique. Ocimum sanctum gave 84.21% growth of Alternaria porri at 10% extract concentration and 10.52% growth in 100% extract concentration. As compared to Fusarium oxysporium and Stemphylium vesicarium, Alternaria porri give good inhibitory response. In Xanthium strumarium B. and H. at 10% extract concentration 46.42% growth and at 100% extract concentration 28.57% growth of Fusarium oxysporum was observed. Fusarium oxysporum give good inhibitory response as compared to Alternaria porri and Stemphylium vesicarium. In Withania somnifera Dunal in 10% extract concentration 84.21% growth and in 100% extract concentration 21.05% growth of Stemphylium vesicarium was recorded. Stemphylium vesicarium give good inhibitory response as compared to Alternaria porri and Fusarium oxysporum.

Keywords: pathogen, onion, plant, extract

Procedia PDF Downloads 382
10034 Cost Overruns in Mega Projects: Project Progress Prediction with Probabilistic Methods

Authors: Yasaman Ashrafi, Stephen Kajewski, Annastiina Silvennoinen, Madhav Nepal

Abstract:

Mega projects either in construction, urban development or energy sectors are one of the key drivers that build the foundation of wealth and modern civilizations in regions and nations. Such projects require economic justification and substantial capital investment, often derived from individual and corporate investors as well as governments. Cost overruns and time delays in these mega projects demands a new approach to more accurately predict project costs and establish realistic financial plans. The significance of this paper is that the cost efficiency of megaprojects will improve and decrease cost overruns. This research will assist Project Managers (PMs) to make timely and appropriate decisions about both cost and outcomes of ongoing projects. This research, therefore, examines the oil and gas industry where most mega projects apply the classic methods of Cost Performance Index (CPI) and Schedule Performance Index (SPI) and rely on project data to forecast cost and time. Because these projects are always overrun in cost and time even at the early phase of the project, the probabilistic methods of Monte Carlo Simulation (MCS) and Bayesian Adaptive Forecasting method were used to predict project cost at completion of projects. The current theoretical and mathematical models which forecast the total expected cost and project completion date, during the execution phase of an ongoing project will be evaluated. Earned Value Management (EVM) method is unable to predict cost at completion of a project accurately due to the lack of enough detailed project information especially in the early phase of the project. During the project execution phase, the Bayesian adaptive forecasting method incorporates predictions into the actual performance data from earned value management and revises pre-project cost estimates, making full use of the available information. The outcome of this research is to improve the accuracy of both cost prediction and final duration. This research will provide a warning method to identify when current project performance deviates from planned performance and crates an unacceptable gap between preliminary planning and actual performance. This warning method will support project managers to take corrective actions on time.

Keywords: cost forecasting, earned value management, project control, project management, risk analysis, simulation

Procedia PDF Downloads 406
10033 A Consumption-Based Hybrid Life Cycle Assessment of Carbon Footprints in California: High Footprints in Small Urban Households

Authors: Jukka Heinonen

Abstract:

Higher density reduces distances, private car dependency and thus reduces greenhouse gas emissions (GHGs). As a result, increased density has been given a central role among urban development targets. However, it is not just travel behavior that changes along with density. Rather, the consumption patterns, or overall lifestyles, change along with changing urban structure, particularly with changing housing types and consumption opportunities. Furthermore, elevated consumption of services, more frequent flying and less intra-household sharing have been shown to potentially outweigh the gains from reduced driving in more dense urban settlements. In this study, the geography of carbon footprints (CFs) in California is analyzed paying close attention to the household size differences and the resulting economies-of-scale advantages and disadvantages. A hybrid life cycle assessment (LCA) framework is employed together with consumer expenditure data to assess the CFs. According to the study, small urban households have the highest CFs in California. Their transport related emissions are significantly lower than those of the residents of less urbanized areas, but higher emissions from other consumption categories, together with the low degree of sharing of goods, overweigh the gains. Two functional units, per capita and per household, are used to analyze the CFs and to demonstrate the importance of household size. The lifestyle impacts visible through the consumption data are also discussed. The study suggests that there are still significant gaps in our understanding of the premises of low-carbon human settlements.

Keywords: carbon footprint, life cycle assessment, lifestyle, household size, consumption, economies-of-scale

Procedia PDF Downloads 356
10032 Power of Doubling: Population Growth and Resource Consumption

Authors: Sarika Bahadure

Abstract:

Sustainability starts with conserving resources for future generations. Since human’s existence on this earth, he has been consuming natural resources. The resource consumption pace in the past was very slow, but industrialization in 18th century brought a change in the human lifestyle. New inventions and discoveries upgraded the human workforce to machines. The mass manufacture of goods provided easy access to products. In the last few decades, the globalization and change in technologies brought consumer oriented market. The consumption of resources has increased at a very high scale. This overconsumption pattern brought economic boom and provided multiple opportunities, but it also put stress on the natural resources. This paper tries to put forth the facts and figures of the population growth and consumption of resources with examples. This is explained with the help of the mathematical expression of doubling known as exponential growth. It compares the carrying capacity of the earth and resource consumption of humans’ i.e. ecological footprint and bio-capacity. Further, it presents the need to conserve natural resources and re-examine sustainable resource use approach for sustainability.

Keywords: consumption, exponential growth, population, resources, sustainability

Procedia PDF Downloads 229
10031 Guideline for Happy Living According to Sufficiency Economy Philosophy of People and Community Leaders in Urban Communities

Authors: Phusit Phukamchanoad

Abstract:

This research was to analyze personality’s activities based on sufficiency economy philosophy of people and community leaders in urban communities. The data were collected through questionnaires administered to 392 people and interviewed with community leaders. It was found that most people revealed that their lives depend on activities in accordance with the sufficiency economy philosophy in high level especially, being honest and aware on sufficiency, occupations, peacefulness in the community leaders’ side, they reported on extravagant reduction, planting home vegetable garden, having household accounting, expense planning by dividing into 3 categories; 1) saving for illness cover 2) saving for business cover, and 3) household daily expense. The samples were also adjusted their livings quite well with the rapid change of urbanization. Although those people have encountered with any hardships, their honesty in occupations and awareness on sufficiency remain to survive happily.

Keywords: sufficiency economy philosophy, individual and household activities, urban community

Procedia PDF Downloads 360
10030 Assessing the Influence of Station Density on Geostatistical Prediction of Groundwater Levels in a Semi-arid Watershed of Karnataka

Authors: Sakshi Dhumale, Madhushree C., Amba Shetty

Abstract:

The effect of station density on the geostatistical prediction of groundwater levels is of critical importance to ensure accurate and reliable predictions. Monitoring station density directly impacts the accuracy and reliability of geostatistical predictions by influencing the model's ability to capture localized variations and small-scale features in groundwater levels. This is particularly crucial in regions with complex hydrogeological conditions and significant spatial heterogeneity. Insufficient station density can result in larger prediction uncertainties, as the model may struggle to adequately represent the spatial variability and correlation patterns of the data. On the other hand, an optimal distribution of monitoring stations enables effective coverage of the study area and captures the spatial variability of groundwater levels more comprehensively. In this study, we investigate the effect of station density on the predictive performance of groundwater levels using the geostatistical technique of Ordinary Kriging. The research utilizes groundwater level data collected from 121 observation wells within the semi-arid Berambadi watershed, gathered over a six-year period (2010-2015) from the Indian Institute of Science (IISc), Bengaluru. The dataset is partitioned into seven subsets representing varying sampling densities, ranging from 15% (12 wells) to 100% (121 wells) of the total well network. The results obtained from different monitoring networks are compared against the existing groundwater monitoring network established by the Central Ground Water Board (CGWB). The findings of this study demonstrate that higher station densities significantly enhance the accuracy of geostatistical predictions for groundwater levels. The increased number of monitoring stations enables improved interpolation accuracy and captures finer-scale variations in groundwater levels. These results shed light on the relationship between station density and the geostatistical prediction of groundwater levels, emphasizing the importance of appropriate station densities to ensure accurate and reliable predictions. The insights gained from this study have practical implications for designing and optimizing monitoring networks, facilitating effective groundwater level assessments, and enabling sustainable management of groundwater resources.

Keywords: station density, geostatistical prediction, groundwater levels, monitoring networks, interpolation accuracy, spatial variability

Procedia PDF Downloads 61
10029 Diagnostic and Analysis of the Performance of Freight Transportation on Urban Logistics System in the City of Sfax

Authors: Tarak Barhoumi, Younes Boujelbene

Abstract:

Nowadays, the problems of freight transport pose logistical constraints on the urban system in the city. The aim of this article is to gain a better understanding of the interactions between local traffic and interurban traffic on the one hand and between the location system and the transport system on the other hand. Thus, in a simulation and analysis approach cannot be restricted to the only transport system. The proposed approach is based on an assessment of the impact of freight transport, which is closely linked to the diagnostic method, based on two surveys carried out on the territory of the urban community of Sfax. These surveys are based on two main components 'establishment component' first and 'driver component' second. The results propose a reorganization of freight transport in the city of Sfax. First, an orientation of the heavy goods vehicles traffic towards the major axes of transport namely the ring roads (ring road N° 2, ring road N° 4 and ring road N° 11) and the penetrating news of the city. Then, the implementation of a retail goods delivery policy and the strengthening of logistics in the city. The creation of a logistics zone at the ring road N° 11 where various modes of freight transport meet, in order to decongest the roads of heavy goods traffic, reduce the cost of transport and thus improve the competitiveness of the economy regional.

Keywords: urban logistics systems, transport freight, diagnostics, evaluation

Procedia PDF Downloads 166
10028 The Effect of Visual Access to Greenspace and Urban Space on a False Memory Learning Task

Authors: Bryony Pound

Abstract:

This study investigated how views of green or urban space affect learning performance. It provides evidence of the value of visual access to greenspace in work and learning environments, and builds on the extensive research into the cognitive and learning-related benefits of access to green and natural spaces, particularly in learning environments. It demonstrates that benefits of visual access to natural spaces whilst learning can produce statistically significant faster responses than those facing urban views after only 5 minutes. The primary hypothesis of this research was that a greenspace view would improve short-term learning. Participants were randomly assigned to either a view of parkland or of urban buildings from the same room. They completed a psychological test of two stages. The first stage consisted of a presentation of words from eight different categories (four manmade and four natural). Following this a 2.5 minute break was given; participants were not prompted to look out of the window, but all were observed doing so. The second stage of the test involved a word recognition/false memory test of three types. Type 1 was presented words from each category; Type 2 was non-presented words from those same categories; and Type 3 was non-presented words from different categories. Participants were asked to respond with whether they thought they had seen the words before or not. Accuracy of responses and reaction times were recorded. The key finding was that reaction times for Type 2 words (highest difficulty) were significantly different between urban and green view conditions. Those with an urban view had slower reaction times for these words, so a view of greenspace resulted in better information retrieval for word and false memory recognition. Importantly, this difference was found after only 5 minutes of exposure to either view, during winter, and with a sample size of only 26. Greenspace views improve performance in a learning task. This provides a case for better visual access to greenspace in work and learning environments.

Keywords: benefits, greenspace, learning, restoration

Procedia PDF Downloads 127
10027 Predicting Data Center Resource Usage Using Quantile Regression to Conserve Energy While Fulfilling the Service Level Agreement

Authors: Ahmed I. Alutabi, Naghmeh Dezhabad, Sudhakar Ganti

Abstract:

Data centers have been growing in size and dema nd continuously in the last two decades. Planning for the deployment of resources has been shallow and always resorted to over-provisioning. Data center operators try to maximize the availability of their services by allocating multiple of the needed resources. One resource that has been wasted, with little thought, has been energy. In recent years, programmable resource allocation has paved the way to allow for more efficient and robust data centers. In this work, we examine the predictability of resource usage in a data center environment. We use a number of models that cover a wide spectrum of machine learning categories. Then we establish a framework to guarantee the client service level agreement (SLA). Our results show that using prediction can cut energy loss by up to 55%.

Keywords: machine learning, artificial intelligence, prediction, data center, resource allocation, green computing

Procedia PDF Downloads 109
10026 Design for Sustainability

Authors: Qiuying Li, Fan Chen

Abstract:

It is a shared opinion that sustainable development requires continuously updated, meaning that apparent changes in the way we usually produce our buildings are strongly needed. In China’s construction field, the associated environmental, health problems are quite prominent.Especially low sustainable performance (as opposed to Green creation) flooding the real estate boom and high-speed urban and rural urbanization. Currently, we urgently need to improve the existing design basis,objectives,scope and procedures,optimization design portfolio.More new evaluation system designed to facilitate the building to enhance the overall level.

Keywords: design for sustainability, design and materials, ecomaterials, sustainable architecture and urban design

Procedia PDF Downloads 522
10025 Anticipating the Change: Visions and Perspectives towards a Post-Car World

Authors: Farzaneh Bahrami

Abstract:

Different indicators, such as modal shares in mobility practices or car ownership, may suggest that the century of car dominance - at least in Europe and North America - is already behind us. If the emergence of the car had radical spatial and social consequences, what would be the implications of its gradual disappearance - which could be expected in the context of ecological consciousness, economic and energetic constraints as a result of both urban policies as well as lifestyle choices? To what extend shall urban experts account for this limited but visible transition from car-dominated systems towards alternative models of mobility in which the individual-motorized mobility (car) is not central; what models of urbanity could be imagined to support such a transformation? We have examined a selection of projects at different scales and within different contexts - new planned cities, dense urban areas or territories of dispersion – whose visions involve a significant shift from the current car system. We have been looking into their tools, strategies and different measures of car reduction, as well as their varied approaches to public space as an inevitable corollary to this change. The car’s dominance was formerly questioned by advocates of public space, rather than through interests in ecological urban design or other urban planning concerns. In the 60s already a universal longing for the qualities of traditional urban space led to a critique of the proliferation of fast roads, and thus the car’s colonization of everyday life. Reclamation of public space as the city’s quintessential social territory reappears today in contemporary discourses and reinforces the shift-provoking trends towards a new urbanity freed from car dominance. In a hypothetical process of the progressive phasing-out of the car, we shall expect fundamental transformations in spatial practices of the city, accompanied by the physical configuration of its public spaces. What will be the main characteristics of the new emerging spaces of sociability and where shall we encounter them? This contribution is an ongoing research within the framework of Post-Car World, an interdisciplinary project that explores the future of mobility through the role of the car.

Keywords: mobility, urbanity, future visions, public space

Procedia PDF Downloads 371
10024 Big Data: Appearance and Disappearance

Authors: James Moir

Abstract:

The mainstay of Big Data is prediction in that it allows practitioners, researchers, and policy analysts to predict trends based upon the analysis of large and varied sources of data. These can range from changing social and political opinions, patterns in crimes, and consumer behaviour. Big Data has therefore shifted the criterion of success in science from causal explanations to predictive modelling and simulation. The 19th-century science sought to capture phenomena and seek to show the appearance of it through causal mechanisms while 20th-century science attempted to save the appearance and relinquish causal explanations. Now 21st-century science in the form of Big Data is concerned with the prediction of appearances and nothing more. However, this pulls social science back in the direction of a more rule- or law-governed reality model of science and away from a consideration of the internal nature of rules in relation to various practices. In effect Big Data offers us no more than a world of surface appearance and in doing so it makes disappear any context-specific conceptual sensitivity.

Keywords: big data, appearance, disappearance, surface, epistemology

Procedia PDF Downloads 422
10023 Urban Security and Social Sustainability in Cities of Developing Countries

Authors: Taimaz Larimian, Negin Sadeghi

Abstract:

Very little is known about the impacts of urban security on the level of social sustainability within the cities of developing countries. Urban security is still struggling to find its position in the social sustainability agenda, despite the significant role of safety and security on different aspects of peoples’ lives. This paper argues that urban safety and security should be better integrated within the social sustainability framework. With this aim, this study investigates the hypothesized relationship between social sustainability and Crime Prevention through Environmental Design (CPTED) approach at the neighborhood scale. This study proposes a model of key influential dimensions of CPTED analyzed into localized factors and sub-factors. These factors are then prioritized using pairwise comparison logic and fuzzy group Analytic Hierarchy Process (AHP) method in order to determine the relative importance of each factor on achieving social sustainability. The proposed model then investigates social sustainability in six case study neighborhoods of Isfahan city based on residents’ perceptions of safety within their neighborhood. Mixed method of data collection is used by using a self-administered questionnaire to explore the residents’ perceptions of social sustainability in their area of residency followed by an on-site observation to measure the CPTED construct. In all, 150 respondents from selected neighborhoods were involved in this research. The model indicates that CPTED approach has a significant direct influence on increasing social sustainability in neighborhood scale. According to the findings, among different dimensions of CPTED, ‘activity support’ and ‘image/ management’ have the most influence on people’s feeling of safety within studied areas. This model represents a useful designing tool in achieving urban safety and security during the development of more socially sustainable and user-friendly urban areas.

Keywords: crime prevention through environmental design (CPTED), developing countries, fuzzy analytic hierarchy process (FAHP), social sustainability

Procedia PDF Downloads 308
10022 Sustainability and Smart Cities Planning in Contrast with City Humanity. Human Scale and City Soul (Neighbourhood Scale)

Authors: Ghadir Hummeid

Abstract:

Undoubtedly, our world is leading all the purposes and efforts to achieve sustainable development in life in all respects. Sustainability has been regarded as a solution to many challenges of our world today, materiality and immateriality. With the new consequences and challenges our world today, such as global climate change, the use of non-renewable resources, environmental pollution, the decreasing of urban health, the urban areas’ aging, the highly increasing migrations into urban areas linked to many consequences such as highly infrastructure density, social segregation. All of that required new forms of governance, new urban policies, and more efficient efforts and urban applications. Based on the fact that cities are the core of life and it is a fundamental life axis, their development can increase or decrease the life quality of their inhabitants. Architects and planners see themselves today in the need to create new approaches and new sustainable policies to develop urban areas to correspond with the physical and non-physical transformations that cities are nowadays experiencing. To enhance people's lives and provide for their needs in this present without compromising the needs and lives of future generations. The application of sustainability has become an inescapable part of the development and projections of cities' planning. Yet its definition has been indefinable due to the plurality and difference of its applications. As the conceptualizations of technology are arising and have dominated all life aspects today, from smart citizens and smart life rhythms to smart production and smart structures to smart frameworks, it has influenced the sustainability applications as well in the planning and urbanization of cities. The term "smart city" emerged from this influence as one of the possible key solutions to sustainability. The term “smart city” has various perspectives of applications and definitions in the literature and in urban applications. However, after the observation of smart city applications in current cities, this paper defined the smart city as an urban environment that is controlled by technologies yet lacks the physical architectural representation of this smartness as the current smart applications are mostly obscured from the public as they are applied now on a diminutive scale and highly integrated into the built environment. Regardless of the importance of these technologies in improving the quality of people's lives and in facing cities' challenges, it is important not to neglect their architectural and urban presentations will affect the shaping and development of city neighborhoods. By investigating the concept of smart cities and exploring its potential applications on a neighbourhood scale, this paper aims to shed light on understanding the challenges faced by cities and exploring innovative solutions such as smart city applications in urban mobility and how they affect the different aspects of communities. The paper aims to shape better articulations of smart neighborhoods’ morphologies on the social, architectural, functional, and material levels. To understand how to create more sustainable and liveable future approaches to developing urban environments inside cities. The findings of this paper will contribute to ongoing discussions and efforts in achieving sustainable urban development.

Keywords: sustainability, urban development, smart city, resilience, sense of belonging

Procedia PDF Downloads 80
10021 Urban Sustainable Development Based on Habitat Quality Evolution: A Case Study in Chongqing, China

Authors: Jing Ren, Kun Wu

Abstract:

Over the last decade or so, China's urbanization has shown a rapid development trend. At the same time, it has also had a great negative impact on the habitat quality. Therefore, it is of great significance to study the impact of land use change on the level of habitat quality in mountain cities for sustainable urban development. This paper analyzed the spatial and temporal land use changes in Chongqing from 2010 to 2020 using ArcGIS 10.6, as well as the evolutionary trend of habitat quality during this period based on the InVEST 3.13.0, to obtain the impact of land use changes on habitat quality. The results showed that the habitat quality in the western part of Chongqing decreased significantly between 2010 and 2020, while the northeastern and southeastern parts remained stable. The main reason for this is the continuous expansion of urban construction land in the western area, which leads to serious habitat fragmentation and the continuous decline of habitat quality. while, in the northeast and southeast areas, due to the greater emphasis on ecological priority and urban-rural coordination in the development process, land use change is characterized by a benign transfer, which maintains the urbanization process while maintaining the coordinated development of habitat quality. This study can provide theoretical support for the sustainable development of mountain cities.

Keywords: mountain cities, ecological environment, habitat quality, sustainable development

Procedia PDF Downloads 85
10020 Decoding Socio-Cultural Trends in Indian Urban Youth Using Ogilvy 3E Model

Authors: Falguni Vasavada, Pradyumna Malladi

Abstract:

The research focuses on studying the ecosystem of the youth using Ogilvy's 3E model, Ethnography and Thematic Analysis. It has been found that urban Indian youth today is an honest generation, hungry for success, living life by the moment, fiercely independent, are open about sex, sexuality and embrace individual differences. Technology and social media dominate their life. However, they are also phobic about commitments, often drifting along life and engage in unsubstantiated brave-talk.

Keywords: ethnography, youth, culture, track, buyer behavior

Procedia PDF Downloads 361
10019 Assessment of Environmental Implications of Rapid Population Growth on Land Use Dynamics: A Case Study of Eleme Local Government Area, Rivers State, Nigeria

Authors: Moses Obenade, Henry U. Okeke, Francis I. Okpiliya, Eugene J. Aniah

Abstract:

Population growth in Eleme has been rapid over the past 75 years with its attendant pressure on the natural resources of the area. Between 1937 and 2006 the population of Eleme grew from 2,528 to 190,194 and is projected to be above 265,707 in 2016 based on an annual growth rate of 3.4%. Using the combined technologies of Geographic Information Systems (GIS), remote sensing (RS) and Demography techniques as its methodology, this paper examines the environmental implications of rapid population growth on land use dynamics in Eleme between 1986 and 2015. The study reveals that between 1986 and 2006, Built-up area and Farmland increased by 72.67 and 12.77% respectively, while light and thick vegetation recorded a decrease of -6.92 and -61.64% respectively. Water body remains fairly constant with minimal changes. Also, between 2006 and 2015 covering a period of 9 years, Built-up area further increased by 53% with an annual growth rate of 2.32 km2 gaining more land area on the detriment of other land uses. Built-up area has an annual growth rate of 2.32km2 and is expected to increase from 18.67km2 in 2006 to 41.87km2 in 2016.The observed Land used/Land cover dynamics is derived by the demographic characteristics of the Study area. Eleme has a total area of 138km2 out of which the Federal Government of Nigeria compulsorily acquired an estimated area of 59.34km2 for industrial purposes excluding acquisitions by the Rivers State Government. It is evident from the findings of this study that the carrying capacity of Eleme ecosystem is under threat due to the current population growth and land consumption rates. Therefore, measures such as use of appropriate technologies in farming techniques, waste management; investment in family planning and female empowerment, maternal health and education, afforestation programs; and amendment of Land Use Act of 1978 are recommended.

Keywords: population growth, Eleme, land use, GIS and remote sensing

Procedia PDF Downloads 382
10018 Prediction of Childbearing Orientations According to Couples' Sexual Review Component

Authors: Razieh Rezaeekalantari

Abstract:

Objective: The purpose of this study was to investigate the prediction of parenting orientations in terms of the components of couples' sexual review. Methods: This was a descriptive correlational research method. The population consisted of 500 couples referring to Sari Health Center. Two hundred and fifteen (215) people were selected randomly by using Krejcie-Morgan-sample-size-table. For data collection, the childbearing orientations scale and the Multidimensional Sexual Self-Concept Questionnaire were used. Result: For data analysis, the mean and standard deviation were used and to analyze the research hypothesis regression correlation and inferential statistics were used. Conclusion: The findings indicate that there is not a significant relationship between the tendency to childbearing and the predictive value of sexual review (r = 0.84) with significant level (sig = 219.19) (P < 0.05). So, with 95% confidence, we conclude that there is not a meaningful relationship between sexual orientation and tendency to child-rearing.

Keywords: couples referring, health center, sexual review component, parenting orientations

Procedia PDF Downloads 221
10017 In Ovo Injection of N-Carbamylglutamate Improves Growth Performance, Muscle Fiber Development, and Meat Quality in Broiler Chickens

Authors: Wang Yuan-hao, Habtamu Ayalew, Jing Wang, Shugeng Wu, Kai Qiu, Guanghai Qi, Haijun Zhang

Abstract:

N-carbamylglutamate (NCG) has emerged as a promising candidate for regulating endogenous arginine synthesis, thereby promoting desirable growth, carcass traits, and muscle development in broilers. Thus, this study aimed to investigate the effects of NCG in ovo feeding on the growth performance, growth hormones, and meat quality of Ross 308 breeder broilers. A total of 1680 embryo eggs were equally allocated into three treatment groups: non punctured control (NC), saline-injected control (SC; 100μL/egg), and N-carbamylglutamate injected group (NCG; 2 mg/egg). The treatment solution was injected into the amniotic cavity of the embryo at 17.5 days of incubation (DOI). For the subsequent 42 days of post hatch experimental sampling, a total of 360 broiler chicks with 6 replications per treatment and 15 chicks per replication were used. Chickens in the NCG group showed significantly higher (P<0.05) body weight gain (BWG) and final body weight (FBW) at both 21 and 42 days after hatch (DAH), while feed conversion efficiency (FCE) was significantly improved (P<0.05) at 42 DAH. The weight and percentage of drums at 21 DAH and the weight and percentage of breast muscle at 42 DAH were significantly higher (P<0.05) in the NCG group. In addition, insulin (INS), growth hormone (GH), and testosterone (T) levels were significantly higher (P<0.05) in the NCG groups at 21 and 42 DAH. Furthermore, triiodothyronine (T3) and tetraiodothyronine (T4) levels were significantly higher (P<0.05) in the NCG treatment group. Interestingly, meat color values were also significantly higher (P<0.05) in the NCG group at 24 hrs postmortem. Collectively, these findings show that 2 mg NCG in ovo injection improves the growth performance and meat quality of broilers; even the effects extend into the market age of the chickens.

Keywords: N-carbamylglutamate, broiler, in ovo injection, growth performance, meat quality

Procedia PDF Downloads 80
10016 Screening Microalgae Strains Which Were Isolated from Agriculture and Municipal Wastewater Drain, Reno, Nevada and Reuse of Effluent Water from Municipal Wastewater Treatment Plant in Microalgae Cultivation for Biofuel Feedstock

Authors: Nita Rukminasari

Abstract:

The aim of this study is to select microalgae strains, which were isolated from agriculture and municipal wastewater drain, Reno, Nevada that has highest growth rate and lipid contents. The experiments in this study were carried out in two consecutive stages. The first stage is aimed at testing the survival capability of all isolated microalgae strains and determining the best candidates to grow in centrate cultivation system. The second stage was targeted at determination the highest growth rate and highest lipid content of the selected top performing algae strain when cultivated on centrate wastewater. 26 microalgae strains, which were isolated from municipal and agriculture waste water, were analyzed using Flow cytometer for FACS of lipid with BODIPY and Nile Red as a lipid dyes and they grew on 96 wells plate for 31 days to determine growth rate as a based line data for growth rate. The result showed that microalgae strains which showed a high mean of fluorescence for BODIPY and Nile Red were F3.BP.1, F3.LV.1, T1.3.1, and T1.3.3. Five microalgae strains which have high growth rate were T1.3.3, T2.4.1. F3.LV.1, T2.12.1 and T3.3.1. In conclusion, microalgae strain which showed the highest starch content was F3.LV.1. T1.3.1 had the highest mean of fluorescence for Nile Red and BODIPY. Microalgae strains were potential for biofuel feedstock such as F3.LV.1 and T1.3.1, those microalgae strains showed a positive correlation between growth rate at stationary phase, biomass and meant of fluorescence for Nile Red and BODIPY.

Keywords: agriculture and municipal wastewater, biofuel, centrate, microalgae

Procedia PDF Downloads 318
10015 Sorghum Grains Grading for Food, Feed, and Fuel Using NIR Spectroscopy

Authors: Irsa Ejaz, Siyang He, Wei Li, Naiyue Hu, Chaochen Tang, Songbo Li, Meng Li, Boubacar Diallo, Guanghui Xie, Kang Yu

Abstract:

Background: Near-infrared spectroscopy (NIR) is a non-destructive, fast, and low-cost method to measure the grain quality of different cereals. Previously reported NIR model calibrations using the whole grain spectra had moderate accuracy. Improved predictions are achievable by using the spectra of whole grains, when compared with the use of spectra collected from the flour samples. However, the feasibility for determining the critical biochemicals, related to the classifications for food, feed, and fuel products are not adequately investigated. Objectives: To evaluate the feasibility of using NIRS and the influence of four sample types (whole grains, flours, hulled grain flours, and hull-less grain flours) on the prediction of chemical components to improve the grain sorting efficiency for human food, animal feed, and biofuel. Methods: NIR was applied in this study to determine the eight biochemicals in four types of sorghum samples: hulled grain flours, hull-less grain flours, whole grains, and grain flours. A total of 20 hybrids of sorghum grains were selected from the two locations in China. Followed by NIR spectral and wet-chemically measured biochemical data, partial least squares regression (PLSR) was used to construct the prediction models. Results: The results showed that sorghum grain morphology and sample format affected the prediction of biochemicals. Using NIR data of grain flours generally improved the prediction compared with the use of NIR data of whole grains. In addition, using the spectra of whole grains enabled comparable predictions, which are recommended when a non-destructive and rapid analysis is required. Compared with the hulled grain flours, hull-less grain flours allowed for improved predictions for tannin, cellulose, and hemicellulose using NIR data. Conclusion: The established PLSR models could enable food, feed, and fuel producers to efficiently evaluate a large number of samples by predicting the required biochemical components in sorghum grains without destruction.

Keywords: FT-NIR, sorghum grains, biochemical composition, food, feed, fuel, PLSR

Procedia PDF Downloads 69