Search results for: underhood modeling
2232 Analyzing the Characteristics and Shifting Patterns of Creative Hubs in Bandung
Authors: Fajar Ajie Setiawan, Ratu Azima Mayangsari, Bunga Aprilia
Abstract:
The emergence of creative hubs around the world, including in Bandung, was primarily driven by the needs of collaborative-innovative spaces for creative industry activities such as the Maker Movement and the Coworking Movement. These activities pose challenges for identification and formulation of sets of indicators for modeling creative hubs in Bandung to help stakeholders in formulating strategies. This study intends to identify their characteristics. This research was conducted using a qualitative approach comparing three concepts of creative hub categorization and integrating them into a single instrument to analyze 12 selected creative hubs. Our results showed three new functions of creative hubs in Bandung: (1) cultural, (2) retail business, and (3) community network. Results also suggest that creative hubs in Bandung are commonly established for networking and community activities. Another result shows that there was a shifting pattern of creative hubs before the 2000s and after the 2000s, which also creates a hybrid group of creative hubs.Keywords: creative industry, creative hubs, Ngariung, Bandung
Procedia PDF Downloads 1772231 Mapping of Potential Areas for Groundwater Storage in the Sais Plateau and Its Middle Atlas Borders, Morocco
Authors: Abdelghani Qadem, Zohair Qadem, Mohamed Lasri
Abstract:
At the level of the Moroccan Sais Plateau, groundwater constitutes strategic natural resources for agricultural, industrial, and domestic use. Today, due to climate change and population growth, the pressure on groundwater has increased considerably. This contribution aims to delineate and map potential areas for groundwater storage in the area in question using GIS and remote sensing. The methodology adopted is based on the identification of the thematic layers used to assess the potential recharge of the aquifer. The mapping of potential areas for groundwater storage is developed through the method of modeling and weighted overlay using the spatial analysis tool on the Geographic Information System. The results obtained can be used for the planning of future artificial recharge projects in the study area in order to ensure the good sustainable use of this underground gift.Keywords: Morocco, climate change, groundwater, mapping, recharge
Procedia PDF Downloads 832230 Assessment of Taiwan Railway Occurrences Investigations Using Causal Factor Analysis System and Bayesian Network Modeling Method
Authors: Lee Yan Nian
Abstract:
Safety investigation is different from an administrative investigation in that the former is conducted by an independent agency and the purpose of such investigation is to prevent accidents in the future and not to apportion blame or determine liability. Before October 2018, Taiwan railway occurrences were investigated by local supervisory authority. Characteristics of this kind of investigation are that enforcement actions, such as administrative penalty, are usually imposed on those persons or units involved in occurrence. On October 21, 2018, due to a Taiwan Railway accident, which caused 18 fatalities and injured another 267, establishing an agency to independently investigate this catastrophic railway accident was quickly decided. The Taiwan Transportation Safety Board (TTSB) was then established on August 1, 2019 to take charge of investigating major aviation, marine, railway and highway occurrences. The objective of this study is to assess the effectiveness of safety investigations conducted by the TTSB. In this study, the major railway occurrence investigation reports published by the TTSB are used for modeling and analysis. According to the classification of railway occurrences investigated by the TTSB, accident types of Taiwan railway occurrences can be categorized into: derailment, fire, Signal Passed at Danger and others. A Causal Factor Analysis System (CFAS) developed by the TTSB is used to identify the influencing causal factors and their causal relationships in the investigation reports. All terminologies used in the CFAS are equivalent to the Human Factors Analysis and Classification System (HFACS) terminologies, except for “Technical Events” which was added to classify causal factors resulting from mechanical failure. Accordingly, the Bayesian network structure of each occurrence category is established based on the identified causal factors in the CFAS. In the Bayesian networks, the prior probabilities of identified causal factors are obtained from the number of times in the investigation reports. Conditional Probability Table of each parent node is determined from domain experts’ experience and judgement. The resulting networks are quantitatively assessed under different scenarios to evaluate their forward predictions and backward diagnostic capabilities. Finally, the established Bayesian network of derailment is assessed using investigation reports of the same accident which was investigated by the TTSB and the local supervisory authority respectively. Based on the assessment results, findings of the administrative investigation is more closely tied to errors of front line personnel than to organizational related factors. Safety investigation can identify not only unsafe acts of individual but also in-depth causal factors of organizational influences. The results show that the proposed methodology can identify differences between safety investigation and administrative investigation. Therefore, effective intervention strategies in associated areas can be better addressed for safety improvement and future accident prevention through safety investigation.Keywords: administrative investigation, bayesian network, causal factor analysis system, safety investigation
Procedia PDF Downloads 1232229 A Knowledge-As-A-Service Support Framework for Ambient Learning in Kenya
Authors: Lucy W. Mburu, Richard Karanja, Simon N. Mwendia
Abstract:
Over recent years, learners have experienced a constant need to access on demand knowledge that is fully aligned with the paradigm of cloud computing. As motivated by the global sustainable development goal to ensure inclusive and equitable learning opportunities, this research has developed a framework hinged on the knowledge-as-a-service architecture that utilizes knowledge from ambient learning systems. Through statistical analysis and decision tree modeling, the study discovers influential variables for ambient learning among university students. The main aim is to generate a platform for disseminating and exploiting the available knowledge to aid the learning process and, thus, to improve educational support on the ambient learning system. The research further explores how collaborative effort can be used to form a knowledge network that allows access to heterogeneous sources of knowledge, which benefits knowledge consumers, such as the developers of ambient learning systems.Keywords: actionable knowledge, ambient learning, cloud computing, decision trees, knowledge as a service
Procedia PDF Downloads 1602228 A Time-Varying and Non-Stationary Convolution Spectral Mixture Kernel for Gaussian Process
Authors: Kai Chen, Shuguang Cui, Feng Yin
Abstract:
Gaussian process (GP) with spectral mixture (SM) kernel demonstrates flexible non-parametric Bayesian learning ability in modeling unknown function. In this work a novel time-varying and non-stationary convolution spectral mixture (TN-CSM) kernel with a significant enhancing of interpretability by using process convolution is introduced. A way decomposing the SM component into an auto-convolution of base SM component and parameterizing it to be input dependent is outlined. Smoothly, performing a convolution between two base SM component yields a novel structure of non-stationary SM component with much better generalized expression and interpretation. The TN-CSM perfectly allows compatibility with the stationary SM kernel in terms of kernel form and spectral base ignored and confused by previous non-stationary kernels. On synthetic and real-world datatsets, experiments show the time-varying characteristics of hyper-parameters in TN-CSM and compare the learning performance of TN-CSM with popular and representative non-stationary GP.Keywords: Gaussian process, spectral mixture, non-stationary, convolution
Procedia PDF Downloads 1962227 Analysis of Electricity Demand at Household Level Using Leap Model in Balochistan, Pakistan
Authors: Sheikh Saeed Ahmad
Abstract:
Electricity is vital for any state’s development that needs policy for planning the power network extension. This study is about simulation modeling for electricity in Balochistan province. Baseline data of electricity consumption was used of year 2004 and projected with the help of LEAP model up to subsequent 30 years. Three scenarios were created to run software. One scenario was baseline and other two were alternative or green scenarios i.e. solar and wind energy scenarios. Present study revealed that Balochistan has much greater potential for solar and wind energy for electricity production. By adopting these alternative energy forms, Balochistan can save energy in future nearly 23 and 48% by incorporating solar and wind power respectively. Thus, the study suggests to government planners, an aspect of integrating renewable sources in power system for ensuring sustainable development and growth.Keywords: demand and supply, LEAP, solar energy, wind energy, households
Procedia PDF Downloads 4272226 Modelling the Indonesian Goverment Securities Yield Curve Using Nelson-Siegel-Svensson and Support Vector Regression
Authors: Jamilatuzzahro, Rezzy Eko Caraka
Abstract:
The yield curve is the plot of the yield to maturity of zero-coupon bonds against maturity. In practice, the yield curve is not observed but must be extracted from observed bond prices for a set of (usually) incomplete maturities. There exist many methodologies and theory to analyze of yield curve. We use two methods (the Nelson-Siegel Method, the Svensson Method, and the SVR method) in order to construct and compare our zero-coupon yield curves. The objectives of this research were: (i) to study the adequacy of NSS model and SVR to Indonesian government bonds data, (ii) to choose the best optimization or estimation method for NSS model and SVR. To obtain that objective, this research was done by the following steps: data preparation, cleaning or filtering data, modeling, and model evaluation.Keywords: support vector regression, Nelson-Siegel-Svensson, yield curve, Indonesian government
Procedia PDF Downloads 2452225 Temperature Effect on Sound Propagation in an Elastic Pipe with Viscoelastic Liquid
Authors: S. Levitsky, R. Bergman
Abstract:
Fluid rheology may have essential impact on sound propagation in a liquid-filled pipe, especially, in a low frequency range. Rheological parameters of liquid are temperature-sensitive, which ultimately results in a temperature dependence of the wave speed and attenuation in the waveguide. The study is devoted to modeling of this effect at sound propagation in an elastic pipe with polymeric liquid, described by generalized Maxwell model with non-zero high-frequency viscosity. It is assumed that relaxation spectrum is distributed according to the Spriggs law; temperature impact on the liquid rheology is described on the basis of the temperature-superposition principle and activation theory. The dispersion equation for the waveguide, considered as a thin-walled tube with polymeric solution, is obtained within a quasi-one-dimensional formulation. Results of the study illustrate the influence of temperature on sound propagation in the system.Keywords: elastic tube, sound propagation, temperature effect, viscoelastic liquid
Procedia PDF Downloads 4202224 A Heuristic Approach for the General Flowshop Scheduling Problem to Minimize the Makespan
Authors: Mohsen Ziaee
Abstract:
Almost all existing researches on the flowshop scheduling problems focus on the permutation schedules and there is insufficient study dedicated to the general flowshop scheduling problems in the literature, since the modeling and solving of the general flowshop scheduling problems are more difficult than the permutation ones, especially for the large-size problem instances. This paper considers the general flowshop scheduling problem with the objective function of the makespan (F//Cmax). We first find the optimal solution of the problem by solving a mixed integer linear programming model. An efficient heuristic method is then presented to solve the problem. An ant colony optimization algorithm is also proposed for the problem. In order to evaluate the performance of the methods, computational experiments are designed and performed. Numerical results show that the heuristic algorithm can result in reasonable solutions with low computational effort and even achieve optimal solutions in some cases.Keywords: scheduling, general flow shop scheduling problem, makespan, heuristic
Procedia PDF Downloads 2072223 Compressible Flow Modeling in Pipes and Porous Media during Blowdown Experiment
Authors: Thomas Paris, Vincent Bruyere, Patrick Namy
Abstract:
A numerical model is developed to simulate gas blowdowns through a thin tube and a filter (porous media), separating a high pressure gas filled reservoir to low pressure ones. Based on a previous work, a one-dimensional approach is developed by using the finite element method to solve the transient compressible flow and to predict the pressure and temperature evolution in space and time. Mass, momentum, and energy conservation equations are solved in a fully coupled way in the reservoirs, the pipes and the porous media. Numerical results, such as pressure and temperature evolutions, are firstly compared with experimental data to validate the model for different configurations. Couplings between porous media and pipe flow are then validated by checking mass balance. The influence of the porous media and the nature of the gas is then studied for different initial high pressure values.Keywords: compressible flow, fluid mechanics, heat transfer, porous media
Procedia PDF Downloads 4062222 Radar Signal Detection Using Neural Networks in Log-Normal Clutter for Multiple Targets Situations
Authors: Boudemagh Naime
Abstract:
Automatic radar detection requires some methods of adapting to variations in the background clutter in order to control their false alarm rate. The problem becomes more complicated in non-Gaussian environment. In fact, the conventional approach in real time applications requires a complex statistical modeling and much computational operations. To overcome these constraints, we propose another approach based on artificial neural network (ANN-CMLD-CFAR) using a Back Propagation (BP) training algorithm. The considered environment follows a log-normal distribution in the presence of multiple Rayleigh-targets. To evaluate the performances of the considered detector, several situations, such as scale parameter and the number of interferes targets, have been investigated. The simulation results show that the ANN-CMLD-CFAR processor outperforms the conventional statistical one.Keywords: radat detection, ANN-CMLD-CFAR, log-normal clutter, statistical modelling
Procedia PDF Downloads 3642221 Steel Concrete Composite Bridge: Modelling Approach and Analysis
Authors: Kaviyarasan D., Satish Kumar S. R.
Abstract:
India being vast in area and population with great scope of international business, roadways and railways network connection within the country is expected to have a big growth. There are numerous rail-cum-road bridges constructed across many major rivers in India and few are getting very old. So there is more possibility of repairing or coming up with such new bridges in India. Analysis and design of such bridges are practiced through conventional procedure and end up with heavy and uneconomical sections. Such heavy class steel bridges when subjected to high seismic shaking has more chance to fail by stability because the members are too much rigid and stocky rather than being flexible to dissipate the energy. This work is the collective study of the researches done in the truss bridge and steel concrete composite truss bridges presenting the method of analysis, tools for numerical and analytical modeling which evaluates its seismic behaviour and collapse mechanisms. To ascertain the inelastic and nonlinear behaviour of the structure, generally at research level static pushover analysis is adopted. Though the static pushover analysis is now extensively used for the framed steel and concrete buildings to study its lateral action behaviour, those findings by pushover analysis done for the buildings cannot directly be used for the bridges as such, because the bridges have completely a different performance requirement, behaviour and typology as compared to that of the buildings. Long span steel bridges are mostly the truss bridges. Truss bridges being formed by many members and connections, the failure of the system does not happen suddenly with single event or failure of one member. Failure usually initiates from one member and progresses gradually to the next member and so on when subjected to further loading. This kind of progressive collapse of the truss bridge structure is dependent on many factors, in which the live load distribution and span to length ratio are most significant. The ultimate collapse is anyhow by the buckling of the compression members only. For regular bridges, single step pushover analysis gives results closer to that of the non-linear dynamic analysis. But for a complicated bridge like heavy class steel bridge or the skewed bridges or complicated dynamic behaviour bridges, nonlinear analysis capturing the progressive yielding and collapse pattern is mandatory. With the knowledge of the postelastic behaviour of the bridge and advancements in the computational facility, the current level of analysis and design of bridges has moved to state of ascertaining the performance levels of the bridges based on the damage caused by seismic shaking. This is because the buildings performance levels deals much with the life safety and collapse prevention levels, whereas the bridges mostly deal with the extent damages and how quick it can be repaired with or without disturbing the traffic after a strong earthquake event. The paper would compile the wide spectrum of modeling to analysis of the steel concrete composite truss bridges in general.Keywords: bridge engineering, performance based design of steel truss bridge, seismic design of composite bridge, steel-concrete composite bridge
Procedia PDF Downloads 1852220 Application of Unstructured Mesh Modeling in Evolving SGE of an Airport at the Confluence of Multiple Rivers in a Macro Tidal Region
Authors: A. A. Purohit, M. M. Vaidya, M. D. Kudale
Abstract:
Among the various developing countries in the world like China, Malaysia, Korea etc., India is also developing its infrastructures in the form of Road/Rail/Airports and Waterborne facilities at an exponential rate. Mumbai, the financial epicenter of India is overcrowded and to relieve the pressure of congestion, Navi Mumbai suburb is being developed on the east bank of Thane creek near Mumbai. The government due to limited space at existing Mumbai Airports (domestic and international) to cater for the future demand of airborne traffic, proposes to build a new international airport near Panvel at Navi Mumbai. Considering the precedence of extreme rainfall on 26th July 2005 and nearby townships being in a low-lying area, wherein new airport is proposed, it is inevitable to study this complex confluence area from a hydrodynamic consideration under both tidal and extreme events (predicted discharge hydrographs), to avoid inundation of the surrounding due to the proposed airport reclamation (1160 hectares) and to determine the safe grade elevation (SGE). The model studies conducted using the application of unstructured mesh to simulate the Panvel estuarine area (93 km2), calibration, validation of a model for hydraulic field measurements and determine the maxima water levels around the airport for various extreme hydrodynamic events, namely the simultaneous occurrence of highest tide from the Arabian Sea and peak flood discharges (Probable Maximum Precipitation and 26th July 2005) from five rivers, the Gadhi, Kalundri, Taloja, Kasadi and Ulwe, meeting at the proposed airport area revealed that: (a) The Ulwe River flowing beneath the proposed airport needs to be diverted. The 120m wide proposed Ulwe diversion channel having a wider base width of 200 m at SH-54 Bridge on the Ulwe River along with the removal of the existing bund in Moha Creek is inevitable to keep the SGE of the airport to a minimum. (b) The clear waterway of 80 m at SH-54 Bridge (Ulwe River) and 120 m at Amra Marg Bridge near Moha Creek is also essential for the Ulwe diversion and (c) The river bank protection works on the right bank of Gadhi River between the NH-4B and SH-54 bridges as well as upstream of the Ulwe River diversion channel are essential to avoid inundation of low lying areas. The maxima water levels predicted around the airport keeps SGE to a minimum of 11m with respect to Chart datum of Ulwe Bundar and thus development is not only technologically-economically feasible but also sustainable. The unstructured mesh modeling is a promising tool to simulate complex extreme hydrodynamic events and provides a reliable solution to evolve optimal SGE of airport.Keywords: airport, hydrodynamics, safe grade elevation, tides
Procedia PDF Downloads 2612219 Automatic Queuing Model Applications
Authors: Fahad Suleiman
Abstract:
Queuing, in medical system is the process of moving patients in a specific sequence to a specific service according to the patients’ nature of illness. The term scheduling stands for the process of computing a schedule. This may be done by a queuing based scheduler. This paper focuses on the medical consultancy system, the different queuing algorithms that are used in healthcare system to serve the patients, and the average waiting time. The aim of this paper is to build automatic queuing system for organizing the medical queuing system that can analyses the queue status and take decision which patient to serve. The new queuing architecture model can switch between different scheduling algorithms according to the testing results and the factor of the average waiting time. The main innovation of this work concerns the modeling of the average waiting time is taken into processing, in addition with the process of switching to the scheduling algorithm that gives the best average waiting time.Keywords: queuing systems, queuing system models, scheduling algorithms, patients
Procedia PDF Downloads 3542218 [Keynote Talk]: Formal Specification and Description Language and Message Sequence Chart to Model and Validate Session Initiation Protocol Services
Authors: Sa’ed Abed, Mohammad H. Al Shayeji, Ovais Ahmed, Sahel Alouneh
Abstract:
Session Initiation Protocol (SIP) is a signaling layer protocol for building, adjusting and ending sessions among participants including Internet conferences, telephone calls and multimedia distribution. SIP facilitates user movement by proxying and forwarding requests to the present location of the user. In this paper, we provide a formal Specification and Description Language (SDL) and Message Sequence Chart (MSC) to model and define the Internet Engineering Task Force (IETF) SIP protocol and its sample services resulted from informal SIP specification. We create an “Abstract User Interface” using case analysis so that can be applied to identify SIP services more explicitly. The issued sample SIP features are then used as case scenarios; they are revised in MSCs format and validated to their corresponding SDL models.Keywords: modeling, MSC, SDL, SIP, validating
Procedia PDF Downloads 2102217 Adsorption Studies of Methane on Zeolite NaX, LiX, KX at High Pressures
Authors: El Hadi Zouaoui, Djamel Nibou, Mohamed Haddouche, Wan Azlina Wan Ab Karim Ghani, Samira Amokrane
Abstract:
In this study, CH₄ adsorption isotherms on NaX or Faujasite X and exchanged zeolites with Li⁺(LiX), and K⁺(KX) at different temperatures (298, 308, 323 and 353 K) has been investigated, using high pressure (3 MPa (30 bar)) thermo-gravimetric analyser. The experimental results were then validated using several isothermal kinetics models, namely Langmuir, Toth, and Marczewski-Jaroniec, followed by a calculation of the error coefficients between the experimental and theoretical results. It was found that the CH₄ adsorption isotherms are characterized by a strong increase in adsorption at low pressure and a tendency towards a high pressure limit value Qₘₐₓ. The size and position of the exchanged cations, the spherical shape of methane, the specific surface, and the volume of the pores revealed the most important influence parameters for this study. These results revealed that the experimentation and the modeling, well correlated with Marczewski-Jaroniec, Toth, and gave the best results whatever the temperature and the material used.Keywords: CH₄ adsorption, exchange cations, exchanged zeolite, isotherm study, NaX zeolite
Procedia PDF Downloads 2492216 Flexible Design of Triboelectric Nanogenerators for Efficient Vibration Energy Harvesting
Authors: Meriam Khelifa
Abstract:
In recent years, many studies have focused on the harvesting of the vibrations energy to produce electrical energy using contact separation (CS) triboelectric nanogenerators (TENG). The simplest design for a TENG consists of a capacitor comprising a single moving electrode. The conversion efficiency of vibration energy into electrical energy can, in principle, reach 100%. But to actually achieve this objective, it is necessary to optimize the parameters of the TENG, such as the dielectric constant and the thickness of the insulator, the load resistance, etc. In particular, the use of a switch which is actioned at optimal times within the TENG cycle is essential. Using numerical modeling and experimental design, we applied a methodology to find the TENG parameters which optimize the energy transfer efficiency (ETE) to almost 100% for any vibration frequency and amplitude. The rather simple design of a TENG is promising as an environment friendly device. It opens the doors for harvesting acoustic vibrations from the environment and to design effective protection against environmental noise.Keywords: vibrations, CS TENG, efficiency, design of experiments
Procedia PDF Downloads 902215 Improving Sales through Inventory Reduction: A Retail Chain Case Study
Authors: M. G. Mattos, J. E. Pécora Jr, T. A. Briso
Abstract:
Today's challenging business environment, with unpredictable demand and volatility, requires a supply chain strategy that handles uncertainty and risks in the right way. Even though inventory models have been previously explored, this paper seeks to apply these concepts on a practical situation. This study involves the inventory replenishment problem, applying techniques that are mainly based on mathematical assumptions and modeling. The primary goal is to improve the retailer’s supply chain processes taking store differences when setting the various target stock levels. Through inventory review policy, picking piece implementation and minimum exposure definition, we were able not only to promote the inventory reduction as well as improve sales results. The inventory management theory from literature review was then tested on a single case study regarding a particular department in one of the largest Latam retail chains.Keywords: inventory, distribution, retail, risk, safety stock, sales, uncertainty
Procedia PDF Downloads 2682214 Effect of Elastic Modulus Varieties on Helical Pile Behavior in Sand
Authors: Javad Shamsi Soosahab, Reza Ziaie Moayed
Abstract:
The compressive and tensile bearing capacity of helical piles in sand is investigated by means of numerical modeling. The analyses are carried out using two-dimensional finite-element software, Optum G2. The load–displacement behavior under compression and tension is compared in different relative densities for constant and various elastic modulus. The criterion used to find the ultimate axial load is the load corresponding to 5% of the helical diameter. The results show that relative density of sand plays an essential role in the response of ultimate capacities towards various condition. Increase in elastic modulus with depth is found to play a relatively more significant role to the increase in ultimate compressive load capacities, however tension bearing capacity decreases.Keywords: helical piles, Optum G2, relative density, constant and various elastic modulus
Procedia PDF Downloads 1512213 Ground Motion Modeling Using the Least Absolute Shrinkage and Selection Operator
Authors: Yildiz Stella Dak, Jale Tezcan
Abstract:
Ground motion models that relate a strong motion parameter of interest to a set of predictive seismological variables describing the earthquake source, the propagation path of the seismic wave, and the local site conditions constitute a critical component of seismic hazard analyses. When a sufficient number of strong motion records are available, ground motion relations are developed using statistical analysis of the recorded ground motion data. In regions lacking a sufficient number of recordings, a synthetic database is developed using stochastic, theoretical or hybrid approaches. Regardless of the manner the database was developed, ground motion relations are developed using regression analysis. Development of a ground motion relation is a challenging process which inevitably requires the modeler to make subjective decisions regarding the inclusion criteria of the recordings, the functional form of the model and the set of seismological variables to be included in the model. Because these decisions are critically important to the validity and the applicability of the model, there is a continuous interest on procedures that will facilitate the development of ground motion models. This paper proposes the use of the Least Absolute Shrinkage and Selection Operator (LASSO) in selecting the set predictive seismological variables to be used in developing a ground motion relation. The LASSO can be described as a penalized regression technique with a built-in capability of variable selection. Similar to the ridge regression, the LASSO is based on the idea of shrinking the regression coefficients to reduce the variance of the model. Unlike ridge regression, where the coefficients are shrunk but never set equal to zero, the LASSO sets some of the coefficients exactly to zero, effectively performing variable selection. Given a set of candidate input variables and the output variable of interest, LASSO allows ranking the input variables in terms of their relative importance, thereby facilitating the selection of the set of variables to be included in the model. Because the risk of overfitting increases as the ratio of the number of predictors to the number of recordings increases, selection of a compact set of variables is important in cases where a small number of recordings are available. In addition, identification of a small set of variables can improve the interpretability of the resulting model, especially when there is a large number of candidate predictors. A practical application of the proposed approach is presented, using more than 600 recordings from the National Geospatial-Intelligence Agency (NGA) database, where the effect of a set of seismological predictors on the 5% damped maximum direction spectral acceleration is investigated. The set of candidate predictors considered are Magnitude, Rrup, Vs30. Using LASSO, the relative importance of the candidate predictors has been ranked. Regression models with increasing levels of complexity were constructed using one, two, three, and four best predictors, and the models’ ability to explain the observed variance in the target variable have been compared. The bias-variance trade-off in the context of model selection is discussed.Keywords: ground motion modeling, least absolute shrinkage and selection operator, penalized regression, variable selection
Procedia PDF Downloads 3302212 Design and Burnback Analysis of Three Dimensional Modified Star Grain
Authors: Almostafa Abdelaziz, Liang Guozhu, Anwer Elsayed
Abstract:
The determination of grain geometry is an important and critical step in the design of solid propellant rocket motor. In this study, the design process involved parametric geometry modeling in CAD, MATLAB coding of performance prediction and 2D star grain ignition experiment. The 2D star grain burnback achieved by creating new surface via each web increment and calculating geometrical properties at each step. The 2D star grain is further modified to burn as a tapered 3D star grain. Zero dimensional method used to calculate the internal ballistic performance. Experimental and theoretical results were compared in order to validate the performance prediction of the solid rocket motor. The results show that the usage of 3D grain geometry will decrease the pressure inside the combustion chamber and enhance the volumetric loading ratio.Keywords: burnback analysis, rocket motor, star grain, three dimensional grains
Procedia PDF Downloads 2452211 Modeling of Wind Loads on Heliostats Installed in South Algeria of Various Pylon Height
Authors: Hakim Merarda, Mounir Aksas, Toufik Arrif, Abd Elfateh Belaid, Amor Gama, Reski Khelifi
Abstract:
Knowledge of wind loads is important to develop a heliostat with good performance. These loads can be calculated by mathematical equations based on several parameters: the density, wind velocity, the aspect ratio of the mirror (height/width) and the coefficient of the height of the tower. Measurement data of the wind velocity and the density of the air are used in a numerical simulation of wind profile that was performed on heliostats with different pylon heights, with 1m^2 mirror areas and with aspect ratio of mirror equal to 1. These measurement data are taken from the meteorological station installed in Ghardaia, Algeria. The main aim of this work is to find a mathematical correlation between the wind loads and the height of the tower.Keywords: heliostat, solar tower power, wind loads simulation, South Algeria
Procedia PDF Downloads 5612210 Childhood Obesity: Future Direction and Education Priorities
Authors: Zahra Ranjbar
Abstract:
Interpretive structural modeling (ISM) is a well-established methodology for identifying relationships among specific variables, which define a problem or an issue. In this study most important variables that have critical role in children obesity problem were introduce by ISM questionnaire technique and their relationships were determine. Our findings suggested that sedentary activities are top level variables and school teachers and administrators, public education and scientific collaborations are bottom level variables in children obesity problem. Control of dietary, Physical education program, parents, government and motivation strategies variables are depend to other variables. They are very sensitive to external variables. Also, physical education program, parents, government, motivation, school teachers and administrators, public education and collaboration variables have strong driving power. They are linkage factors; it means that they can be effective on children obesity problem directly.Keywords: ISM, variable, obesity, physical education, children
Procedia PDF Downloads 4562209 Artificial Neural Network and Satellite Derived Chlorophyll Indices for Estimation of Wheat Chlorophyll Content under Rainfed Condition
Authors: Muhammad Naveed Tahir, Wang Yingkuan, Huang Wenjiang, Raheel Osman
Abstract:
Numerous models used in prediction and decision-making process but most of them are linear in natural environment, and linear models reach their limitations with non-linearity in data. Therefore accurate estimation is difficult. Artificial Neural Networks (ANN) found extensive acceptance to address the modeling of the complex real world for the non-linear environment. ANN’s have more general and flexible functional forms than traditional statistical methods can effectively deal with. The link between information technology and agriculture will become more firm in the near future. Monitoring crop biophysical properties non-destructively can provide a rapid and accurate understanding of its response to various environmental influences. Crop chlorophyll content is an important indicator of crop health and therefore the estimation of crop yield. In recent years, remote sensing has been accepted as a robust tool for site-specific management by detecting crop parameters at both local and large scales. The present research combined the ANN model with satellite-derived chlorophyll indices from LANDSAT 8 imagery for predicting real-time wheat chlorophyll estimation. The cloud-free scenes of LANDSAT 8 were acquired (Feb-March 2016-17) at the same time when ground-truthing campaign was performed for chlorophyll estimation by using SPAD-502. Different vegetation indices were derived from LANDSAT 8 imagery using ERADAS Imagine (v.2014) software for chlorophyll determination. The vegetation indices were including Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Chlorophyll Absorbed Ratio Index (CARI), Modified Chlorophyll Absorbed Ratio Index (MCARI) and Transformed Chlorophyll Absorbed Ratio index (TCARI). For ANN modeling, MATLAB and SPSS (ANN) tools were used. Multilayer Perceptron (MLP) in MATLAB provided very satisfactory results. For training purpose of MLP 61.7% of the data, for validation purpose 28.3% of data and rest 10% of data were used to evaluate and validate the ANN model results. For error evaluation, sum of squares error and relative error were used. ANN model summery showed that sum of squares error of 10.786, the average overall relative error was .099. The MCARI and NDVI were revealed to be more sensitive indices for assessing wheat chlorophyll content with the highest coefficient of determination R²=0.93 and 0.90 respectively. The results suggested that use of high spatial resolution satellite imagery for the retrieval of crop chlorophyll content by using ANN model provides accurate, reliable assessment of crop health status at a larger scale which can help in managing crop nutrition requirement in real time.Keywords: ANN, chlorophyll content, chlorophyll indices, satellite images, wheat
Procedia PDF Downloads 1462208 A Bacterial Foraging Optimization Algorithm Applied to the Synthesis of Polyacrylamide Hydrogels
Authors: Florin Leon, Silvia Curteanu
Abstract:
The Bacterial Foraging Optimization (BFO) algorithm is inspired by the behavior of bacteria such as Escherichia coli or Myxococcus xanthus when searching for food, more precisely the chemotaxis behavior. Bacteria perceive chemical gradients in the environment, such as nutrients, and also other individual bacteria, and move toward or in the opposite direction to those signals. The application example considered as a case study consists in establishing the dependency between the reaction yield of hydrogels based on polyacrylamide and the working conditions such as time, temperature, monomer, initiator, crosslinking agent and inclusion polymer concentrations, as well as type of the polymer added. This process is modeled with a neural network which is included in an optimization procedure based on BFO. An experimental study of BFO parameters is performed. The results show that the algorithm is quite robust and can obtain good results for diverse combinations of parameter values.Keywords: bacterial foraging, hydrogels, modeling and optimization, neural networks
Procedia PDF Downloads 1532207 Modelling Residential Space Heating Energy for Romania
Authors: Ion Smeureanu, Adriana Reveiu, Marian Dardala, Titus Felix Furtuna, Roman Kanala
Abstract:
This paper proposes a linear model for optimizing domestic energy consumption, in Romania. Both techno-economic and consumer behavior approaches have been considered, in order to develop the model. The proposed model aims to reduce the energy consumption, in households, by assembling in a unitary model, aspects concerning: residential lighting, space heating, hot water, and combined space heating – hot water, space cooling, and passenger transport. This paper focuses on space heating domestic energy consumption model, and quantify not only technical-economic issues, but also consumer behavior impact, related to people decision to envelope and insulate buildings, in order to minimize energy consumption.Keywords: consumer behavior, open source energy modeling system (OSeMOSYS), MARKAL/TIMES Romanian energy model, virtual technologies
Procedia PDF Downloads 5422206 GIS Application in Surface Runoff Estimation for Upper Klang River Basin, Malaysia
Authors: Suzana Ramli, Wardah Tahir
Abstract:
Estimation of surface runoff depth is a vital part in any rainfall-runoff modeling. It leads to stream flow calculation and later predicts flood occurrences. GIS (Geographic Information System) is an advanced and opposite tool used in simulating hydrological model due to its realistic application on topography. The paper discusses on calculation of surface runoff depth for two selected events by using GIS with Curve Number method for Upper Klang River basin. GIS enables maps intersection between soil type and land use that later produces curve number map. The results show good correlation between simulated and observed values with more than 0.7 of R2. Acceptable performance of statistical measurements namely mean error, absolute mean error, RMSE, and bias are also deduced in the paper.Keywords: surface runoff, geographic information system, curve number method, environment
Procedia PDF Downloads 2822205 Dam Break Model Using Navier-Stokes Equation
Authors: Alireza Lohrasbi, Alireza Lavaei, Mohammadali M. Shahlaei
Abstract:
The liquid flow and the free surface shape during the initial stage of dam breaking are investigated. A numerical scheme is developed to predict the wave of an unsteady, incompressible viscous flow with free surface. The method involves a two dimensional finite element (2D), in a vertical plan. The Naiver-Stokes equations for conservation of momentum and mass for Newtonian fluids, continuity equation, and full nonlinear kinematic free-surface equation were used as the governing equations. The mapping developed to solve highly deformed free surface problems common in waves formed during wave propagation, transforms the run up model from the physical domain to a computational domain with Arbitrary Lagrangian Eulerian (ALE) finite element modeling technique.Keywords: dam break, Naiver-Stokes equations, free-surface flows, Arbitrary Lagrangian-Eulerian
Procedia PDF Downloads 3372204 Thermo-Aeraulic Studies of a Multizone Building Influence of the Compactness Index
Authors: S. M. A. Bekkouche, T. Benouaz, M. K. Cherier, M. Hamdani, M. R. Yaiche, N. Benamrane
Abstract:
Most codes of building energy simulation neglect the humidity or well represent it with a very simplified method. It is for this reason that we have developed a new approach to the description and modeling of multizone buildings in Saharan climate. The thermal nodal method was used to apprehend thermoaeraulic behavior of air subjected to varied solicitations. In this contribution, analyzing the building geometry introduced the concept of index compactness as "quotient of external walls area and volume of the building". Physical phenomena that we have described in this paper, allow to build the model of the coupled thermoaeraulic behavior. The comparison shows that the found results are to some extent satisfactory. The result proves that temperature and specific humidity depending on compactness and geometric shape. Proper use of compactness index and building geometry parameters will noticeably minimize building energy.Keywords: multizone model, nodal method, compactness index, specific humidity, temperature
Procedia PDF Downloads 4102203 Signature Verification System for a Banking Business Process Management
Authors: A. Rahaf, S. Liyakathunsia
Abstract:
In today’s world, unprecedented operational pressure is faced by banks that test the efficiency, effectiveness, and agility of their business processes. In a typical banking process, a person’s authorization is usually based on his signature on most all of the transactions. Signature verification is considered as one of the highly significant information needed for any bank document processing. Banks usually use Signature Verification to authenticate the identity of individuals. In this paper, a business process model has been proposed in order to increase the quality of the verification process and to reduce time and needed resources. In order to understand the current process, a survey has been conducted and distributed among bank employees. After analyzing the survey, a process model has been created using Bizagi modeler which helps in simulating the process after assigning time and cost of it. The outcomes show that the automation of signature verification process is highly recommended for a banking business process.Keywords: business process management, process modeling, quality, Signature Verification
Procedia PDF Downloads 428