Search results for: sequential linear programming
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4488

Search results for: sequential linear programming

2778 Transformer Design Optimization Using Artificial Intelligence Techniques

Authors: Zakir Husain

Abstract:

Main objective of a power transformer design optimization problem requires minimizing the total overall cost and/or mass of the winding and core material by satisfying all possible constraints obligatory by the standards and transformer user requirement. The constraints include appropriate limits on winding fill factor, temperature rise, efficiency, no-load current and voltage regulation. The design optimizations tasks are a constrained minimum cost and/or mass solution by optimally setting the parameters, geometry and require magnetic properties of the transformer. In this paper, present the above design problems have been formulated by using genetic algorithm (GA) and simulated annealing (SA) on the MATLAB platform. The importance of the presented approach is stems for two main features. First, proposed technique provides reliable and efficient solution for the problem of design optimization with several variables. Second, it guaranteed to obtained solution is global optimum. This paper includes a demonstration of the application of the genetic programming GP technique to transformer design.

Keywords: optimization, power transformer, genetic algorithm (GA), simulated annealing technique (SA)

Procedia PDF Downloads 583
2777 Modeling and Simulation Frameworks for Cloud Computing Environment: A Critical Evaluation

Authors: Abul Bashar

Abstract:

The recent surge in the adoption of cloud computing systems by various organizations has brought forth the challenge of evaluating their performance. One of the major issues faced by the cloud service providers and customers is to assess the ability of cloud computing systems to provide the desired services in accordance to the QoS and SLA constraints. To this end, an opportunity exists to develop means to ensure that the desired performance levels of such systems are met under simulated environments. This will eventually minimize the service disruptions and performance degradation issues during the commissioning and operational phase of cloud computing infrastructure. However, it is observed that several simulators and modelers are available for simulating the cloud computing systems. Therefore, this paper presents a critical evaluation of the state-of-the-art modeling and simulation frameworks applicable to cloud computing systems. It compares the prominent simulation frameworks in terms of the API features, programming flexibility, operating system requirements, supported services, licensing needs and popularity. Subsequently, it provides recommendations regarding the choice of the most appropriate framework for researchers, administrators and managers of cloud computing systems.

Keywords: cloud computing, modeling framework, performance evaluation, simulation tools

Procedia PDF Downloads 502
2776 Characterisation of Fractions Extracted from Sorghum Byproducts

Authors: Prima Luna, Afroditi Chatzifragkou, Dimitris Charalampopoulos

Abstract:

Sorghum byproducts, namely bran, stalk, and panicle are examples of lignocellulosic biomass. These raw materials contain large amounts of polysaccharides, in particular hemicelluloses, celluloses, and lignins, which if efficiently extracted, can be utilised for the development of a range of added value products with potential applications in agriculture and food packaging sectors. The aim of this study was to characterise fractions extracted from sorghum bran and stalk with regards to their physicochemical properties that could determine their applicability as food-packaging materials. A sequential alkaline extraction was applied for the isolation of cellulosic, hemicellulosic and lignin fractions from sorghum stalk and bran. Lignin content, phenolic content and antioxidant capacity were also investigated in the case of the lignin fraction. Thermal analysis using differential scanning calorimetry (DSC) and X-Ray Diffraction (XRD) revealed that the glass transition temperature (Tg) of cellulose fraction of the stalk was ~78.33 oC at amorphous state (~65%) and water content of ~5%. In terms of hemicellulose, the Tg value of stalk was slightly lower compared to bran at amorphous state (~54%) and had less water content (~2%). It is evident that hemicelluloses generally showed a lower thermal stability compared to cellulose, probably due to their lack of crystallinity. Additionally, bran had higher arabinose-to-xylose ratio (0.82) than the stalk, a fact that indicated its low crystallinity. Furthermore, lignin fraction had Tg value of ~93 oC at amorphous state (~11%). Stalk-derived lignin fraction contained more phenolic compounds (mainly consisting of p-coumaric and ferulic acid) and had higher lignin content and antioxidant capacity compared to bran-derived lignin fraction.

Keywords: alkaline extraction, bran, cellulose, hemicellulose, lignin, stalk

Procedia PDF Downloads 299
2775 Understanding Learning Styles of Hong Kong Tertiary Students for Engineering Education

Authors: K. M. Wong

Abstract:

Engineering education is crucial to technological innovation and advancement worldwide by generating young talents who are able to integrate scientific principles and design practical solutions for real-world problems. Graduates of engineering curriculums are expected to demonstrate an extensive set of learning outcomes as required in international accreditation agreements for engineering academic qualifications, such as the Washington Accord and the Sydney Accord. On the other hand, students have different learning preferences of receiving, processing and internalizing knowledge and skills. If the learning environment is advantageous to the learning styles of the students, there is a higher chance that the students can achieve the intended learning outcomes. With proper identification of the learning styles of the students, corresponding teaching strategies can then be developed for more effective learning. This research was an investigation of learning styles of tertiary students studying higher diploma programmes in Hong Kong. Data from over 200 students in engineering programmes were collected and analysed to identify the learning characteristics of students. A small-scale longitudinal study was then started to gather academic results of the students throughout their two-year engineering studies. Preliminary results suggested that the sample students were reflective, sensing, visual, and sequential learners. Observations from the analysed data not only provided valuable information for teachers to design more effective teaching strategies, but also provided data for further analysis with the students’ academic results. The results generated from the longitudinal study shed light on areas of improvement for more effective engineering curriculum design for better teaching and learning.

Keywords: learning styles, learning characteristics, engineering education, vocational education, Hong Kong

Procedia PDF Downloads 264
2774 Generative AI: A Comparison of Conditional Tabular Generative Adversarial Networks and Conditional Tabular Generative Adversarial Networks with Gaussian Copula in Generating Synthetic Data with Synthetic Data Vault

Authors: Lakshmi Prayaga, Chandra Prayaga. Aaron Wade, Gopi Shankar Mallu, Harsha Satya Pola

Abstract:

Synthetic data generated by Generative Adversarial Networks and Autoencoders is becoming more common to combat the problem of insufficient data for research purposes. However, generating synthetic data is a tedious task requiring extensive mathematical and programming background. Open-source platforms such as the Synthetic Data Vault (SDV) and Mostly AI have offered a platform that is user-friendly and accessible to non-technical professionals to generate synthetic data to augment existing data for further analysis. The SDV also provides for additions to the generic GAN, such as the Gaussian copula. We present the results from two synthetic data sets (CTGAN data and CTGAN with Gaussian Copula) generated by the SDV and report the findings. The results indicate that the ROC and AUC curves for the data generated by adding the layer of Gaussian copula are much higher than the data generated by the CTGAN.

Keywords: synthetic data generation, generative adversarial networks, conditional tabular GAN, Gaussian copula

Procedia PDF Downloads 82
2773 Chemometric Regression Analysis of Radical Scavenging Ability of Kombucha Fermented Kefir-Like Products

Authors: Strahinja Kovacevic, Milica Karadzic Banjac, Jasmina Vitas, Stefan Vukmanovic, Radomir Malbasa, Lidija Jevric, Sanja Podunavac-Kuzmanovic

Abstract:

The present study deals with chemometric regression analysis of quality parameters and the radical scavenging ability of kombucha fermented kefir-like products obtained with winter savory (WS), peppermint (P), stinging nettle (SN) and wild thyme tea (WT) kombucha inoculums. Each analyzed sample was described by milk fat content (MF, %), total unsaturated fatty acids content (TUFA, %), monounsaturated fatty acids content (MUFA, %), polyunsaturated fatty acids content (PUFA, %), the ability of free radicals scavenging (RSA Dₚₚₕ, % and RSA.ₒₕ, %) and pH values measured after each hour from the start until the end of fermentation. The aim of the conducted regression analysis was to establish chemometric models which can predict the radical scavenging ability (RSA Dₚₚₕ, % and RSA.ₒₕ, %) of the samples by correlating it with the MF, TUFA, MUFA, PUFA and the pH value at the beginning, in the middle and at the end of fermentation process which lasted between 11 and 17 hours, until pH value of 4.5 was reached. The analysis was carried out applying univariate linear (ULR) and multiple linear regression (MLR) methods on the raw data and the data standardized by the min-max normalization method. The obtained models were characterized by very limited prediction power (poor cross-validation parameters) and weak statistical characteristics. Based on the conducted analysis it can be concluded that the resulting radical scavenging ability cannot be precisely predicted only on the basis of MF, TUFA, MUFA, PUFA content, and pH values, however, other quality parameters should be considered and included in the further modeling. This study is based upon work from project: Kombucha beverages production using alternative substrates from the territory of the Autonomous Province of Vojvodina, 142-451-2400/2019-03, supported by Provincial Secretariat for Higher Education and Scientific Research of AP Vojvodina.

Keywords: chemometrics, regression analysis, kombucha, quality control

Procedia PDF Downloads 142
2772 Simultaneous Determination of Methotrexate and Aspirin Using Fourier Transform Convolution Emission Data under Non-Parametric Linear Regression Method

Authors: Marwa A. A. Ragab, Hadir M. Maher, Eman I. El-Kimary

Abstract:

Co-administration of methotrexate (MTX) and aspirin (ASP) can cause a pharmacokinetic interaction and a subsequent increase in blood MTX concentrations which may increase the risk of MTX toxicity. Therefore, it is important to develop a sensitive, selective, accurate and precise method for their simultaneous determination in urine. A new hybrid chemometric method has been applied to the emission response data of the two drugs. Spectrofluorimetric method for determination of MTX through measurement of its acid-degradation product, 4-amino-4-deoxy-10-methylpteroic acid (4-AMP), was developed. Moreover, the acid-catalyzed degradation reaction enables the spectrofluorimetric determination of ASP through the formation of its active metabolite salicylic acid (SA). The proposed chemometric method deals with convolution of emission data using 8-points sin xi polynomials (discrete Fourier functions) after the derivative treatment of these emission data. The first and second derivative curves (D1 & D2) were obtained first then convolution of these curves was done to obtain first and second derivative under Fourier functions curves (D1/FF) and (D2/FF). This new application was used for the resolution of the overlapped emission bands of the degradation products of both drugs to allow their simultaneous indirect determination in human urine. Not only this chemometric approach was applied to the emission data but also the obtained data were subjected to non-parametric linear regression analysis (Theil’s method). The proposed method was fully validated according to the ICH guidelines and it yielded linearity ranges as follows: 0.05-0.75 and 0.5-2.5 µg mL-1 for MTX and ASP respectively. It was found that the non-parametric method was superior over the parametric one in the simultaneous determination of MTX and ASP after the chemometric treatment of the emission spectra of their degradation products. The work combines the advantages of derivative and convolution using discrete Fourier function together with the reliability and efficacy of the non-parametric analysis of data. The achieved sensitivity along with the low values of LOD (0.01 and 0.06 µg mL-1) and LOQ (0.04 and 0.2 µg mL-1) for MTX and ASP respectively, by the second derivative under Fourier functions (D2/FF) were promising and guarantee its application for monitoring the two drugs in patients’ urine samples.

Keywords: chemometrics, emission curves, derivative, convolution, Fourier transform, human urine, non-parametric regression, Theil’s method

Procedia PDF Downloads 430
2771 Analysis of Energy Flows as An Approach for The Formation of Monitoring System in the Sustainable Regional Development

Authors: Inese Trusina, Elita Jermolajeva

Abstract:

Global challenges require a transition from the existing linear economic model to a model that will consider nature as a life support system for the developmenton the way to social well-being in the frame of the ecological economics paradigm. The article presentsbasic definitions for the development of formalized description of sustainabledevelopment monitoring. It provides examples of calculating the parameters of monitoring for the Baltic Sea region countries and their primary interpretation.

Keywords: sustainability, development, power, ecological economics, regional economic, monitoring

Procedia PDF Downloads 120
2770 Indian Premier League (IPL) Score Prediction: Comparative Analysis of Machine Learning Models

Authors: Rohini Hariharan, Yazhini R, Bhamidipati Naga Shrikarti

Abstract:

In the realm of cricket, particularly within the context of the Indian Premier League (IPL), the ability to predict team scores accurately holds significant importance for both cricket enthusiasts and stakeholders alike. This paper presents a comprehensive study on IPL score prediction utilizing various machine learning algorithms, including Support Vector Machines (SVM), XGBoost, Multiple Regression, Linear Regression, K-nearest neighbors (KNN), and Random Forest. Through meticulous data preprocessing, feature engineering, and model selection, we aimed to develop a robust predictive framework capable of forecasting team scores with high precision. Our experimentation involved the analysis of historical IPL match data encompassing diverse match and player statistics. Leveraging this data, we employed state-of-the-art machine learning techniques to train and evaluate the performance of each model. Notably, Multiple Regression emerged as the top-performing algorithm, achieving an impressive accuracy of 77.19% and a precision of 54.05% (within a threshold of +/- 10 runs). This research contributes to the advancement of sports analytics by demonstrating the efficacy of machine learning in predicting IPL team scores. The findings underscore the potential of advanced predictive modeling techniques to provide valuable insights for cricket enthusiasts, team management, and betting agencies. Additionally, this study serves as a benchmark for future research endeavors aimed at enhancing the accuracy and interpretability of IPL score prediction models.

Keywords: indian premier league (IPL), cricket, score prediction, machine learning, support vector machines (SVM), xgboost, multiple regression, linear regression, k-nearest neighbors (KNN), random forest, sports analytics

Procedia PDF Downloads 53
2769 Nasopharyngeal Carriage of Streptococcus pneumoniae in Children under 5 Years of Age before Introduction of Pneumococcal Vaccine (PCV 10) in Urban and Rural Sindh

Authors: Muhammad Imran Nisar, Fyezah Jehan, Tauseef Akhund, Sadia Shakoor, Kanwal Nayani, Furqan Kabir, Asad Ali, Anita Zaidi

Abstract:

Pneumococcal Vaccine -10 (PCV 10) was included in the Expanded Program of immunization (EPI) in Sindh, Pakistan in February 2013. This study was carried out immediately before the introduction of PCV 10 to establish baseline pneumococcal carriage and prevalent serotypes in naso-pharynx of children 3-11 months of age in an urban and rural community in Sindh, Pakistan. An additional sample of children aged 12 to 59 months was drawn from the urban community. Nasopharyngeal specimens were collected from a random sample of children. Samples were processed in a central laboratory in Karachi. Pneumococci were cultured on 5% Sheep Blood Agar and serotyping was performed using CDC standardized sequential multiplex PCR assay on bacterial colonies. Serotypes were then categorized into vaccine (PCV-10 and PCV-13) type and non-vaccine types. A total of 670 children were enrolled. Carriage rate for pneumococcus based on culture positivity was 74% and 79.5 % in the infant group in Karachi and Matiari respectively. Carriage rate was 78.2% for children aged 12 to 59 months in Karachi. Proportion of PCV 10 serotypes in infants was 38.8% and 33.5% in Karachi and Matiari respectively. In the older age group in Karachi, the proportion was 30.6%. Most common serotypes were 6A, 6B, 23F, 19A and 18C. This survey establishes vaccine and non-vaccine serotype carriage rate in a vaccine-naïve pediatric population among rural and urban communities in Sindh province. Annually planned surveys in the same communities will inform change in carriage rate after the introduction and uptake of PCV 10 in these communities.

Keywords: Naso-Pharyngeal carriage, Pakistan, PCV10, Pneumococcus

Procedia PDF Downloads 300
2768 Planning Railway Assets Renewal with a Multiobjective Approach

Authors: João Coutinho-Rodrigues, Nuno Sousa, Luís Alçada-Almeida

Abstract:

Transportation infrastructure systems are fundamental in modern society and economy. However, they need modernizing, maintaining, and reinforcing interventions which require large investments. In many countries, accumulated intervention delays arise from aging and intense use, being magnified by financial constraints of the past. The decision problem of managing the renewal of large backlogs is common to several types of important transportation infrastructures (e.g., railways, roads). This problem requires considering financial aspects as well as operational constraints under a multidimensional framework. The present research introduces a linear programming multiobjective model for managing railway infrastructure asset renewal. The model aims at minimizing three objectives: (i) yearly investment peak, by evenly spreading investment throughout multiple years; (ii) total cost, which includes extra maintenance costs incurred from renewal backlogs; (iii) priority delays related to work start postponements on the higher priority railway sections. Operational constraints ensure that passenger and freight services are not excessively delayed from having railway line sections under intervention. Achieving a balanced annual investment plan, without compromising the total financial effort or excessively postponing the execution of the priority works, was the motivation for pursuing the research which is now presented. The methodology, inspired by a real case study and tested with real data, reflects aspects of the practice of an infrastructure management company and is generalizable to different types of infrastructure (e.g., railways, highways). It was conceived for treating renewal interventions in infrastructure assets, which is a railway network may be rails, ballasts, sleepers, etc.; while a section is under intervention, trains must run at reduced speed, causing delays in services. The model cannot, therefore, allow for an accumulation of works on the same line, which may cause excessively large delays. Similarly, the lines do not all have the same socio-economic importance or service intensity, making it is necessary to prioritize the sections to be renewed. The model takes these issues into account, and its output is an optimized works schedule for the renewal project translatable in Gantt charts The infrastructure management company provided all the data for the first test case study and validated the parameterization. This case consists of several sections to be renewed, over 5 years and belonging to 17 lines. A large instance was also generated, reflecting a problem of a size similar to the USA railway network (considered the largest one in the world), so it is not expected that considerably larger problems appear in real life; an average of 25 years backlog and ten years of project horizon was considered. Despite the very large increase in the number of decision variables (200 times as large), the computational time cost did not increase very significantly. It is thus expectable that just about any real-life problem can be treated in a modern computer, regardless of size. The trade-off analysis shows that if the decision maker allows some increase in max yearly investment (i.e., degradation of objective ii), solutions improve considerably in the remaining two objectives.

Keywords: transport infrastructure, asset renewal, railway maintenance, multiobjective modeling

Procedia PDF Downloads 146
2767 Kernel-Based Double Nearest Proportion Feature Extraction for Hyperspectral Image Classification

Authors: Hung-Sheng Lin, Cheng-Hsuan Li

Abstract:

Over the past few years, kernel-based algorithms have been widely used to extend some linear feature extraction methods such as principal component analysis (PCA), linear discriminate analysis (LDA), and nonparametric weighted feature extraction (NWFE) to their nonlinear versions, kernel principal component analysis (KPCA), generalized discriminate analysis (GDA), and kernel nonparametric weighted feature extraction (KNWFE), respectively. These nonlinear feature extraction methods can detect nonlinear directions with the largest nonlinear variance or the largest class separability based on the given kernel function. Moreover, they have been applied to improve the target detection or the image classification of hyperspectral images. The double nearest proportion feature extraction (DNP) can effectively reduce the overlap effect and have good performance in hyperspectral image classification. The DNP structure is an extension of the k-nearest neighbor technique. For each sample, there are two corresponding nearest proportions of samples, the self-class nearest proportion and the other-class nearest proportion. The term “nearest proportion” used here consider both the local information and other more global information. With these settings, the effect of the overlap between the sample distributions can be reduced. Usually, the maximum likelihood estimator and the related unbiased estimator are not ideal estimators in high dimensional inference problems, particularly in small data-size situation. Hence, an improved estimator by shrinkage estimation (regularization) is proposed. Based on the DNP structure, LDA is included as a special case. In this paper, the kernel method is applied to extend DNP to kernel-based DNP (KDNP). In addition to the advantages of DNP, KDNP surpasses DNP in the experimental results. According to the experiments on the real hyperspectral image data sets, the classification performance of KDNP is better than that of PCA, LDA, NWFE, and their kernel versions, KPCA, GDA, and KNWFE.

Keywords: feature extraction, kernel method, double nearest proportion feature extraction, kernel double nearest feature extraction

Procedia PDF Downloads 344
2766 The Messy and Irregular Experience of Entrepreneurial Life

Authors: Hannah Dean

Abstract:

The growth ideology, and its association with progress, is an important construct in the narrative of modernity. This ideology is embedded in neoclassical economic growth theory which conceptualises growth as linear and predictable, and the entrepreneur as a rational economic manager. This conceptualisation has been critiqued for reinforcing the managerial discourse in entrepreneurship studies. Despite these critiques, both the neoclassical growth theory and its adjacent managerial discourse dominate entrepreneurship studies notably the literature on female entrepreneurs. The latter is the focus of this paper. Given this emphasis on growth, female entrepreneurs are portrayed as problematic because their growth lags behind their male counterparts. This image which ignores the complexity and diversity of female entrepreneurs’ experience persists in the literature due to the lack of studies that analyse the process and contextual factors surrounding female entrepreneurs’ experience. This study aims to address the subordination of female entrepreneurs by questioning the hegemonic logic of economic growth and the managerial discourse as a true representation for the entrepreneurial experience. This objective is achieved by drawing on Schumpeter’s theorising and narrative inquiry. This exploratory study undertakes in depth interviews to gain insights into female entrepreneurs’ experience and the impact of the economic growth model and the managerial discourse on their performance. The narratives challenge a number of assumptions about female entrepreneurs. The participants occupied senior positions in the corporate world before setting up their businesses. This is at odds with much writing which assumes that women underperform because they leave their career without gaining managerial experience to achieve work-life balance. In line with Schumpeter, who distinguishes the entrepreneur from the manager, the participants’ main function was innovation. They did not believe that the managerial paradigm governing their corporate careers was applicable to their entrepreneurial experience. Formal planning and managerial rationality can hinder their decision making process. The narratives point to the gap between the two worlds which makes stepping into entrepreneurship a scary move. Schumpeter argues that the entrepreneurial process is evolutionary and that failure is an integral part of it. The participants’ entrepreneurial process was in fact irregular. The performance of new combinations was not always predictable. They therefore relied on their initiative. The inhibition to deploy these traits had an adverse effect on business growth. The narratives also indicate that over-reliance on growth threaten the business survival as it faces competing pressures. The study offers theoretical and empirical contributions to (female) entrepreneurship studies by presenting Schumpeter’s theorising as an alternative theoretical framework to the neoclassical economic growth theory. The study also reduces entrepreneurs’ vulnerability by making them aware of the negative influence that the linear growth model and the managerial discourse hold upon their performance. The study has implications for policy makers as it generates new knowledge that incorporates the current social and economic changes in the context of entrepreneurs that can no longer be sustained by the linear growth models especially in the current economic climate.

Keywords: economic growth, female entrepreneurs, managerial discourse, Schumpeter

Procedia PDF Downloads 296
2765 Suicide, Help-Seeking and LGBT Youth: A Mixed Methods Study

Authors: Elizabeth McDermott, Elizabeth Hughes, Victoria Rawlings

Abstract:

Globally, suicide is the second leading cause of death among 15–29 year-olds. Young people who identify as lesbian, gay, bisexual and transgender (LGBT) have elevated rates of suicide and self-harm. Despite the increased risk, there is a paucity of research on LGBT help-seeking and suicidality. This is the first national study to investigate LGBT youth help-seeking for suicidal feelings and self-harm. We report on a UK sequential exploratory mixed method study that employed face-to-face and online methods in two stages. Stage one involved 29 online (n=15) and face-to-face (n=14) semi-structured interviews with LGBT youth aged under 25 years old. Stage two utilized an online LGBT youth questionnaire employing a community-based sampling strategy (n=789). We found across the sample that LGBT youth who self-harmed or felt suicidal were reluctant to seek help. Results indicated that participants were normalizing their emotional distress and only asked for help when they reached crisis point and were no longer coping. Those who self-harmed (p<0.001, OR=2.82), had attempted or planned suicide (p<0.05, OR=1.48), or had experience of abuse related to their sexuality or gender (p<0.01, OR=1.80), were most likely to seek help. There were a number of interconnecting reasons that contributed to participants’ problems accessing help. The most prominent of these were: negotiating norms in relation to sexuality, gender, mental health and age; being unable to talk about emotions, and coping and self-reliance. It is crucial that policies and practices that aim to prevent LGBT youth suicide recognize that norms and normalizing processes connected to sexual orientation and gender identity are additional difficulties that LGBT youth have accessing mental health support.

Keywords: help-seeking, LGBT, suicide, youth

Procedia PDF Downloads 275
2764 The Influences of Nurses’ Satisfaction on the Patient Satisfaction with and Loyalty to Korean University Hospitals

Authors: Sung Hee Ahn, Ju Rang Han

Abstract:

Background: With increasing importance in healthcare organization on patient satisfaction and nurses’ job satisfaction, many studies have been conducted. But no research has been administered how nurses’ satisfaction with healthcare organization influence patient satisfaction and loyalty. Purpose: This study aims to conceptualize nurses‘ satisfaction, patient satisfaction with and patient loyalty to hospitals using a hypothetical linear structural equation model, and to identify the significance of path coefficients and goodness of fit index of the structural equation model as well. Method: A total of 2,079 nurses and 6,776 patients recruited from 5 university hospitals in South Korea participated in this study. The data on nurses, including ward nurses and outpatient nurses, were collected from June 24th to July 12th, at the 204 departments of the 5 hospitals through an on-line survey. The data on the patients, including both inpatients and outpatients, were collected from September 30th to October 24th, 2013 at the 5 hospitals using a structured questionnaire. The variable of nurses’ satisfaction was measured using a scale evaluating internal client satisfaction, which is used in SSM Health Care System in the US. Patient satisfaction with the hospital and nurses and patient loyalty were measured by assessing the patient’s intention to revisit and to recommending the hospital to others using a visual analogue scale. The data were analyzed using SPSS version 21.0 and AMOS version 21.0. Result: The hypothetical model was fairly good in terms of goodness of fit (χ2= 64.897 (df=24, p <. 001), GFI=. 906, AGFI=.823, CFI=.921, NFI=.951, NNFI=.952. RMSEA=.114). The significance of path coefficients includes followings 1)The nurses’ satisfaction has significant influence on the patient satisfaction with nurses. 2)The patient satisfaction with nurses has significant influence on the patient satisfaction with the hospital. 3)The patient satisfaction with the hospital has significant influence on the patients’ revisit intention. 4)The patient satisfaction with the hospital has significant influence on the patients’ intention to the recommendations of the hospital. Conclusion: These results provide several practical implications to hospital administrators, who should incorporate ways of improving nurses' and patients' satisfaction with the hospital into their health care marketing strategies.

Keywords: linear structural equation model, loyalty, nurse, patient satisfaction

Procedia PDF Downloads 441
2763 Parametric Study for Obtaining the Structural Response of Segmental Tunnels in Soft Soil by Using No-Linear Numerical Models

Authors: Arturo Galván, Jatziri Y. Moreno-Martínez, Israel Enrique Herrera Díaz, José Ramón Gasca Tirado

Abstract:

In recent years, one of the methods most used for the construction of tunnels in soft soil is the shield-driven tunneling. The advantage of this construction technique is that it allows excavating the tunnel while at the same time a primary lining is placed, which consists of precast segments. There are joints between segments, also called longitudinal joints, and joints between rings (called as circumferential joints). This is the reason because of this type of constructions cannot be considered as a continuous structure. The effect of these joints influences in the rigidity of the segmental lining and therefore in its structural response. A parametric study was performed to take into account the effect of different parameters in the structural response of typical segmental tunnels built in soft soil by using non-linear numerical models based on Finite Element Method by means of the software package ANSYS v. 11.0. In the first part of this study, two types of numerical models were performed. In the first one, the segments were modeled by using beam elements based on Timoshenko beam theory whilst the segment joints were modeled by using inelastic rotational springs considering the constitutive moment-rotation relation proposed by Gladwell. In this way, the mechanical behavior of longitudinal joints was simulated. On the other hand for simulating the mechanical behavior of circumferential joints elastic springs were considered. As well as, the stability given by the soil was modeled by means of elastic-linear springs. In the second type of models, the segments were modeled by means of three-dimensional solid elements and the joints with contact elements. In these models, the zone of the joints is modeled as a discontinuous (increasing the computational effort) therefore a discrete model is obtained. With these contact elements the mechanical behavior of joints is simulated considering that when the joint is closed, there is transmission of compressive and shear stresses but not of tensile stresses and when the joint is opened, there is no transmission of stresses. This type of models can detect changes in the geometry because of the relative movement of the elements that form the joints. A comparison between the numerical results with two types of models was carried out. In this way, the hypothesis considered in the simplified models were validated. In addition, the numerical models were calibrated with (Lab-based) experimental results obtained from the literature of a typical tunnel built in Europe. In the second part of this work, a parametric study was performed by using the simplified models due to less used computational effort compared to complex models. In the parametric study, the effect of material properties, the geometry of the tunnel, the arrangement of the longitudinal joints and the coupling of the rings were studied. Finally, it was concluded that the mechanical behavior of segment and ring joints and the arrangement of the segment joints affect the global behavior of the lining. As well as, the effect of the coupling between rings modifies the structural capacity of the lining.

Keywords: numerical models, parametric study, segmental tunnels, structural response

Procedia PDF Downloads 229
2762 A New Realization of Multidimensional System for Grid Sensor Network

Authors: Yang Xiong, Hua Cheng

Abstract:

In this paper, for the basic problem of wireless sensor network topology control and deployment, the Roesser model in rectangular grid sensor networks is presented. In addition, a general constructive realization procedure will be proposed. The procedure enables a distributed implementation of linear systems on a sensor network. A non-trivial example is illustrated.

Keywords: grid sensor networks, Roesser model, state-space realization, multidimensional systems

Procedia PDF Downloads 655
2761 Quantitative Proteome Analysis and Bioactivity Testing of New Zealand Honeybee Venom

Authors: Maryam Ghamsari, Mitchell Nye-Wood, Kelvin Wang, Angela Juhasz, Michelle Colgrave, Don Otter, Jun Lu, Nazimah Hamid, Thao T. Le

Abstract:

Bee venom, a complex mixture of peptides, proteins, enzymes, and other bioactive compounds, has been widely studied for its therapeutic application. This study investigated the proteins present in New Zealand (NZ) honeybee venom (BV) using bottom-up proteomics. Two sample digestion techniques, in-solution digestion and filter-aided sample preparation (FASP), were employed to obtain the optimal method for protein digestion. Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH–MS) analysis was conducted to quantify the protein compositions of NZ BV and investigate variations in collection years. Our results revealed high protein content (158.12 µg/mL), with the FASP method yielding a larger number of identified proteins (125) than in-solution digestion (95). SWATH–MS indicated melittin and phospholipase A2 as the most abundant proteins. Significant variations in protein compositions across samples from different years (2018, 2019, 2021) were observed, with implications for venom's bioactivity. In vitro testing demonstrated immunomodulatory and antioxidant activities, with a viable range for cell growth established at 1.5-5 µg/mL. The study underscores the value of proteomic tools in characterizing bioactive compounds in bee venom, paving the way for deeper exploration into their therapeutic potentials. Further research is needed to fractionate the venom and elucidate the mechanisms of action for the identified bioactive components.

Keywords: honeybee venom, proteomics, bioactivity, fractionation, swath-ms, melittin, phospholipase a2, new zealand, immunomodulatory, antioxidant

Procedia PDF Downloads 39
2760 Groupthink: The Dark Side of Team Cohesion

Authors: Farhad Eizakshiri

Abstract:

The potential for groupthink to explain the issues contributing to deterioration of decision-making ability within the unitary team and so to cause poor outcomes attracted a great deal of attention from a variety of disciplines, including psychology, social and organizational studies, political science, and others. Yet what remains unclear is how and why the team members’ strivings for unanimity and cohesion override their motivation to realistically appraise alternative courses of action. In this paper, the findings of a sequential explanatory mixed-methods research containing an experiment with thirty groups of three persons each and interviews with all experimental groups to investigate this issue is reported. The experiment sought to examine how individuals aggregate their views in order to reach a consensual group decision concerning the completion time of a task. The results indicated that groups made better estimates when they had no interaction between members in comparison with the situation that groups collectively agreed on time estimates. To understand the reasons, the qualitative data and informal observations collected during the task were analyzed through conversation analysis, thus leading to four reasons that caused teams to neglect divergent viewpoints and reduce the number of ideas being considered. Reasons found were the concurrence-seeking tendency, pressure on dissenters, self-censorship, and the illusion of invulnerability. It is suggested that understanding the dynamics behind the aforementioned reasons of groupthink will help project teams to avoid making premature group decisions by enhancing careful evaluation of available information and analysis of available decision alternatives and choices.

Keywords: groupthink, group decision, cohesiveness, project teams, mixed-methods research

Procedia PDF Downloads 396
2759 Examples of Parameterization of Stabilizing Controllers with One-Side Coprime Factorization

Authors: Kazuyoshi Mori

Abstract:

Examples of parameterization of stabilizing controllers that require only one of right-/left-coprime factorizations are presented. One parameterization method requires one side coprime factorization. The other requires no coprime factorization. The methods are based on the factorization approach so that a number of models can be applied the method we use in this paper.

Keywords: parametrization, coprime factorization, factorization approach, linear systems

Procedia PDF Downloads 373
2758 Exact Energy Spectrum and Expectation Values of the Inverse Square Root Potential Model

Authors: Benedict Ita, Peter Okoi

Abstract:

In this work, the concept of the extended Nikiforov-Uvarov technique is discussed and employed to obtain the exact bound state energy eigenvalues and the corresponding normalized eigenfunctions of the inverse square root potential. With expressions for the exact energy eigenvalues and corresponding eigenfunctions, the expressions for the expectation values of the inverse separation-squared, kinetic energy, and the momentum-squared of the potential are presented using the Hellmann Feynman theorem. For visualization, algorithms written and implemented in Python language are used to generate tables and plots for l-states of the energy eigenvalues and some expectation values. The results obtained here may find suitable applications in areas like atomic and molecular physics, chemical physics, nuclear physics, and solid-state physics.

Keywords: Schrodinger equation, Nikoforov-Uvarov method, inverse square root potential, diatomic molecules, Python programming, Hellmann-Feynman theorem, second order differential equation, matrix algebra

Procedia PDF Downloads 19
2757 Perspectives and Outcomes of a Long and Shorter Community Mental Health Program

Authors: Danielle Klassen, Reiko Yeap, Margo Schmitt-Boshnick, Scott Oddie

Abstract:

The development of the 7-week Alberta Happiness Basics program was initiated in 2010 in response to the need for community mental health programming. This provincial wide program aims to increase overall happiness and reduce negative thoughts and feelings through a positive psychology intervention. While the 7-week program has proven effective, a shortened 4-week program has additionally been developed to address client needs. In this study, participants were interviewed to determine if the 4- and 7-week programs had similar success of producing lasting behavior change at 3, 6, and 9 months post-program. A health quality of life (HQOL) measure was also used to compare the two programs and examine patient outcomes. Quantitative and qualitative analysis showed significant improvements in HQOL and sustainable behavior change for both programs. Findings indicate that the shorter, patient-centered program was effective in increasing happiness and reducing negative thoughts and feelings.

Keywords: primary care, mental health, depression, short duration

Procedia PDF Downloads 270
2756 A Multicriteria Model for Sustainable Management in Agriculture

Authors: Basil Manos, Thomas Bournaris, Christina Moulogianni

Abstract:

The European agricultural policy supports all member states to apply agricultural development plans for the development of their agricultural sectors. A specific measure of the agricultural development plans refers to young people in order to enter into the agricultural sector. This measure helps the participating young farmers in achieving maximum efficiency, using methods and environmentally friendly practices, by altering their farm plans. This study applies a Multicriteria Mathematical Programming (MCDA) model for the young farmers to find farm plans that achieve the maximum gross margin and the minimum environmental impacts (less use of fertilizers and irrigation water). The analysis was made in the region of Central Macedonia, Greece, among young farmers who have participated in the “Setting up Young Farmers” measure during 2007-2010. The analysis includes the implementation of the MCDA model for the farm plans optimization and the comparison of selected environmental indicators with those of the existent situation.

Keywords: multicriteria, optimum farm plans, environmental impacts, sustainable management

Procedia PDF Downloads 340
2755 The Necessity to Standardize Procedures of Providing Engineering Geological Data for Designing Road and Railway Tunneling Projects

Authors: Atefeh Saljooghi Khoshkar, Jafar Hassanpour

Abstract:

One of the main problems of the design stage relating to many tunneling projects is the lack of an appropriate standard for the provision of engineering geological data in a predefined format. In particular, this is more reflected in highway and railroad tunnel projects in which there is a number of tunnels and different professional teams involved. In this regard, comprehensive software needs to be designed using the accepted methods in order to help engineering geologists to prepare standard reports, which contain sufficient input data for the design stage. Regarding this necessity, applied software has been designed using macro capabilities and Visual Basic programming language (VBA) through Microsoft Excel. In this software, all of the engineering geological input data, which are required for designing different parts of tunnels, such as discontinuities properties, rock mass strength parameters, rock mass classification systems, boreability classification, the penetration rate, and so forth, can be calculated and reported in a standard format.

Keywords: engineering geology, rock mass classification, rock mechanic, tunnel

Procedia PDF Downloads 80
2754 Transitioning towards a Circular Economy in the Textile Industry: Approaches to Address Environmental Challenges

Authors: Mozhdeh Khalili Kordabadi

Abstract:

Textiles play a vital role in human life, particularly in the form of clothing. However, the alarming rate at which textiles end up in landfills presents a significant environmental risk. With approximately one garbage truck per second being filled with discarded textiles, urgent measures are required to mitigate this trend. Governments and responsible organizations are calling upon various stakeholders to shift from a linear economy to a circular economy model in the textile industry. This article highlights several key approaches that can be undertaken to address this pressing issue. These approaches include the creation of renewable raw material sources, rethinking production processes, maximizing the use and reuse of textile products, implementing reproduction and recycling strategies, exploring redistribution to new markets, and finding innovative means to extend the lifespan of textiles. By adopting these strategies, the textile industry can contribute to a more sustainable and environmentally friendly future. Introduction: Textiles, particularly clothing, are essential to human existence. However, the rapid accumulation of textiles in landfills poses a significant threat to the environment. This article explores the urgent need for the textile industry to transition from a linear economy model to a circular economy model. The linear model, characterized by the creation, use, and disposal of textiles, is unsustainable in the long term. By adopting a circular economy approach, the industry can minimize waste, reduce environmental impact, and promote sustainable practices. This article outlines key approaches that can be undertaken to drive this transition. Approaches to Address Environmental Challenges: Creation of Renewable Raw Materials Sources: Exploring and promoting the use of renewable and sustainable raw materials, such as organic cotton, hemp, and recycled fibers, can significantly reduce the environmental footprint of textile production. Rethinking Production Processes: Implementing cleaner production techniques, optimizing resource utilization, and minimizing waste generation are crucial steps in reducing the environmental impact of textile manufacturing. Maximizing Use and Reuse of Textile Products: Encouraging consumers to prolong the lifespan of textile products through proper care, maintenance, and repair services can reduce the frequency of disposal and promote a culture of sustainability. Reproduction and Recycling Strategies: Investing in innovative technologies and infrastructure to enable efficient reproduction and recycling of textiles can close the loop and minimize waste generation. Redistribution of Textiles to New Markets: Exploring opportunities to redistribute textiles to new and parallel markets, such as resale platforms, can extend their lifecycle and prevent premature disposal. Improvising Means to Extend Textile Lifespan: Encouraging design practices that prioritize durability, versatility, and timeless aesthetics can contribute to prolonging the lifespan of textiles. Conclusion: The textile industry must urgently transition from a linear economy to a circular economy model to mitigate the adverse environmental impact caused by textile waste. By implementing the outlined approaches, such as sourcing renewable raw materials, rethinking production processes, promoting reuse and recycling, exploring new markets, and extending the lifespan of textiles, stakeholders can work together to create a more sustainable and environmentally friendly textile industry. These measures require collective action and collaboration between governments, organizations, manufacturers, and consumers to drive positive change and safeguard the planet for future generations.

Keywords: textiles, circular economy, environmental challenges, renewable raw materials, production processes, reuse, recycling, redistribution, textile lifespan extension.

Procedia PDF Downloads 96
2753 RFID Laptop Monitoring and Management System

Authors: Francis E. Idachaba, Sarah Uyimeh Tommy

Abstract:

This paper describes the design of an RFID laptop monitoring and management system. Laptops embedded with RFID chips are monitored and tracked to provide a monitoring system for the purpose of tracking as well as monitoring movement of the laptops in and out of a building. The proposed system is implemented with both hardware and software components. The hardware architecture consists of RFID passive tag, RFID module (reader), and a server hosting the application and database. The RFID readers are distributed at major exits of a building or premises. The tags are programmed with owner laptop details are concealed in the laptops. The software architecture consists of application software that has the APIs (Applications Programming Interface) necessary to interface the RFID system with the PC, to achieve automated laptop monitoring system. A friendly graphic user interface (GUI) and a database that saves all readings and owners details. The system is capable of reducing laptop theft especially in students’ hostels as laptops can be monitored as they are taken either in or out of the building.

Keywords: asset tracking, GUI, laptop monitoring, radio frequency identification, passive tags

Procedia PDF Downloads 390
2752 Approaches to Reduce the Complexity of Mathematical Models for the Operational Optimization of Large-Scale Virtual Power Plants in Public Energy Supply

Authors: Thomas Weber, Nina Strobel, Thomas Kohne, Eberhard Abele

Abstract:

In context of the energy transition in Germany, the importance of so-called virtual power plants in the energy supply continues to increase. The progressive dismantling of the large power plants and the ongoing construction of many new decentralized plants result in great potential for optimization through synergies between the individual plants. These potentials can be exploited by mathematical optimization algorithms to calculate the optimal application planning of decentralized power and heat generators and storage systems. This also includes linear or linear mixed integer optimization. In this paper, procedures for reducing the number of decision variables to be calculated are explained and validated. On the one hand, this includes combining n similar installation types into one aggregated unit. This aggregated unit is described by the same constraints and target function terms as a single plant. This reduces the number of decision variables per time step and the complexity of the problem to be solved by a factor of n. The exact operating mode of the individual plants can then be calculated in a second optimization in such a way that the output of the individual plants corresponds to the calculated output of the aggregated unit. Another way to reduce the number of decision variables in an optimization problem is to reduce the number of time steps to be calculated. This is useful if a high temporal resolution is not necessary for all time steps. For example, the volatility or the forecast quality of environmental parameters may justify a high or low temporal resolution of the optimization. Both approaches are examined for the resulting calculation time as well as for optimality. Several optimization models for virtual power plants (combined heat and power plants, heat storage, power storage, gas turbine) with different numbers of plants are used as a reference for the investigation of both processes with regard to calculation duration and optimality.

Keywords: CHP, Energy 4.0, energy storage, MILP, optimization, virtual power plant

Procedia PDF Downloads 178
2751 Estimating the Life-Distribution Parameters of Weibull-Life PV Systems Utilizing Non-Parametric Analysis

Authors: Saleem Z. Ramadan

Abstract:

In this paper, a model is proposed to determine the life distribution parameters of the useful life region for the PV system utilizing a combination of non-parametric and linear regression analysis for the failure data of these systems. Results showed that this method is dependable for analyzing failure time data for such reliable systems when the data is scarce.

Keywords: masking, bathtub model, reliability, non-parametric analysis, useful life

Procedia PDF Downloads 562
2750 Setswana Speech Rhythm Development in High-Socioeconomic Status Setswana-English Bilingual Children

Authors: Boikanyego Sebina

Abstract:

The present study investigates the effects of socioeconomic status (SES) and bilingualism on the Setswana speech rhythm of Batswana (citizens) children aged 6-7 years with typical development born and residing in Botswana. Botswana is a country in which there is a diglossic Setswana/English language setting, where English is the dominant high-status language in educational and public contexts. Generally, children from low SES have lower linguistic and cognitive profiles than their age-matched peers from high SES. A greater understanding of these variables would allow educators to distinguish between underdeveloped language skills in children due to impairment and environmental issues for them to successfully enroll children in language development enhancement programs specific to the child’s needs. There are 20 participants: 10 high SES private English-medium educated early sequential Setswana-English bilingual children, taught full-time in English (L2) from the age of 3 years, and for whom English has become dominant; and 10 low SES children who are educated in public schools for whom English is considered a learner language, i.e., L1 Setswana is dominant. The aim is to see whether SES and bilingualism, have had an effect on the Setswana speech rhythm of children in either group. The study primarily uses semi-spontaneous speech based on the telling of the wordless picture storybook. A questionnaire is used to elicit the language use pattern of the children and that of their parents, as well as the education level of the parents and the school the children attend. A comparison of the rhythm shows that children from high SES have a lower durational variability than those from low SES. The findings of the study are that the low durational variability by children from high SES may suggest an underdeveloped rhythm. In conclusion, the results of the present study are against the notion that children from high SES outperform those from low SES in linguistic development.

Keywords: bilingualism, Setswana English, socio-economic status, speech-rhythm

Procedia PDF Downloads 67
2749 Optimal Design and Simulation of a Grid-Connected Photovoltaic (PV) Power System for an Electrical Department in University of Tripoli, Libya

Authors: Mustafa Al-Refai

Abstract:

This paper presents the optimal design and simulation of a grid-connected Photovoltaic (PV) system to supply electric power to meet the energy demand by Electrical Department in University of Tripoli Libya. Solar radiation is the key factor determining electricity produced by photovoltaic (PV) systems. This paper is designed to develop a novel method to calculate the solar photovoltaic generation capacity on the basis of Mean Global Solar Radiation data available for Tripoli Libya and finally develop a system design of possible plant capacity for the available roof area. MatLab/Simulink Programming tools and monthly average solar radiation data are used for this design and simulation. The specifications of equipments are provided based on the availability of the components in the market. Simulation results and analyses are presented to validate the proposed system configuration.

Keywords: photovoltaic (PV), grid, Simulink, solar energy, power plant, solar irradiation

Procedia PDF Downloads 301