Search results for: seismic slope stability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4607

Search results for: seismic slope stability

2897 Passive Seismic Energy Dissipation Mechanisms for Smart Green Structural System (SGSS)

Authors: Daniel Y. Abebe, Jaehyouk Choi

Abstract:

The design philosophy of building structure has been changing over time. The reason behind this is an increase in human interest regarding the improvements in building materials and technology that will affect how we live, the aim to speed up construction period, and the environmental effect which includes earthquakes and other natural disasters. One technique which takes into account the above case is using a prefabricable structural system, in which each and every structural element is designed and prefabricated and assembled on a site so that the construction speed is increased and the environmental impact is also enhanced. This system has immense advantages such as reduced construction cost, reusability, recyclability, faster construction period and less enviromental effect. In this study, some of the developed and evaluated structural elements of building structures are presented.

Keywords: eccentrically braced frame, natural disaster, prefabricable structural system, removable link, SGSS

Procedia PDF Downloads 423
2896 Transient Performance Analysis of Gate Inside Junctionless Transistor (GI-JLT)

Authors: Sangeeta Singh, Pankaj Kumar, P. N. Kondekar

Abstract:

In this paper, the transient device performance analysis of n-type Gate Inside Junctionless Transistor (GIJLT)has been evaluated. 3-D Bohm Quantum Potential (BQP)transport device simulation has been used to evaluate the delay and power dissipation performance. GI-JLT has a number of desirable device parameters such as reduced propagation delay, dynamic power dissipation, power and delay product, intrinsic gate delay and energy delay product as compared to Gate-all-around transistors GAA-JLT. In addition to this, various other device performance parameters namely, on/off current ratio, short channel effects (SCE), transconductance Generation Factor(TGF) and unity gain cut-off frequency (fT) and subthreshold slope (SS) of the GI-JLT and Gate-all-around junctionless transistor(GAA-JLT) have been analyzed and compared. GI-JLT shows better device performance characteristics than GAA-JLT for low power and high frequency applications, because of its larger gate electrostatic control on the device operation.

Keywords: gate-inside junctionless transistor GI-JLT, gate-all-around junctionless transistor GAA-JLT, propagation delay, power delay product

Procedia PDF Downloads 572
2895 Site Selection and Construction Mechanism of the Island Settlements in China Based on CFD-GIS Technology

Authors: Weng Jiantao, Wu Yiqun

Abstract:

The efficiency of natural ventilation, wind pressure distribution on building surface, wind comfort for pedestrians and buildings’ wind tolerance in traditional settlements are closely related to the pattern of terrain. On the basis of field research on the typical island terrain in China, the physical and mathematical models are established by using CFD software, and then the simulation results of the wind field are exported. We discuss the relationship between wind direction and wind field results. Furthermore simulation results are imported into ArcGIS platform. The evaluation model of island site selection is established with considering slope factor. We realize the visual model of site selection on complex island terrain. The multi-plans of certain residential are discussed based on wind simulation; at last the optimal project is selected. Results can provide the theory guidance for settlement planning and construction in China's traditional island.

Keywords: CFD, island terrain, site selection, construction mechanism

Procedia PDF Downloads 499
2894 A Mathematical Model for Studying Landing Dynamics of a Typical Lunar Soft Lander

Authors: Johns Paul, Santhosh J. Nalluveettil, P. Purushothaman, M. Premdas

Abstract:

Lunar landing is one of the most critical phases of lunar mission. The lander is provided with a soft landing system to prevent structural damage of lunar module by absorbing the landing shock and also assure stability during landing. Presently available software are not capable to simulate the rigid body dynamics coupled with contact simulation and elastic/plastic deformation analysis. Hence a separate mathematical model has been generated for studying the dynamics of a typical lunar soft lander. Parameters used in the analysis includes lunar surface slope, coefficient of friction, initial touchdown velocity (vertical and horizontal), mass and moment of inertia of lander, crushing force due to energy absorbing material in the legs, number of legs and geometry of lander. The mathematical model is capable to simulate plastic and elastic deformation of honey comb, frictional force between landing leg and lunar soil, surface contact simulation, lunar gravitational force, rigid body dynamics and linkage dynamics of inverted tripod landing gear. The non linear differential equations generated for studying the dynamics of lunar lander is solved by numerical method. Matlab programme has been used as a computer tool for solving the numerical equations. The position of each kinematic joint is defined by mathematical equations for the generation of equation of motion. All hinged locations are defined by position vectors with respect to body fixed coordinate. The vehicle rigid body rotations and motions about body coordinate are only due to the external forces and moments arise from footpad reaction force due to impact, footpad frictional force and weight of vehicle. All these force are mathematically simulated for the generation of equation of motion. The validation of mathematical model is done by two different phases. First phase is the validation of plastic deformation of crushable elements by employing conservation of energy principle. The second phase is the validation of rigid body dynamics of model by simulating a lander model in ADAMS software after replacing the crushable elements to elastic spring element. Simulation of plastic deformation along with rigid body dynamics and contact force cannot be modeled in ADAMS. Hence plastic element of primary strut is replaced with a spring element and analysis is carried out in ADAMS software. The same analysis is also carried out using the mathematical model where the simulation of honeycomb crushing is replaced by elastic spring deformation and compared the results with ADAMS analysis. The rotational motion of linkages and 6 degree of freedom motion of lunar Lander about its CG can be validated by ADAMS software by replacing crushing element to spring element. The model is also validated by the drop test results of 4 leg lunar lander. This paper presents the details of mathematical model generated and its validation.

Keywords: honeycomb, landing leg tripod, lunar lander, primary link, secondary link

Procedia PDF Downloads 344
2893 Development of High-Performance Conductive Polybenzoxazine/Graphite-Copper Nanoomposite for Electromagnetic Interference Shielding Applications

Authors: Noureddine Ramdani

Abstract:

In recent years, extensive attention has been given to the study of conductive nanocomposites due to their unique properties, which are dependent on their size and shape. The potential applications of these materials include electromagnetic interference shielding, energy storage, photovoltaics, and others. These outstanding properties have led to increased interest and research in this field. In this work, a conductive poly benzoxazine nanocomposite, PBZ/Gr-Cu, was synthesized through a compression molding technique to achieve a high-performance material suitable for electromagnetic interference (EMI) shielding applications. The microstructure of the nanocomposites was analyzed using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The thermal stability, electrical conductivity, and EMI shielding properties of the nanocomposites were evaluated using thermogravimetric analysis, a four-point probe, and a VNA analyzer, respectively. The TGA results revealed that the thermal stability and electrical conductivity of the nanocomposites were significantly enhanced by the incorporation of Gr/Cu nanoparticles. The nanocomposites exhibited a low percolation threshold of about 3.5 wt.% and an increase in carrier concentration and mobility of the carriers with increasing hybrid nanofiller content, causing the composites to behave as n-type semiconductors. These nanocomposites also displayed a high dielectric constant and a high dissipation factor in the frequency range of 8-12 GHz, resulting in higher EMI shielding effectiveness (SE) of 25-44 dB. These characteristics make them promising candidates for lightweight EMI shielding materials in aerospace and radar evasion applications.

Keywords: polybenzoxazine matrix, conductive nanocomposites, electrical conductivity, EMI shielding

Procedia PDF Downloads 77
2892 Great Powers’ Proxy Wars in Middle East and Difficulty in Transition from Cold War to Cold Peace

Authors: Arash Sharghi, Irina Dotu

Abstract:

The developments in the Middle East region have activated the involvement of a numerous diverse state and non-state actors in the regional affairs. The goals, positions, ideologies, different, and even contrast policy behaviors had procured the spreading and continuity of crisis. Non-state actors varying from Islamic organizations to takfiri-terrorist movements on one hand and regional and trans- regional actors, from another side, seek to reach their interests in the power struggle. Here, a research worthy question comes on the agenda: taking into consideration actors’ contradictory interests and constraints what are the regional peace and stability perspectives? Therein, different actors’ aims definition, their actions and behaviors, which affect instability, can be regarded as independent variables; whereas, on the contrary, Middle East peace and stability perspective analysis is a dependent variable. Though, this regional peace and war theory based research admits the significant influence of trans-regional actors, it asserts the roots of violence to derive from region itself. Consequently, hot war and conflict prevention and hot peace assurance in the Middle East region cannot be attained only by demands and approaches of trans-regional actors. Moreover, capacity of trans-regional actors is sufficient only for a cold war or cold peace to be reached in the region. Furthermore, within the framework of current conflict (struggle) between regional actors it seems to be difficult and even impossible to turn the cold war into a cold peace in the region.

Keywords: cold peace, cold war, hot war, Middle East, non-state actors, regional and Great powers, war theory

Procedia PDF Downloads 268
2891 The Amount of Information Processing and Balance Performance in Children: The Dual-Task Paradigm

Authors: Chin-Chih Chiou, Tai-Yuan Su, Ti-Yu Chen, Wen-Yu Chiu, Chungyu Chen

Abstract:

The purpose of this study was to investigate the effect of reaction time (RT) or balance performance as the number of stimulus-response choices increases, the amount of information processing of 0-bit and 1-bit conditions based on Hick’s law, using the dual-task design. Eighteen children (age: 9.38 ± 0.27 years old) were recruited as the participants for this study, and asked to assess RT and balance performance separately and simultaneously as following five conditions: simple RT (0-bit decision), choice RT (1-bit decision), single balance control, balance control with simple RT, and balance control with choice RT. Biodex 950-300 balance system and You-Shang response timer were used to record and analyze the postural stability and information processing speed (RT) respectively for the participants. Repeated measures one-way ANOVA with HSD post-hoc test and 2 (balance) × 2 (amount of information processing) repeated measures two-way ANOVA were used to test the parameters of balance performance and RT (α = .05). The results showed the overall stability index in the 1-bit decision was lower than in 0-bit decision, and the mean deflection in the 1-bit decision was lower than in single balance performance. Simple RTs were faster than choice RTs both in single task condition and dual task condition. It indicated that the chronometric approach of RT could use to infer the attention requirement of the secondary task. However, this study did not find that the balance performance is interfered for children by the increasing of the amount of information processing.

Keywords: capacity theory, reaction time, Hick’s law, balance

Procedia PDF Downloads 446
2890 Synthesis of Multi-Functional Iron Oxide Nanoparticles for Targeted Drug Delivery in Cancer Treatment

Authors: Masome Moeni, Roya Abedizadeh, Elham Aram, Hamid Sadeghi-Abandansari, Davood Sabour, Robert Menzel, Ali Hassanpour

Abstract:

Significant number of studies and preclinical research in formulation of cancer nano-pharmaceutics have led to an improvement in cancer care. Nonetheless, the antineoplastic agents have ‘failed to live up to its promise’ since their clinical performance is moderately low. For almost ninety years, iron oxide nanoparticles (IONPS) have managed to keep its reputation in clinical application due to their low toxicity, versatility and multi-modal capabilities. Drug Administration approved utilization of IONPs for diagnosis of cancer as contrast media in magnetic resonance imaging, as heat mediator in magnetic hyperthermia and for the treatment of iron deficiency. Furthermore, IONPs have high drug-loading capacity, which makes them good candidates as therapeutic agent transporters. There are yet challenges to overcome for successful clinical application of IONPs, including stability of drug and poor delivery, which might lead to (i) drug resistance, (ii) shorter blood circulation time, and (iii) rapid elimination and adverse side effects from the system. In this study, highly stable and super paramagnetic IONPs were prepared for efficient and targeted drug delivery in cancer treatment. The synthesis procedure was briefly involved the production of IONPs via co-precipitation followed by coating with tetraethyl orthosilicate and 3-aminopropylethoxysilane and grafting with folic acid for stability targeted purposes and controlled drug release. Physiochemical and morphological properties of modified IONPs were characterised using different analytical techniques. The resultant IONPs exhibited clusters of 10 nm spherical shape crystals with less than 100 nm size suitable for drug delivery. The functionalized IONP showed mesoporous features, high stability, dispersibility and crystallinity. Subsequently, the functionalized IONPs were successfully loaded with oxaliplatin, a chemotherapeutic agent, for a controlled drug release in an actively targeting cancer cells. FT-IR observations confirmed presence of oxaliplatin functional groups, while ICP-MS results verified the drug loading was ~ 1.3%.

Keywords: cancer treatment, chemotherapeutic agent, drug delivery, iron oxide, multi-functional nanoparticle

Procedia PDF Downloads 77
2889 Transient Analysis of Laminated Rubber Bearing Bridge during High Intensity Earthquake

Authors: N. M. Amin, W. N. A. W. Sulaiman

Abstract:

The effectiveness of the seismic response between 3D solid elements model and simplified beam elements model has been investigated. At present, the studies of the numerical modelling using 3D solid element are minimal due to numerical software constraint. The finite element analysis using 3D solid element was chosen to study displacement response of laminated rubber bearing (LRB) during high intensity Kobe earthquake. In this research a simply supported bridge (single span), fixed at support was analysed by using transient analysis subjected to real time history loading of Kobe earthquake.

Keywords: laminated rubber bearing, solid element, simplified beam element, transient analysis

Procedia PDF Downloads 421
2888 Seismic Analysis of Adjacent Buildings Connected with Dampers

Authors: Devyani D. Samarth, Sachin V. Bakre, Ratnesh Kumar

Abstract:

This work deals with two buildings adjacent to each other connected with dampers. The “Imperial Valley Earthquake - El Centro", "May 18, 1940 earthquake time history is used for dynamic analysis of the system in the time domain. The effectiveness of fluid joint dampers is then investigated in terms of the reduction of displacement, acceleration and base shear responses of adjacent buildings. Finally, an extensive parametric study is carried out to find optimum damper properties like stiffness (Kd) and damping coefficient (Cd) for adjacent buildings. Results show that using fluid dampers to connect the adjacent buildings of different fundamental frequencies can effectively reduce earthquake-induced responses of either building if damper optimum properties are selected.

Keywords: energy dissipation devices, time history analysis, viscous damper, optimum parameters

Procedia PDF Downloads 483
2887 Relation of Cad/Cam Zirconia Dental Implant Abutments with Periodontal Health and Final Aesthetic Aspects; A Systematic Review

Authors: Amin Davoudi

Abstract:

Aim: New approaches have been introduced to improve soft tissue indices of the dental implants. This systematic review aimed to investigate the effect of computer-aided design and computer-assisted manufacture (CAD/CAM) zirconia (Zr) implant abutments on periodontal aspects. Materials and Methods: Five electronic databases were searched thoroughly based on prior defined MeSH and non-MeSH keywords. Clinical studies were collected via hand searches in English language journals up to September 2020. Interproximal papilla stability, papilla recession, pink and white esthetic score (PES, WES), bone and gingival margin levels, color, and contour of soft tissue were reviewed. Results: The initial literature search yielded 412 articles. After the evaluation of abstracts and full texts, six studies were eligible to be screened. The study design of the included studies was a prospective cohort (n=3) and randomized clinical trial (n=3). The outcome was found to be significantly better for Zr than titanium abutments, however, the studies did not show significant differences between stock and CAD/CAM abutments. Conclusion: Papilla fill, WES, PES, and the distance from the contact point to dental crest bone of adjacent tooth and inter-tooth–implant distance were not significantly different between Zr CAD/CAM and Zr stock abutments. However, soft tissue stability and recession index were better in Zr CAD/CAM abutments.

Keywords: zirconia, CADCAM, periodental, implant

Procedia PDF Downloads 99
2886 Assessment of Highly Sensitive Dielectric Modulated GaN-FinFET for Label-Free Biosensing Applications

Authors: Ajay Kumar, Neha Gupta

Abstract:

This work presents the sensitivity assessment of Gallium Nitride (GaN) material-based FinFET by dielectric modulation in the nanocavity gap for label-free biosensing applications. The significant deflection is observed in the electrical characteristics such as drain current (ID), transconductance (gm), surface potential, energy band profile, electric field, sub-threshold slope (SS), and threshold voltage (Vth) in the presence of biomolecules owing to GaN material. Further, the device sensitivity is evaluated to identify the effectiveness of the proposed biosensor and its capability to detect the biomolecules with high precision or accuracy. Higher sensitivity is observed for Gelatin (k=12) in terms of on-current (SION), threshold voltage (SVth), and switching ratio (SSR) by 104.88%, 82.12%, and 119.73%, respectively. This work is performed using a powerful tool 3D Sentaurus TCAD using a well-calibrated structure. All the results pave the way for GaN-FinFET as a viable candidate for label-free dielectric modulated biosensor applications.

Keywords: biosensor, biomolecules, FinFET, sensitivity

Procedia PDF Downloads 195
2885 Ferulic Acid-Grafted Chitosan: Thermal Stability and Feasibility as an Antioxidant for Active Biodegradable Packaging Film

Authors: Sarekha Woranuch, Rangrong Yoksan

Abstract:

Active packaging has been developed based on the incorporation of certain additives, in particular antimicrobial and antioxidant agents, into packaging systems to maintain or extend product quality and shelf-life. Ferulic acid is one of the most effective natural phenolic antioxidants, which has been used in food, pharmaceutical and active packaging film applications. However, most phenolic compounds are sensitive to oxygen, light and heat; its activities are thus lost during product formulation and processing. Grafting ferulic acid onto polymer is an alternative to reduce its loss under thermal processes. Therefore, the objectives of the present research were to study the thermal stability of ferulic acid after grafting onto chitosan, and to investigate the possibility of using ferulic acid-grafted chitosan (FA-g-CTS) as an antioxidant for active biodegradable packaging film. FA-g-CTS was incorporated into biodegradable film via a two-step process, i.e. compounding extrusion at temperature up to 150 °C followed by blown film extrusion at temperature up to 175 °C. Although incorporating FA-g-CTS with a content of 0.02–0.16% (w/w) caused decreased water vapor barrier property and reduced extensibility, the films showed improved oxygen barrier property and antioxidant activity. Radical scavenging activity and reducing power of the film containing FA-g-CTS with a content of 0.04% (w/w) were higher than that of the naked film about 254% and 94%, respectively. Tensile strength and rigidity of the films were not significantly affected by adding FA-g-CTS with a content of 0.02–0.08% (w/w). The results indicated that FA-g-CTS could be potentially used as an antioxidant for active packaging film.

Keywords: active packaging film, antioxidant activity, chitosan, ferulic acid

Procedia PDF Downloads 500
2884 Evaluation of the Fire Propagation Characteristics of Thermoplastics

Authors: Ji-Hun Choi, Kyoung-Suk Cho, Seung-Un Chae

Abstract:

Consisting of organic compounds, plastic ignites easily and burns fast. In addition, a large amount of toxic gas is produced while it is burning. When plastic is heated, its volume decreases because its surface is melted. The decomposition of its molecular bond generates combustible liquid of low viscosity, which accelerates plastic combustion and spreads the flames. Radiant heat produced in the process propagates the fire to increase the risk of human and property damages. Accordingly, the purpose of this study was to identify chemical, thermal and combustion characteristics of thermoplastic plastics using the fire propagation apparatus based on experimental criteria of ISO 12136 and ASTM E 2058. By the experiment result, as the ignition time increased, the thermal response parameter (TRP) decreased and as the TRP increased, the slope decreased. In other words, the large the TRP was, the longer the time taken for heating and ignition of the material was. It was identified that the fire propagation speed dropped accordingly.

Keywords: fire propagation apparatus (FPA), ISO 12136, thermal response parameter (TRP), fire propagation index (FPI)

Procedia PDF Downloads 198
2883 Recovery of an Area Degraded by Gullies in the Municipality of Monte Alto (SP), Brazil

Authors: Layane Sara Vieira, Paulo Egidio Bernardo, Roberto Saverio Souza Costa

Abstract:

Anthropogenic occupations and agricultural explorations without concern for the preservation and sustainability of the activity result in soil degradation that can make rural activity unfeasible. The objective of this work was to characterize and evaluate the recovery costs of an area degraded by major erosion (gully) in the municipality of Monte Alto (SP). Topographic characterization was carried out by means of a planialtimetric survey with a total station. The contours of the gully, internal area, slope height, contribution area, volume, and costs of operations for the recovery of the gully were delimited. The results obtained showed that the gully has a length of 145.56 m, a maximum width of 36.61 m, and a gap of 19.48 m. The external area of the gully is 1,039.8741 m², and the internal area is 119.3470 m². The calculated volume was 3,282.63 m³. The intervention area for breaking slopes was measured at 8,471.29 m², requiring the construction of 19 terraces in this area, vertically spaced at 2.8 m. The estimated costs for mechanical recovery of the gully were R$ 19,167.84 (US$ 3.657,98).

Keywords: erosion, volumetric assessment, soil degradation, terraces

Procedia PDF Downloads 100
2882 Forest Fire Risk Mapping Using Analytic Hierarchy Process and GIS-Based Application: A Case Study in Hua Sai District, Thailand

Authors: Narissara Nuthammachot, Dimitris Stratoulias

Abstract:

Fire is one of the main causes of environmental and ecosystem change. Therefore, it is a challenging task for fire risk assessment fire potential mapping. The study area is Hua Sai district, Nakorn Sri Thammarat province, which covers in a part of peat swamp forest areas. 55 fire points in peat swamp areas were reported from 2012 to 2016. Analytic Hierarchy Process (AHP) and Geographic Information System (GIS) methods were selected for this study. The risk fire area map was arranged on these factors; elevation, slope, aspect, precipitation, distance from the river, distance from town, and land use. The results showed that the predicted fire risk areas are found to be in appreciable reliability with past fire events. The fire risk map can be used for the planning and management of fire areas in the future.

Keywords: analytic hierarchy process, fire risk assessment, geographic information system, peat swamp forest

Procedia PDF Downloads 200
2881 A Criterion for Evaluating Plastic Loads: Plastic Work-Tangent Criterion

Authors: Ying Zhang

Abstract:

In ASME Boiler and Pressure Vessel Code, the plastic load is defined by applying the twice elastic slope (TES) criterion of plastic collapse to a characteristic load-deformation curve for the vessel. Several other plastic criterion such as tangent intersection (TI) criterion, plastic work (PW) criterion have been proposed in the literature, but all exhibit a practical limitation: difficult to define the load parameter for vessels subject to several combined loads. An alternative criterion: plastic work-tangent (PWT) criterion for evaluating plastic load in pressure vessel design by analysis is presented in this paper. According to the plastic work-load curve, when the tangent variation is less than a given value in the plastic phase, the corresponding load is the plastic load. Application of the proposed criterion is illustrated by considering the elastic-plastic response of the lower head of reactor pressure vessel (RPV) and nozzle intersection of (RPV). It is proposed that this is because the PWT criterion more fully represents the constraining effect of material strain hardening on the spread of plastic deformation and more efficiently ton evaluating the plastic load.

Keywords: plastic load, plastic work, strain hardening, plastic work-tangent criterion

Procedia PDF Downloads 346
2880 Variability and Stability of Bread and Durum Wheat for Phytic Acid Content

Authors: Gordana Branković, Vesna Dragičević, Dejan Dodig, Desimir Knežević, Srbislav Denčić, Gordana Šurlan-Momirović

Abstract:

Phytic acid is a major pool in the flux of phosphorus through agroecosystems and represents a sum equivalent to > 50% of all phosphorus fertilizer used annually. Nutrition rich in phytic acid can substantially decrease micronutrients apsorption as calcium, zink, iron, manganese, copper due to phytate salts excretion by human and non-ruminant animals as poultry, swine and fish, having in common very scarce phytase activity, and consequently the ability to digest and utilize phytic acid, thus phytic acid derived phosphorus in animal waste contributes to water pollution. The tested accessions consisted of 15 genotypes of bread wheat (Triticum aestivum L. ssp. vulgare) and of 15 genotypes of durum wheat (Triticum durum Desf.). The trials were sown at the three test sites in Serbia: Rimski Šančevi (RS) (45º19´51´´N; 19º50´59´´E), Zemun Polje (ZP) (44º52´N; 20º19´E) and Padinska Skela (PS) (44º57´N 20º26´E) during two vegetation seasons 2010-2011 and 2011-2012. The experimental design was randomized complete block design with four replications. The elementary plot consisted of 3 internal rows of 0.6 m2 area (3 × 0.2 m × 1 m). Grains were grinded with Laboratory Mill 120 Perten (“Perten”, Sweden) (particles size < 500 μm) and flour was used for the analysis. Phytic acid grain content was determined spectrophotometrically with the Shimadzu UV-1601 spectrophotometer (Shimadzu Corporation, Japan). Objectives of this study were to determine: i) variability and stability of the phytic acid content among selected genotypes of bread and durum wheat, ii) predominant source of variation regarding genotype (G), environment (E) and genotype × environment interaction (GEI) from the multi-environment trial, iii) influence of climatic variables on the GEI for the phytic acid content. Based on the analysis of variance it had been determined that the variation of phytic acid content was predominantly influenced by environment in durum wheat, while the GEI prevailed for the variation of the phytic acid content in bread wheat. Phytic acid content expressed on the dry mass basis was in the range 14.21-17.86 mg g-1 with the average of 16.05 mg g-1 for bread wheat and 14.63-16.78 mg g-1 with the average of 15.91 mg g-1 for durum wheat. Average-environment coordination view of the genotype by environment (GGE) biplot was used for the selection of the most desirable genotypes for breeding for low phytic acid content in the sense of good stability and lower level of phytic acid content. The most desirable genotypes of bread and durum wheat for breeding for phytic acid were Apache and 37EDUYT /07 No. 7849. Models of climatic factors in the highest percentage (> 91%) were useful in interpreting GEI for phytic acid content, and included relative humidity in June, sunshine hours in April, mean temperature in April and winter moisture reserves for genotypes of bread wheat, as well as precipitation in June and April, maximum temperature in April and mean temperature in June for genotypes of durum wheat.

Keywords: genotype × environment interaction, phytic acid, stability, variability

Procedia PDF Downloads 385
2879 Interferometric Demodulation Scheme Using a Mode-Locker Fiber Laser

Authors: Liang Zhang, Yuanfu Lu, Yuming Dong, Guohua Jiao, Wei Chen, Jiancheng Lv

Abstract:

We demonstrated an interferometric demodulation scheme using a mode-locked fiber laser. The mode-locked fiber laser is launched into a two-beam interferometer. When the ratio between the fiber path imbalance of interferometer and the laser cavity length is close to an integer, an interferometric fringe emerges as a result of vernier effect, and then the phase shift of the interferometer can be demodulated. The mode-locked fiber laser provides a large bandwidth and reduces the cost for wavelength division multiplexion (WDM). The proposed interferometric demodulation scheme can be further applied in multi-point sensing system such as fiber optics hydrophone array, seismic wave detection network with high sensitivity and low cost.

Keywords: fiber sensing, interferometric demodulation, mode-locked fiber laser, vernier effect

Procedia PDF Downloads 325
2878 Prediction of Nonlinear Torsional Behavior of High Strength RC Beams

Authors: Woo-Young Jung, Minho Kwon

Abstract:

Seismic design criteria based on performance of structures have recently been adopted by practicing engineers in response to destructive earthquakes. A simple but efficient structural-analysis tool capable of predicting both the strength and ductility is needed to analyze reinforced concrete (RC) structures under such event. A three-dimensional lattice model is developed in this study to analyze torsions in high-strength RC members. Optimization techniques for determining optimal variables in each lattice model are introduced. Pure torsion tests of RC members are performed to validate the proposed model. Correlation studies between the numerical and experimental results confirm that the proposed model is well capable of representing salient features of the experimental results.

Keywords: torsion, non-linear analysis, three-dimensional lattice, high-strength concrete

Procedia PDF Downloads 343
2877 Sensitivity and Uncertainty Analysis of Hydrocarbon-In-Place in Sandstone Reservoir Modeling: A Case Study

Authors: Nejoud Alostad, Anup Bora, Prashant Dhote

Abstract:

Kuwait Oil Company (KOC) has been producing from its major reservoirs that are well defined and highly productive and of superior reservoir quality. These reservoirs are maturing and priority is shifting towards difficult reservoir to meet future production requirements. This paper discusses the results of the detailed integrated study for one of the satellite complex field discovered in the early 1960s. Following acquisition of new 3D seismic data in 1998 and re-processing work in the year 2006, an integrated G&G study was undertaken to review Lower Cretaceous prospectivity of this reservoir. Nine wells have been drilled in the area, till date with only three wells showing hydrocarbons in two formations. The average oil density is around 300API (American Petroleum Institute), and average porosity and water saturation of the reservoir is about 23% and 26%, respectively. The area is dissected by a number of NW-SE trending faults. Structurally, the area consists of horsts and grabens bounded by these faults and hence compartmentalized. The Wara/Burgan formation consists of discrete, dirty sands with clean channel sand complexes. There is a dramatic change in Upper Wara distributary channel facies, and reservoir quality of Wara and Burgan section varies with change of facies over the area. So predicting reservoir facies and its quality out of sparse well data is a major challenge for delineating the prospective area. To characterize the reservoir of Wara/Burgan formation, an integrated workflow involving seismic, well, petro-physical, reservoir and production engineering data has been used. Porosity and water saturation models are prepared and analyzed to predict reservoir quality of Wara and Burgan 3rd sand upper reservoirs. Subsequently, boundary conditions are defined for reservoir and non-reservoir facies by integrating facies, porosity and water saturation. Based on the detailed analyses of volumetric parameters, potential volumes of stock-tank oil initially in place (STOIIP) and gas initially in place (GIIP) were documented after running several probablistic sensitivity analysis using Montecalro simulation method. Sensitivity analysis on probabilistic models of reservoir horizons, petro-physical properties, and oil-water contacts and their effect on reserve clearly shows some alteration in the reservoir geometry. All these parameters have significant effect on the oil in place. This study has helped to identify uncertainty and risks of this prospect particularly and company is planning to develop this area with drilling of new wells.

Keywords: original oil-in-place, sensitivity, uncertainty, sandstone, reservoir modeling, Monte-Carlo simulation

Procedia PDF Downloads 192
2876 Application and Verification of Regression Model to Landslide Susceptibility Mapping

Authors: Masood Beheshtirad

Abstract:

Identification of regions having potential for landslide occurrence is one of the basic measures in natural resources management. Different landslide hazard mapping models are proposed based on the environmental condition and goals. In this research landslide hazard map using multiple regression model were provided and applicability of this model is investigated in Baghdasht watershed. Dependent variable is landslide inventory map and independent variables consist of information layers as Geology, slope, aspect, distance from river, distance from road, fault and land use. For doing this, existing landslides have been identified and an inventory map made. The landslide hazard map is based on the multiple regression provided. The level of similarity potential hazard classes and figures of this model were compared with the landslide inventory map in the SPSS environments. Results of research showed that there is a significant correlation between the potential hazard classes and figures with area of the landslides. The multiple regression model is suitable for application in the Baghdasht Watershed.

Keywords: landslide, mapping, multiple model, regression

Procedia PDF Downloads 318
2875 Thermo-Mechanical Properties of PBI Fiber Reinforced HDPE Composites: Effect of Fiber Length and Composition

Authors: Shan Faiz, Arfat Anis, Saeed M. Al-Zarani

Abstract:

High density polyethylene (HDPE) and poly benzimidazole fiber (PBI) composites were prepared by melt blending in a twin screw extruder (TSE). The thermo-mechanical properties of PBI fiber reinforced HDPE composite samples (1%, 4% and 8% fiber content) of fiber lengths 3 mm and 6 mm were investigated using differential scanning calorimeter (DSC), universal testing machine (UTM), rheometer and scanning electron microscopy (SEM). The effect of fiber content and fiber lengths on the thermo-mechanical properties of the HDPE-PBI composites was studied. The DSC analysis showed decrease in crystallinity of HDPE-PBI composites with the increase of fiber loading. Maximum decrease observed was 12% at 8% fiber length. The thermal stability was found to increase with the addition of fiber. T50% was notably increased to 40oC for both grades of HDPE using 8% of fiber content. The mechanical properties were not much affected by the increase in fiber content. The optimum value of tensile strength was achieved using 4% fiber content and slight increase of 9% in tensile strength was observed. No noticeable change was observed in flexural strength. In rheology study, the complex viscosities of HDPE-PBI composites were higher than the HDPE matrix and substantially increased with even minimum increase of PBI fiber loading i.e. 1%. We found that the addition of the PBI fiber resulted in a modest improvement in the thermal stability and mechanical properties of the prepared composites.

Keywords: PBI fiber, high density polyethylene, composites, melt blending

Procedia PDF Downloads 361
2874 Effect of Deep Cryogenic Treatment on Aluminium Alloy Used for Making Heat Exchangers in Automotive HVAC System

Authors: H. Mohit

Abstract:

In automotive air conditioning system, two heat exchangers are used as evaporator and condenser which are placed inside the bonnet of a car in a compact manner. The dust particles from outside and moisture content produced during the process leads to formation of impure particles on the surface of evaporator coil. But in condenser coil, the impure particles are settling down due to dust from atmosphere. The major problem of the heat exchanger used in automotive air conditioning is leakage of refrigerant due to corrosion. This effect of corrosion will lead to damage on the surface of heat exchanger and leakage of refrigerant from the system. To protect from corrosion, coatings are applied on its surfaces. Nowadays, to improve the corrosion resistance of these heat exchangers, hydrophilic coatings are used, which is very expensive. Cryogenic treatment is one method which involves the treatment of materials below -150 °C using the cryogenic fluid such as liquid nitrogen. In this project work, a study of improvement in corrosion resistance of materials of aluminium alloys of various grades as AA 1100, AA 6061, AA 6063 and AA 2024 that are mainly used for fin and tube heat exchangers in automotive air conditioning system is made. In total, five different processes are selected for these grades of aluminium alloy and various parameters like corrosion rate, dimensional stability, hardness and microstructure are measured. The improvements were observed in these parameters while comparing it with conventional heat treatment process.

Keywords: cryogenic treatment, corrosion resistance, dimensional stability, materials science

Procedia PDF Downloads 255
2873 Correlation Analysis between the Corporate Governance and Financial Performance of Banking Sectors Using Parameter Estimation

Authors: Vishwa Nath Maurya, Rama Shanker Sharma, Saad Talib Hasson Aljebori, Avadhesh Kumar Maurya, Diwinder Kaur Arora

Abstract:

Present paper deals with problems of determining the relationship between the variables of corporate governance and financial performance of Islamic banks. Here, we dealt with the corporate governance in the banking sector, where increasing the importance of corporate governance, due to their special nature, as the bankruptcy of banks affects not only the relevant parties from customers, depositors and lenders, but also affect financial stability and then the economy as a whole. Through this paper we dealt to the specificity of governance in Islamic banks, which face double governance: Anglo-Saxon governance system and Islamic governance system. In addition, we focused our attention to measure the impact of corporate governance variables on financial performance through an empirical study on a sample of Islamic banks during the period 2005-2012 in the GCC region. Our present study implies that there is a very strong relationship between the variables of governance and financial performance of Islamic banks, where there is a positive relationship between return on assets and the composition of the Board of Directors, the size of the Board of Directors, the number of committees in the Council, as well as the number of members of the Sharia Supervisory Board, while it is clear that there is a negative relationship between return on assets and concentration ownership.

Keywords: correlation analysis, parametric estimation, corporate governance, financial performance, financial stability, conventional banks, bankruptcy, Islamic governance system

Procedia PDF Downloads 511
2872 Strengthening of Reinforced Concrete Beam-Column Joint by Reversible Mixed Technologies of FRP

Authors: Nasser-Eddine Attari

Abstract:

After the earthquake many structures were classified as slightly damaged and, being uneconomic to replace them, at least in the short term, suitable means of repairs of the beam column joint area are being studied. Furthermore there exist a large number of buildings that need retrofitting of the joints before the next earthquake. The paper reports the results of the experimental programme, constituted of three beam-column reinforced concrete joints at a scale of one to three (1/3) tested under the effect of a pre-stressed axial load acting over the column. The beams were subjected at their ends to an alternate cyclic loading under displacement control to simulate a seismic action. Strain and cracking fields were monitored with the help a digital recording camera. Following the analysis of the results, a comparison can be made between the performances in terms of ductility, strength and mode of failure of the different strengthening solution considered.

Keywords: fibrereinforced polymers, joints, reinforced concrete, beam columns

Procedia PDF Downloads 495
2871 Thermal Vacuum Chamber Test Result for CubeSat Transmitter

Authors: Fitri D. Jaswar, Tharek A. Rahman, Yasser A. Ahmad

Abstract:

CubeSat in low earth orbit (LEO) mainly uses ultra high frequency (UHF) transmitter with fixed radio frequency (RF) output power to download the telemetry and the payload data. The transmitter consumes large amount of electrical energy during the transmission considering the limited satellite size of a CubeSat. A transmitter with power control ability is designed to achieve optimize the signal to noise ratio (SNR) and efficient power consumption. In this paper, the thermal vacuum chamber (TVAC) test is performed to validate the performance of the UHF band transmitter with power control capability. The TVAC is used to simulate the satellite condition in the outer space environment. The TVAC test was conducted at the Laboratory of Spacecraft Environment Interaction Engineering, Kyushu Institute of Technology, Japan. The TVAC test used 4 thermal cycles starting from +60°C to -20°C for the temperature setting. The pressure condition inside chamber was less than 10-5Pa. During the test, the UHF transmitter is integrated in a CubeSat configuration with other CubeSat subsystem such as on board computer (OBC), power module, and satellite structure. The system is validated and verified through its performance in terms of its frequency stability and the RF output power. The UHF band transmitter output power is tested from 0.5W to 2W according the satellite mode of operations and the satellite power limitations. The frequency stability is measured and the performance obtained is less than 2 ppm in the tested operating temperature range. The test demonstrates the RF output power is adjustable in a thermal vacuum condition.

Keywords: communication system, CubeSat, SNR, UHF transmitter

Procedia PDF Downloads 257
2870 Nano-Pesticides: Recent Emerging Tool for Sustainable Agricultural Practices

Authors: Ekta, G. K. Darbha

Abstract:

Nanotechnology offers the potential of simultaneously increasing efficiency as compared to their bulk material as well as reducing harmful environmental impacts of pesticides in field of agriculture. The term nanopesticide covers different pesticides that are cumulative of several surfactants, polymers, metal ions, etc. of nanometer size ranges from 1-1000 nm and exhibit abnormal behavior (high efficacy and high specific surface area) of nanomaterials. Commercial formulations of pesticides used by farmers nowadays cannot be used effectively due to a number of problems associated with them. For example, more than 90% of applied formulations are either lost in the environment or unable to reach the target area required for effective pest control. Around 20−30% of pesticides are lost through emissions. A number of factors (application methods, physicochemical properties of the formulations, and environmental conditions) can influence the extent of loss during application. It is known that among various formulations, polymer-based formulations show the greatest potential due to their greater efficacy, slow release and protection against premature degradation of active ingredient as compared to other commercial formulations. However, the nanoformulations can have a significant effect on the fate of active ingredient as well as may release some new ingredients by reacting with existing soil contaminants. Environmental fate of these newly generated species is still not explored very well which is essential to field scale experiments and hence a lot to be explored in the field of environmental fate, nanotoxicology, transport properties and stability of such formulations. In our preliminary work, we have synthesized polymer based nanoformulation of commercially used weedicide atrazine. Atrazine belongs to triazine class of herbicide, which is used in the effective control of seed germinated dicot weeds and grasses. It functions by binding to the plastoquinone-binding protein in PS-II. Plant death results from starvation and oxidative damage caused by breakdown in electron transport system. The stability of the suspension of nanoformulation containing herbicide has been evaluated by considering different parameters like polydispersity index, particle diameter, zeta-potential under different environmental relevance condition such as pH range 4-10, temperature range from 25°C to 65°C and stability of encapsulation also have been studied for different amount of added polymer. Morphological characterization has been done by using SEM.

Keywords: atrazine, nanoformulation, nanopesticide, nanotoxicology

Procedia PDF Downloads 253
2869 Effects of Selected Plant-Derived Nutraceuticals on the Quality and Shelf-Life Stability of Frankfurter Type Sausages during Storage

Authors: Kazem Alirezalu, Javad Hesari, Zabihollah Nemati, Boukaga Farmani

Abstract:

The application of natural plant extracts which are rich in promising antioxidants and antimicrobial ingredients in the production of frankfurter-type sausages addresses consumer demands for healthier, more functional meat products. The effects of olive leaves, green tea and Urtica dioica L. extracts on physicochemical, microbiological and sensory characteristic of frankfurter-type sausage were investigated during 45 days of storage at 4 °C. The results revealed that pH and phenolic compounds decreased significantly (P < 0.05) in all samples during storage. Sausages containing 500 ppm green tea extract (1.78 mg/kg) showed the lowest TBARS values compared to olive leaves (2.01 mg/kg), Urtica dioica L. (2.26 mg/kg) extracts and control (2.74 mg/kg). Plant extracts significantly (P < 0.05) reduced the count of total mesophilic bacteria, yeast and mold by at least 2 log cycles (CFU/g) than those of control samples. Sensory characteristics of texture showed no difference (P > 0.05) between sausage samples, but sausage containing Urtica dioica L. extract had the highest score regarding flavor, freshness odor, and overall acceptability. Based on the results, sausage containing plant extracts could have a significant impact on antimicrobial activity, antioxidant capacity, sensory score, and shelf life stability of frankfurter-type sausage.

Keywords: antimicrobial, antioxidant, frankfurter-type sausage, green tea, olive oil, shelf life, Urtica dioica L.

Procedia PDF Downloads 185
2868 Design and Development of Optical Sensor Based Ground Reaction Force Measurement Platform for GAIT and Geriatric Studies

Authors: K. Chethana, A. S. Guru Prasad, S. N. Omkar, B. Vadiraj, S. Asokan

Abstract:

This paper describes an ab-initio design, development and calibration results of an Optical Sensor Ground Reaction Force Measurement Platform (OSGRFP) for gait and geriatric studies. The developed system employs an array of FBG sensors to measure the respective ground reaction forces from all three axes (X, Y and Z), which are perpendicular to each other. The novelty of this work is two folded. One is in its uniqueness to resolve the tri axial resultant forces during the stance in to the respective pure axis loads and the other is the applicability of inherently advantageous FBG sensors which are most suitable for biomechanical instrumentation. To validate the response of the FBG sensors installed in OSGRFP and to measure the cross sensitivity of the force applied in other directions, load sensors with indicators are used. Further in this work, relevant mathematical formulations are presented for extracting respective ground reaction forces from wavelength shifts/strain of FBG sensors on the OSGRFP. The result of this device has implications in understanding the foot function, identifying issues in gait cycle and measuring discrepancies between left and right foot. The device also provides a method to quantify and compare relative postural stability of different subjects under test, which has implications in post surgical rehabilitation, geriatrics and optimizing training protocols for sports personnel.

Keywords: balance and stability, gait analysis, FBG applications, optical sensor ground reaction force platform

Procedia PDF Downloads 399