Search results for: principal objects
37 Review of Urbanization Pattern in Kabul City
Authors: Muhammad Hanif Amiri, Edris Sadeqy, Ahmad Freed Osman
Abstract:
International Conference on Architectural Engineering and Skyscraper (ICAES 2016) on January 18 - 19, 2016 is aimed to exchange new ideas and application experiences face to face, to establish business or research relations and to find global partners for future collaboration. Therefore, we are very keen to participate and share our issues in order to get valuable feedbacks of the conference participants. Urbanization is a controversial issue all around the world. Substandard and unplanned urbanization has many implications on a social, cultural and economic situation of population life. Unplanned and illegal construction has become a critical issue in Afghanistan particularly Kabul city. In addition, lack of municipal bylaws, poor municipal governance, lack of development policies and strategies, budget limitation, low professional capacity of ainvolved private sector in development and poor coordination among stakeholders are the other factors which made the problem more complicated. The main purpose of this research paper is to review urbanization pattern of Kabul city and find out the improvement solutions and to evaluate the increasing of population density which caused vast illegal and unplanned development which finally converts the Kabul city to a slam area as the whole. The Kabul city Master Plan was reviewed in the year 1978 and revised for the planned 2million population. In 2001, the interim administration took place and the city became influx of returnees from neighbor countries and other provinces of Afghanistan mostly for the purpose of employment opportunities, security and better quality of life, therefore, Kabul faced with strange population growth. According to Central Statistics Organization of Afghanistan population of Kabul has been estimated approx. 5 million (2015), however a new Master Plan has been prepared in 2009, but the existing challenges have not been dissolved yet. On the other hand, 70% of Kabul population is living in unplanned (slam) area and facing the shortage of drinking water, inexistence of sewerage and drainage network, inexistence of proper management system for solid waste collection, lack of public transportation and traffic management, environmental degradation and the shortage of social infrastructure. Although there are many problems in Kabul city, but still the development of 22 townships are in progress which caused the great attraction of population. The research is completed with a detailed analysis on four main issues such as elimination of duplicated administrations, Development of regions, Rehabilitation and improvement of infrastructure, and prevention of new townships establishment in Kabul Central Core in order to mitigate the problems and constraints which are the foundation and principal to find the point of departure for an objective based future development of Kabul city. The closure has been defined to reflect the stage-wise development in light of prepared policy and strategies, development of a procedure for the improvement of infrastructure, conducting a preliminary EIA, defining scope of stakeholder’s contribution and preparation of project list for initial development. In conclusion this paper will help the transformation of Kabul city.Keywords: development of regions, illegal construction, population density, urbanization pattern
Procedia PDF Downloads 31936 Use of Machine Learning Algorithms to Pediatric MR Images for Tumor Classification
Authors: I. Stathopoulos, V. Syrgiamiotis, E. Karavasilis, A. Ploussi, I. Nikas, C. Hatzigiorgi, K. Platoni, E. P. Efstathopoulos
Abstract:
Introduction: Brain and central nervous system (CNS) tumors form the second most common group of cancer in children, accounting for 30% of all childhood cancers. MRI is the key imaging technique used for the visualization and management of pediatric brain tumors. Initial characterization of tumors from MRI scans is usually performed via a radiologist’s visual assessment. However, different brain tumor types do not always demonstrate clear differences in visual appearance. Using only conventional MRI to provide a definite diagnosis could potentially lead to inaccurate results, and so histopathological examination of biopsy samples is currently considered to be the gold standard for obtaining definite diagnoses. Machine learning is defined as the study of computational algorithms that can use, complex or not, mathematical relationships and patterns from empirical and scientific data to make reliable decisions. Concerning the above, machine learning techniques could provide effective and accurate ways to automate and speed up the analysis and diagnosis for medical images. Machine learning applications in radiology are or could potentially be useful in practice for medical image segmentation and registration, computer-aided detection and diagnosis systems for CT, MR or radiography images and functional MR (fMRI) images for brain activity analysis and neurological disease diagnosis. Purpose: The objective of this study is to provide an automated tool, which may assist in the imaging evaluation and classification of brain neoplasms in pediatric patients by determining the glioma type, grade and differentiating between different brain tissue types. Moreover, a future purpose is to present an alternative way of quick and accurate diagnosis in order to save time and resources in the daily medical workflow. Materials and Methods: A cohort, of 80 pediatric patients with a diagnosis of posterior fossa tumor, was used: 20 ependymomas, 20 astrocytomas, 20 medulloblastomas and 20 healthy children. The MR sequences used, for every single patient, were the following: axial T1-weighted (T1), axial T2-weighted (T2), FluidAttenuated Inversion Recovery (FLAIR), axial diffusion weighted images (DWI), axial contrast-enhanced T1-weighted (T1ce). From every sequence only a principal slice was used that manually traced by two expert radiologists. Image acquisition was carried out on a GE HDxt 1.5-T scanner. The images were preprocessed following a number of steps including noise reduction, bias-field correction, thresholding, coregistration of all sequences (T1, T2, T1ce, FLAIR, DWI), skull stripping, and histogram matching. A large number of features for investigation were chosen, which included age, tumor shape characteristics, image intensity characteristics and texture features. After selecting the features for achieving the highest accuracy using the least number of variables, four machine learning classification algorithms were used: k-Nearest Neighbour, Support-Vector Machines, C4.5 Decision Tree and Convolutional Neural Network. The machine learning schemes and the image analysis are implemented in the WEKA platform and MatLab platform respectively. Results-Conclusions: The results and the accuracy of images classification for each type of glioma by the four different algorithms are still on process.Keywords: image classification, machine learning algorithms, pediatric MRI, pediatric oncology
Procedia PDF Downloads 14935 Artificial Intelligence for Traffic Signal Control and Data Collection
Authors: Reggie Chandra
Abstract:
Trafficaccidents and traffic signal optimization are correlated. However, 70-90% of the traffic signals across the USA are not synchronized. The reason behind that is insufficient resources to create and implement timing plans. In this work, we will discuss the use of a breakthrough Artificial Intelligence (AI) technology to optimize traffic flow and collect 24/7/365 accurate traffic data using a vehicle detection system. We will discuss what are recent advances in Artificial Intelligence technology, how does AI work in vehicles, pedestrians, and bike data collection, creating timing plans, and what is the best workflow for that. Apart from that, this paper will showcase how Artificial Intelligence makes signal timing affordable. We will introduce a technology that uses Convolutional Neural Networks (CNN) and deep learning algorithms to detect, collect data, develop timing plans and deploy them in the field. Convolutional Neural Networks are a class of deep learning networks inspired by the biological processes in the visual cortex. A neural net is modeled after the human brain. It consists of millions of densely connected processing nodes. It is a form of machine learning where the neural net learns to recognize vehicles through training - which is called Deep Learning. The well-trained algorithm overcomes most of the issues faced by other detection methods and provides nearly 100% traffic data accuracy. Through this continuous learning-based method, we can constantly update traffic patterns, generate an unlimited number of timing plans and thus improve vehicle flow. Convolutional Neural Networks not only outperform other detection algorithms but also, in cases such as classifying objects into fine-grained categories, outperform humans. Safety is of primary importance to traffic professionals, but they don't have the studies or data to support their decisions. Currently, one-third of transportation agencies do not collect pedestrian and bike data. We will discuss how the use of Artificial Intelligence for data collection can help reduce pedestrian fatalities and enhance the safety of all vulnerable road users. Moreover, it provides traffic engineers with tools that allow them to unleash their potential, instead of dealing with constant complaints, a snapshot of limited handpicked data, dealing with multiple systems requiring additional work for adaptation. The methodologies used and proposed in the research contain a camera model identification method based on deep Convolutional Neural Networks. The proposed application was evaluated on our data sets acquired through a variety of daily real-world road conditions and compared with the performance of the commonly used methods requiring data collection by counting, evaluating, and adapting it, and running it through well-established algorithms, and then deploying it to the field. This work explores themes such as how technologies powered by Artificial Intelligence can benefit your community and how to translate the complex and often overwhelming benefits into a language accessible to elected officials, community leaders, and the public. Exploring such topics empowers citizens with insider knowledge about the potential of better traffic technology to save lives and improve communities. The synergies that Artificial Intelligence brings to traffic signal control and data collection are unsurpassed.Keywords: artificial intelligence, convolutional neural networks, data collection, signal control, traffic signal
Procedia PDF Downloads 16934 CT Images Based Dense Facial Soft Tissue Thickness Measurement by Open-source Tools in Chinese Population
Authors: Ye Xue, Zhenhua Deng
Abstract:
Objectives: Facial soft tissue thickness (FSTT) data could be obtained from CT scans by measuring the face-to-skull distances at sparsely distributed anatomical landmarks by manually located on face and skull. However, automated measurement using 3D facial and skull models by dense points using open-source software has become a viable option due to the development of computed assisted imaging technologies. By utilizing dense FSTT information, it becomes feasible to generate plausible automated facial approximations. Therefore, establishing a comprehensive and detailed, densely calculated FSTT database is crucial in enhancing the accuracy of facial approximation. Materials and methods: This study utilized head CT scans from 250 Chinese adults of Han ethnicity, with 170 participants originally born and residing in northern China and 80 participants in southern China. The age of the participants ranged from 14 to 82 years, and all samples were divided into five non-overlapping age groups. Additionally, samples were also divided into three categories based on BMI information. The 3D Slicer software was utilized to segment bone and soft tissue based on different Hounsfield Unit (HU) thresholds, and surface models of the face and skull were reconstructed for all samples from CT data. Following procedures were performed unsing MeshLab, including converting the face models into hollowed cropped surface models amd automatically measuring the Hausdorff Distance (referred to as FSTT) between the skull and face models. Hausdorff point clouds were colorized based on depth value and exported as PLY files. A histogram of the depth distributions could be view and subdivided into smaller increments. All PLY files were visualized of Hausdorff distance value of each vertex. Basic descriptive statistics (i.e., mean, maximum, minimum and standard deviation etc.) and distribution of FSTT were analysis considering the sex, age, BMI and birthplace. Statistical methods employed included Multiple Regression Analysis, ANOVA, principal component analysis (PCA). Results: The distribution of FSTT is mainly influenced by BMI and sex, as further supported by the results of the PCA analysis. Additionally, FSTT values exceeding 30mm were found to be more sensitive to sex. Birthplace-related differences were observed in regions such as the forehead, orbital, mandibular, and zygoma. Specifically, there are distribution variances in the depth range of 20-30mm, particularly in the mandibular region. Northern males exhibit thinner FSTT in the frontal region of the forehead compared to southern males, while females shows fewer distribution differences between the northern and southern, except for the zygoma region. The observed distribution variance in the orbital region could be attributed to differences in orbital size and shape. Discussion: This study provides a database of Chinese individuals distribution of FSTT and suggested opening source tool shows fine function for FSTT measurement. By incorporating birthplace as an influential factor in the distribution of FSTT, a greater level of detail can be achieved in facial approximation.Keywords: forensic anthropology, forensic imaging, cranial facial reconstruction, facial soft tissue thickness, CT, open-source tool
Procedia PDF Downloads 5833 Impact of Air Pressure and Outlet Temperature on Physicochemical and Functional Properties of Spray-dried Skim Milk Powder
Authors: Adeline Meriaux, Claire Gaiani, Jennifer Burgain, Frantz Fournier, Lionel Muniglia, Jérémy Petit
Abstract:
Spray-drying process is widely used for the production of dairy powders for food and pharmaceuticals industries. It involves the atomization of a liquid feed into fine droplets, which are subsequently dried through contact with a hot air flow. The resulting powders permit transportation cost reduction and shelf life increase but can also exhibit various interesting functionalities (flowability, solubility, protein modification or acid gelation), depending on operating conditions and milk composition. Indeed, particles porosity, surface composition, lactose crystallization, protein denaturation, protein association or crust formation may change. Links between spray-drying conditions and physicochemical and functional properties of powders were investigated by a design of experiment methodology and analyzed by principal component analysis. Quadratic models were developed, and multicriteria optimization was carried out by the use of genetic algorithm. At the time of abstract submission, verification spray-drying trials are ongoing. To perform experiments, milk from dairy farm was collected, skimmed, froze and spray-dried at different air pressure (between 1 and 3 bars) and outlet temperature (between 75 and 95 °C). Dry matter, minerals content and proteins content were determined by standard method. Solubility index, absorption index and hygroscopicity were determined by method found in literature. Particle size distribution were obtained by laser diffraction granulometry. Location of the powder color in the Cielab color space and water activity were characterized by a colorimeter and an aw-value meter, respectively. Flow properties were characterized with FT4 powder rheometer; in particular compressibility and shearing test were performed. Air pressure and outlet temperature are key factors that directly impact the drying kinetics and powder characteristics during spray-drying process. It was shown that the air pressure affects the particle size distribution by impacting the size of droplet exiting the nozzle. Moreover, small particles lead to more cohesive powder and less saturated color of powders. Higher outlet temperature results in lower moisture level particles which are less sticky and can explain a spray-drying yield increase and the higher cohesiveness; it also leads to particle with low water activity because of the intense evaporation rate. However, it induces a high hygroscopicity, thus, powders tend to get wet rapidly if they are not well stored. On the other hand, high temperature provokes a decrease of native serum proteins which is positively correlated to gelation properties (gel point and firmness). Partial denaturation of serum proteins can improve functional properties of powder. The control of air pressure and outlet temperature during the spray-drying process significantly affects the physicochemical and functional properties of powder. This study permitted to better understand the links between physicochemical and functional properties of powder, to identify correlations between air pressure and outlet temperature. Therefore, mathematical models have been developed and the use of genetic algorithm will allow the optimization of powder functionalities.Keywords: dairy powders, spray-drying, powders functionalities, design of experiment
Procedia PDF Downloads 9232 Accessing Motional Quotient for All Round Development
Authors: Zongping Wang, Chengjun Cui, Jiacun Wang
Abstract:
The concept of intelligence has been widely used to access an individual's cognitive abilities to learn, form concepts, understand, apply logic, and reason. According to the multiple intelligence theory, there are eight distinguished types of intelligence. One of them is the bodily-kinaesthetic intelligence that links to the capacity of an individual controlling his body and working with objects. Motor intelligence, on the other hand, reflects the capacity to understand, perceive and solve functional problems by motor behavior. Both bodily-kinaesthetic intelligence and motor intelligence refer directly or indirectly to bodily capacity. Inspired by these two intelligence concepts, this paper introduces motional intelligence (MI). MI is two-fold. (1) Body strength, which is the capacity of various organ functions manifested by muscle activity under the control of the central nervous system during physical exercises. It can be measured by the magnitude of muscle contraction force, the frequency of repeating a movement, the time to finish a movement of body position, the duration to maintain muscles in a working status, etc. Body strength reflects the objective of MI. (2) Level of psychiatric willingness to physical events. It is a subjective thing and determined by an individual’s self-consciousness to physical events and resistance to fatigue. As such, we call it subjective MI. Subjective MI can be improved through education and proper social events. The improvement of subjective MI can lead to that of objective MI. A quantitative score of an individual’s MI is motional quotient (MQ). MQ is affected by several factors, including genetics, physical training, diet and lifestyle, family and social environment, and personal awareness of the importance of physical exercise. Genes determine one’s body strength potential. Physical training, in general, makes people stronger, faster and swifter. Diet and lifestyle have a direct impact on health. Family and social environment largely affect one’s passion for physical activities, so does personal awareness of the importance of physical exercise. The key to the success of the MQ study is developing an acceptable and efficient system that can be used to assess MQ objectively and quantitatively. We should apply different accessing systems to different groups of people according to their ages and genders. Field test, laboratory test and questionnaire are among essential components of MQ assessment. A scientific interpretation of MQ score is part of an MQ assessment system as it will help an individual to improve his MQ. IQ (intelligence quotient) and EQ (emotional quotient) and their test have been studied intensively. We argue that IQ and EQ study alone is not sufficient for an individual’s all round development. The significance of MQ study is that it offsets IQ and EQ study. MQ reflects an individual’s mental level as well as bodily level of intelligence in physical activities. It is well-known that the American Springfield College seal includes the Luther Gulick triangle with the words “spirit,” “mind,” and “body” written within it. MQ, together with IQ and EQ, echoes this education philosophy. Since its inception in 2012, the MQ research has spread rapidly in China. By now, six prestigious universities in China have established research centers on MQ and its assessment.Keywords: motional Intelligence, motional quotient, multiple intelligence, motor intelligence, all round development
Procedia PDF Downloads 16231 Study of Operating Conditions Impact on Physicochemical and Functional Properties of Dairy Powder Produced by Spray-drying
Authors: Adeline Meriaux, Claire Gaiani, Jennifer Burgain, Frantz Fournier, Lionel Muniglia, Jérémy Petit
Abstract:
Spray-drying process is widely used for the production of dairy powders for food and pharmaceuticals industries. It involves the atomization of a liquid feed into fine droplets, which are subsequently dried through contact with a hot air flow. The resulting powders permit transportation cost reduction and shelf life increase but can also exhibit various interesting functionalities (flowability, solubility, protein modification or acid gelation), depending on operating conditions and milk composition. Indeed, particles porosity, surface composition, lactose crystallization, protein denaturation, protein association or crust formation may change. Links between spray-drying conditions and physicochemical and functional properties of powders were investigated by a design of experiment methodology and analyzed by principal component analysis. Quadratic models were developed, and multicriteria optimization was carried out by the use of genetic algorithm. At the time of abstract submission, verification spray-drying trials are ongoing. To perform experiments, milk from dairy farm was collected, skimmed, froze and spray-dried at different air pressure (between 1 and 3 bars) and outlet temperature (between 75 and 95 °C). Dry matter, minerals content and proteins content were determined by standard method. Solubility index, absorption index and hygroscopicity were determined by method found in literature. Particle size distribution were obtained by laser diffraction granulometry. Location of the powder color in the Cielab color space and water activity were characterized by a colorimeter and an aw-value meter, respectively. Flow properties were characterized with FT4 powder rheometer; in particular, compressibility and shearing test were performed. Air pressure and outlet temperature are key factors that directly impact the drying kinetics and powder characteristics during spray-drying process. It was shown that the air pressure affects the particle size distribution by impacting the size of droplet exiting the nozzle. Moreover, small particles lead to more cohesive powder and less saturated color of powders. Higher outlet temperature results in lower moisture level particles which are less sticky and can explain a spray-drying yield increase and the higher cohesiveness; it also leads to particle with low water activity because of the intense evaporation rate. However, it induces a high hygroscopicity, thus, powders tend to get wet rapidly if they are not well stored. On the other hand, high temperature provokes a decrease of native serum proteins, which is positively correlated to gelation properties (gel point and firmness). Partial denaturation of serum proteins can improve functional properties of powder. The control of air pressure and outlet temperature during the spray-drying process significantly affects the physicochemical and functional properties of powder. This study permitted to better understand the links between physicochemical and functional properties of powder to identify correlations between air pressure and outlet temperature. Therefore, mathematical models have been developed, and the use of genetic algorithm will allow the optimization of powder functionalities.Keywords: dairy powders, spray-drying, powders functionalities, design of experiment
Procedia PDF Downloads 6530 Application of Aerogeomagnetic and Ground Magnetic Surveys for Deep-Seated Kimberlite Pipes in Central India
Authors: Utkarsh Tripathi, Bikalp C. Mandal, Ravi Kumar Umrao, Sirsha Das, M. K. Bhowmic, Joyesh Bagchi, Hemant Kumar
Abstract:
The Central India Diamond Province (CIDP) is known for the occurrences of primary and secondary sources for diamonds from the Vindhyan platformal sediments, which host several kimberlites, with one operating mine. The known kimberlites are Neo-Proterozoic in age and intrude into the Kaimur Group of rocks. Based on the interpretation of areo-geomagnetic data, three potential zones were demarcated in parts of Chitrakoot and Banda districts, Uttar Pradesh, and Satna district, Madhya Pradesh, India. To validate the aero-geomagnetic interpretation, ground magnetic coupled with a gravity survey was conducted to validate the anomaly and explore the possibility of some pipes concealed beneath the Vindhyan sedimentary cover. Geologically the area exposes the milky white to buff-colored arkosic and arenitic sandstone belonging to the Dhandraul Formation of the Kaimur Group, which are undeformed and unmetamorphosed providing almost transparent media for geophysical exploration. There is neither surface nor any geophysical indication of intersections of linear structures, but the joint patterns depict three principal joints along NNE-SSW, ENE-WSW, and NW-SE directions with vertical to sub-vertical dips. Aeromagnetic data interpretation brings out three promising zones with the bi-polar magnetic anomaly (69-602nT) that represent potential kimberlite intrusive concealed below at an approximate depth of 150-170m. The ground magnetic survey has brought out the above-mentioned anomalies in zone-I, which is congruent with the available aero-geophysical data. The magnetic anomaly map shows a total variation of 741 nT over the area. Two very high magnetic zones (H1 and H2) have been observed with around 500 nT and 400 nT magnitudes, respectively. Anomaly zone H1 is located in the west-central part of the area, south of Madulihai village, while anomaly zone H2 is located 2km apart in the north-eastern direction. The Euler 3D solution map indicates the possible existence of the ultramafic body in both the magnetic highs (H1 and H2). The H2 high shows the shallow depth, and H1 shows a deeper depth solution. In the reduced-to-pole (RTP) method, the bipolar anomaly disappears and indicates the existence of one causative source for both anomalies, which is, in all probabilities, an ultramafic suite of rock. The H1 magnetic high represents the main body, which persists up to depths of ~500m, as depicted through the upward continuation derivative map. Radially Averaged Power Spectrum (RAPS) shows the thickness of loose sediments up to 25m with a cumulative depth of 154m for sandstone overlying the ultramafic body. The average depth range of the shallower body (H2) is 60.5-86 meters, as estimated through the Peters half slope method. Magnetic (TF) anomaly with BA contour also shows high BA value around the high zones of magnetic anomaly (H1 and H2), which suggests that the causative body is with higher density and susceptibility for the surrounding host rock. The ground magnetic survey coupled with the gravity confirms a potential target for further exploration as the findings are co-relatable with the presence of the known diamondiferous kimberlites in this region, which post-date the rocks of the Kaimur Group.Keywords: Kaimur, kimberlite, Euler 3D solution, magnetic
Procedia PDF Downloads 7529 Exposing The Invisible
Authors: Kimberley Adamek
Abstract:
According to the Council on Tall Buildings, there has been a rapid increase in the construction of tall or “megatall” buildings over the past two decades. Simultaneously, the New England Journal of Medicine has reported that there has been a steady increase in climate related natural disasters since the 1970s; the eastern expansion of the USA's infamous Tornado Alley being just one of many current issues. In the future, this could mean that tall buildings, which already guide high speed winds down to pedestrian levels would have to withstand stronger forces and protect pedestrians in more extreme ways. Although many projects are required to be verified within wind tunnels and a handful of cities such as San Francisco have included wind testing within building code standards, there are still many examples where wind is only considered for basic loading. This typically results in and an increase of structural expense and unwanted mitigation strategies that are proposed late within a project. When building cities, architects rarely consider how each building alters the invisible patterns of wind and how these alterations effect other areas in different ways later on. It is not until these forces move, overpower and even destroy cities that people take notice. For example, towers have caused winds to blow objects into people (Walkie-Talkie Tower, Leeds, England), cause building parts to vibrate and produce loud humming noises (Beetham Tower, Manchester), caused wind tunnels in streets as well as many other issues. Alternatively, there exist towers which have used their form to naturally draw in air and ventilate entire facilities in order to eliminate the needs for costly HVAC systems (The Met, Thailand) and used their form to increase wind speeds to generate electricity (Bahrain Tower, Dubai). Wind and weather exist and effect all parts of the world in ways such as: Science, health, war, infrastructure, catastrophes, tourism, shopping, media and materials. Working in partnership with a leading wind engineering company RWDI, a series of tests, images and animations documenting discovered interactions of different building forms with wind will be collected to emphasize the possibilities for wind use to architects. A site within San Francisco (due to its increasing tower development, consistently wind conditions and existing strict wind comfort criteria) will host a final design. Iterations of this design will be tested within the wind tunnel and computational fluid dynamic systems which will expose, utilize and manipulate wind flows to create new forms, technologies and experiences. Ultimately, this thesis aims to question the amount which the environment is allowed to permeate building enclosures, uncover new programmatic possibilities for wind in buildings, and push the boundaries of working with the wind to ensure the development and safety of future cities. This investigation will improve and expand upon the traditional understanding of wind in order to give architects, wind engineers as well as the general public the ability to broaden their scope in order to productively utilize this living phenomenon that everyone constantly feels but cannot see.Keywords: wind engineering, climate, visualization, architectural aerodynamics
Procedia PDF Downloads 35828 Snake Locomotion: From Sinusoidal Curves and Periodic Spiral Formations to the Design of a Polymorphic Surface
Authors: Ennios Eros Giogos, Nefeli Katsarou, Giota Mantziorou, Elena Panou, Nikolaos Kourniatis, Socratis Giannoudis
Abstract:
In the context of the postgraduate course Productive Design, Department of Interior Architecture of the University of West Attica in Athens, under the guidance of Professors Nikolaos Koyrniatis and Socratis Giannoudis, kinetic mechanisms with parametric models were examined for their further application in the design of objects. In the first phase, the students studied a motion mechanism that they chose from daily experience and then analyzed its geometric structure in relation to the geometric transformations that exist. In the second phase, the students tried to design it through a parametric model in Grasshopper3d for Rhino algorithmic processor and plan the design of its application in an everyday object. For the project presented, our team began by studying the movement of living beings, specifically the snake. By studying the snake and the role that the environment has in its movement, four basic typologies were recognized: serpentine, concertina, sidewinding and rectilinear locomotion, as well as its ability to perform spiral formations. Most typologies are characterized by ripples, a series of sinusoidal curves. For the application of the snake movement in a polymorphic space divider, the use of a coil-type joint was studied. In the Grasshopper program, the simulation of the desired motion for the polymorphic surface was tested by applying a coil on a sinusoidal curve and a spiral curve. It was important throughout the process that the points corresponding to the nodes of the real object remain constant in number, as well as the distances between them and the elasticity of the construction had to be achieved through a modular movement of the coil and not some elastic element (material) at the nodes. Using mesh (repeating coil), the whole construction is transformed into a supporting body and combines functionality with aesthetics. The set of elements functions as a vertical spatial network, where each element participates in its coherence and stability. Depending on the positions of the elements in terms of the level of support, different perspectives are created in terms of the visual perception of the adjacent space. For the implementation of the model on the scale (1:3), (0.50m.x2.00m.), the load-bearing structure that was studied has aluminum rods for the basic pillars Φ6mm and Φ 2.50 mm, for the secondary columns. Filling elements and nodes are of similar material and were made of MDF surfaces. During the design process, four trapezoidal patterns were picketed, which function as filling elements, while in order to support their assembly, a different engraving facet was done. The nodes have holes that can be pierced by the rods, while their connection point with the patterns has a half-carved recess. The patterns have a corresponding recess. The nodes are of two different types depending on the column that passes through them. The patterns and knots were designed to be cut and engraved using a Laser Cutter and attached to the knots using glue. The parameters participate in the design as mechanisms that generate complex forms and structures through the repetition of constantly changing versions of the parts that compose the object.Keywords: polymorphic, locomotion, sinusoidal curves, parametric
Procedia PDF Downloads 10527 The Socio-Economic Impact of the English Leather Glove Industry from the 17th Century to Its Recent Decline
Authors: Frances Turner
Abstract:
Gloves are significant physical objects, being one of the oldest forms of dress. Glove culture is part of every facet of life; its extraordinary history encompasses practicality, and symbolism reflecting a wide range of social practices. The survival of not only the gloves but associated articles enables the possibility to analyse real lives, however so far this area has been largely neglected. Limited information is available to students, researchers, or those involved with the design and making of gloves. There are several museums and independent collectors in England that hold collections of gloves (some from as early as 16th century), machinery, tools, designs and patterns, marketing materials and significant archives which demonstrate the rich heritage of English glove design and manufacturing, being of national significance and worthy of international interest. Through a research glove network which now exists thanks to research grant funding, there is potential for the holders of glove collections to make connections and explore links between these resources to promote a stronger understanding of the significance, breadth and heritage of the English glove industry. The network takes an interdisciplinary approach to bring together interested parties from academia, museums and manufacturing, with expert knowledge of the production, collections, conservation and display of English leather gloves. Academics from diverse arts and humanities disciplines benefit from the opportunities to share research and discuss ideas with network members from non-academic contexts including museums and heritage organisations, industry, and contemporary designers. The fragmented collections when considered in entirety provide an overview of English glove making since earliest times and those who wore them. This paper makes connections and explores links between these resources to promote a stronger understanding of the significance, breadth and heritage of the English Glove industry. The following areas are explored: current content and status of the individual museum collections, potential links, sharing of information histories, social and cultural and relationship to history of fashion design, manufacturing and materials, approaches to maintenance and conservation, access to the collections and strategies for future understanding of their national significance. The facilitation of knowledge exchange and exploration of the collections through the network informs organisations’ future strategies for the maintenance, access and conservation of their collections. By involving industry in the network, it is possible to ensure a contemporary perspective on glove-making in addition to the input from heritage partners. The slow fashion movement and awareness of artisan craft and how these can be preserved and adopted for glove and accessory design is addressed. Artisan leather glove making was a skilled and significant industry in England that has now declined to the point where there is little production remaining utilising the specialist skills that have hardly changed since earliest times. This heritage will be identified and preserved for future generations of the rich cultural history of gloves may be lost.Keywords: artisan glove-making skills, English leather gloves, glove culture, the glove network
Procedia PDF Downloads 12926 Organization Structure of Towns and Villages System in County Area Based on Fractal Theory and Gravity Model: A Case Study of Suning, Hebei Province, China
Authors: Liuhui Zhu, Peng Zeng
Abstract:
With the rapid development in China, the urbanization has entered the transformation and promotion stage, and its direction of development has shifted to overall regional synergy. China has a large number of towns and villages, with comparative small scale and scattered distribution, which always support and provide resources to cities leading to urban-rural opposition, so it is difficult to achieve common development in a single town or village. In this context, the regional development should focus more on towns and villages to form a synergetic system, joining the regional association with cities. Thus, the paper raises the question about how to effectively organize towns and villages system to regulate the resource allocation and improve the comprehensive value of the regional area. To answer the question, it is necessary to find a suitable research unit and analysis of its present situation of towns and villages system for optimal development. By combing relevant researches and theoretical models, the county is the most basic administrative unit in China, which can directly guide and regulate the development of towns and villages, so the paper takes county as the research unit. Following the theoretical concept of ‘three structures and one network’, the paper concludes the research framework to analyse the present situation of towns and villages system, including scale structure, functional structure, spatial structure, and organization network. The analytical methods refer to the fractal theory and gravity model, using statistics and spatial data. The scale structure analyzes rank-size dimensions and uses the principal component method to calculate the comprehensive scale of towns and villages. The functional structure analyzes the functional types and industrial development of towns and villages. The spatial structure analyzes the aggregation dimension, network dimension, and correlation dimension of spatial elements to represent the overall spatial relationships. In terms of organization network, from the perspective of entity and ono-entity, the paper analyzes the transportation network and gravitational network. Based on the present situation analysis, the optimization strategies are proposed in order to achieve a synergetic relationship between towns and villages in the county area. The paper uses Suning county in the Beijing-Tianjin-Hebei region as a case study to apply the research framework and methods and then proposes the optimization orientations. The analysis results indicate that: (1) The Suning county is lack of medium-scale towns to transfer effect from towns to villages. (2) The distribution of gravitational centers is uneven, and the effect of gravity is limited only for nearby towns and villages. The gravitational network is not complete, leading to economic activities scattered and isolated. (3) The overall development of towns and villages system is immature, staying at ‘single heart and multi-core’ stage, and some specific optimization strategies are proposed. This study provides a regional view for the development of towns and villages and concludes the research framework and methods of towns and villages system for forming an effective synergetic relationship between them, contributing to organize resources and stimulate endogenous motivation, and form counter magnets to join the urban-rural integration.Keywords: towns and villages system, organization structure, county area, fractal theory, gravity model
Procedia PDF Downloads 13725 Harnessing the Benefits and Mitigating the Challenges of Neurosensitivity for Learners: A Mixed Methods Study
Authors: Kaaryn Cater
Abstract:
People vary in how they perceive, process, and react to internal, external, social, and emotional environmental factors; some are more sensitive than others. Compassionate people have a highly reactive nervous system and are more impacted by positive and negative environmental conditions (Differential Susceptibility). Further, some sensitive individuals are disproportionately able to benefit from positive and supportive environments without necessarily suffering negative impacts in less supportive environments (Vantage Sensitivity). Environmental sensitivity is underpinned by physiological, genetic, and personality/temperamental factors, and the phenotypic expression of high sensitivity is Sensory Processing Sensitivity. The hallmarks of Sensory Processing Sensitivity are deep cognitive processing, emotional reactivity, high levels of empathy, noticing environmental subtleties, a tendency to observe new and novel situations, and a propensity to become overwhelmed when over-stimulated. Several educational advantages associated with high sensitivity include creativity, enhanced memory, divergent thinking, giftedness, and metacognitive monitoring. High sensitivity can also lead to some educational challenges, particularly managing multiple conflicting demands and negotiating low sensory thresholds. A mixed methods study was undertaken. In the first quantitative study, participants completed the Perceived Success in Study Survey (PSISS) and the Highly Sensitive Person Scale (HSPS-12). Inclusion criteria were current or previous postsecondary education experience. The survey was presented on social media, and snowball recruitment was employed (n=365). The Excel spreadsheets were uploaded to the statistical package for the social sciences (SPSS)26, and descriptive statistics found normal distribution. T-tests and analysis of variance (ANOVA) calculations found no difference in the responses of demographic groups, and Principal Components Analysis and the posthoc Tukey calculations identified positive associations between high sensitivity and three of the five PSISS factors. Further ANOVA calculations found positive associations between the PSISS and two of the three sensitivity subscales. This study included a response field to register interest in further research. Respondents who scored in the 70th percentile on the HSPS-12 were invited to participate in a semi-structured interview. Thirteen interviews were conducted remotely (12 female). Reflexive inductive thematic analysis was employed to analyse data, and a descriptive approach was employed to present data reflective of participant experience. The results of this study found that compassionate students prioritize work-life balance; employ a range of practical metacognitive study and self-care strategies; value independent learning; connect with learning that is meaningful; and are bothered by aspects of the physical learning environment, including lighting, noise, and indoor environmental pollutants. There is a dearth of research investigating sensitivity in the educational context, and these studies highlight the need to promote widespread education sector awareness of environmental sensitivity, and the need to include sensitivity in sector and institutional diversity and inclusion initiatives.Keywords: differential susceptibility, highly sensitive person, learning, neurosensitivity, sensory processing sensitivity, vantage sensitivity
Procedia PDF Downloads 6524 A Constructionist View of Projects, Social Media and Tacit Knowledge in a College Classroom: An Exploratory Study
Authors: John Zanetich
Abstract:
Designing an educational activity that encourages inquiry and collaboration is key to engaging students in meaningful learning. Educational Information and Communications Technology (EICT) plays an important role in facilitating cooperative and collaborative learning in the classroom. The EICT also facilitates students’ learning and development of the critical thinking skills needed to solve real world problems. Projects and activities based on constructivism encourage students to embrace complexity as well as find relevance and joy in their learning. It also enhances the students’ capacity for creative and responsible real-world problem solving. Classroom activities based on constructivism offer students an opportunity to develop the higher–order-thinking skills of defining problems and identifying solutions. Participating in a classroom project is an activity for both acquiring experiential knowledge and applying new knowledge to practical situations. It also provides an opportunity for students to integrate new knowledge into a skill set using reflection. Classroom projects can be developed around a variety of learning objects including social media, knowledge management and learning communities. The construction of meaning through project-based learning is an approach that encourages interaction and problem-solving activities. Projects require active participation, collaboration and interaction to reach the agreed upon outcomes. Projects also serve to externalize the invisible cognitive and social processes taking place in the activity itself and in the student experience. This paper describes a classroom project designed to elicit interactions by helping students to unfreeze existing knowledge, to create new learning experiences, and then refreeze the new knowledge. Since constructivists believe that students construct their own meaning through active engagement and participation as well as interactions with others. knowledge management can be used to guide the exchange of both tacit and explicit knowledge in interpersonal interactions between students and guide the construction of meaning. This paper uses an action research approach to the development of a classroom project and describes the use of technology, social media and the active use of tacit knowledge in the college classroom. In this project, a closed group Facebook page becomes the virtual classroom where interaction is captured and measured using engagement analytics. In the virtual learning community, the principles of knowledge management are used to identify the process and components of the infrastructure of the learning process. The project identifies class member interests and measures student engagement in a learning community by analyzing regular posting on the Facebook page. These posts are used to foster and encourage interactions, reflect a student’s interest and serve as reaction points from which viewers of the post convert the explicit information in the post to implicit knowledge. The data was collected over an academic year and was provided, in part, by the Google analytic reports on Facebook and self-reports of posts by members. The results support the use of active tacit knowledge activities, knowledge management and social media to enhance the student learning experience and help create the knowledge that will be used by students to construct meaning.Keywords: constructivism, knowledge management, tacit knowledge, social media
Procedia PDF Downloads 21523 Single Cell Analysis of Circulating Monocytes in Prostate Cancer Patients
Authors: Leander Van Neste, Kirk Wojno
Abstract:
The innate immune system reacts to foreign insult in several unique ways, one of which is phagocytosis of perceived threats such as cancer, bacteria, and viruses. The goal of this study was to look for evidence of phagocytosed RNA from tumor cells in circulating monocytes. While all monocytes possess phagocytic capabilities, the non-classical CD14+/FCGR3A+ monocytes and the intermediate CD14++/FCGR3A+ monocytes most actively remove threatening ‘external’ cellular materials. Purified CD14-positive monocyte samples from fourteen patients recently diagnosed with clinically localized prostate cancer (PCa) were investigated by single-cell RNA sequencing using the 10X Genomics protocol followed by paired-end sequencing on Illumina’s NovaSeq. Similarly, samples were processed and used as controls, i.e., one patient underwent biopsy but was found not to harbor prostate cancer (benign), three young, healthy men, and three men previously diagnosed with prostate cancer that recently underwent (curative) radical prostatectomy (post-RP). Sequencing data were mapped using 10X Genomics’ CellRanger software and viable cells were subsequently identified using CellBender, removing technical artifacts such as doublets and non-cellular RNA. Next, data analysis was performed in R, using the Seurat package. Because the main goal was to identify differences between PCa patients and ‘control’ patients, rather than exploring differences between individual subjects, the individual Seurat objects of all 21 patients were merged into one Seurat object per Seurat’s recommendation. Finally, the single-cell dataset was normalized as a whole prior to further analysis. Cell identity was assessed using the SingleR and cell dex packages. The Monaco Immune Data was selected as the reference dataset, consisting of bulk RNA-seq data of sorted human immune cells. The Monaco classification was supplemented with normalized PCa data obtained from The Cancer Genome Atlas (TCGA), which consists of bulk RNA sequencing data from 499 prostate tumor tissues (including 1 metastatic) and 52 (adjacent) normal prostate tissues. SingleR was subsequently run on the combined immune cell and PCa datasets. As expected, the vast majority of cells were labeled as having a monocytic origin (~90%), with the most noticeable difference being the larger number of intermediate monocytes in the PCa patients (13.6% versus 7.1%; p<.001). In men harboring PCa, 0.60% of all purified monocytes were classified as harboring PCa signals when the TCGA data were included. This was 3-fold, 7.5-fold, and 4-fold higher compared to post-RP, benign, and young men, respectively (all p<.001). In addition, with 7.91%, the number of unclassified cells, i.e., cells with pruned labels due to high uncertainty of the assigned label, was also highest in men with PCa, compared to 3.51%, 2.67%, and 5.51% of cells in post-RP, benign, and young men, respectively (all p<.001). It can be postulated that actively phagocytosing cells are hardest to classify due to their dual immune cell and foreign cell nature. Hence, the higher number of unclassified cells and intermediate monocytes in PCa patients might reflect higher phagocytic activity due to tumor burden. This also illustrates that small numbers (~1%) of circulating peripheral blood monocytes that have interacted with tumor cells might still possess detectable phagocytosed tumor RNA.Keywords: circulating monocytes, phagocytic cells, prostate cancer, tumor immune response
Procedia PDF Downloads 16222 Culture and Health Equity: Unpacking the Sociocultural Determinants of Eye Health for Indigenous Australian Diabetics
Authors: Aryati Yashadhana, Ted Fields Jnr., Wendy Fernando, Kelvin Brown, Godfrey Blitner, Francis Hayes, Ruby Stanley, Brian Donnelly, Bridgette Jerrard, Anthea Burnett, Anthony B. Zwi
Abstract:
Indigenous Australians experience some of the worst health outcomes globally, with life expectancy being significantly poorer than those of non-Indigenous Australians. This is largely attributed to preventable diseases such as diabetes (prevalence 39% in Indigenous Australian adults > 55 years), which is attributed to a raised risk of diabetic visual impairment and cataract among Indigenous adults. Our study aims to explore the interface between structural and sociocultural determinants and human agency, in order to understand how they impact (1) accessibility of eye health and chronic disease services and (2) the potential for Indigenous patients to achieve positive clinical eye health outcomes. We used Participatory Action Research methods, and aimed to privilege the voices of Indigenous people through community collaboration. Semi-structured interviews (n=82) and patient focus groups (n=8) were conducted by Indigenous Community-Based Researchers (CBRs) with diabetic Indigenous adults (> 40 years) in four remote communities in Australia. Interviews (n=25) and focus groups (n=4) with primary health care clinicians in each community were also conducted. Data were audio recorded, transcribed verbatim, and analysed thematically using grounded theory, comparative analysis and Nvivo 10. Preliminary analysis occurred in tandem with data collection to determine theoretical saturation. The principal investigator (AY) led analysis sessions with CBRs, fostering cultural and contextual appropriateness to interpreting responses, knowledge exchange and capacity building. Identified themes were conceptualised into three spheres of influence: structural (health services, government), sociocultural (Indigenous cultural values, distrust of the health system, ongoing effects of colonialism and dispossession) and individual (health beliefs/perceptions, patient phenomenology). Permeating these spheres of influence were three core determinants: economic disadvantage, health literacy/education, and cultural marginalisation. These core determinants affected accessibility of services, and the potential for patients to achieve positive clinical outcomes at every level of care (primary, secondary, tertiary). Our findings highlight the clinical realities of institutionalised and structural inequities, illustrated through the lived experiences of Indigenous patients and primary care clinicians in the four sampled communities. The complex determinants surrounding inequity in health for Indigenous Australians, are entrenched through a longstanding experience of cultural discrimination and ostracism. Secure and long term funding of Aboriginal Community Controlled Health Services will be valuable, but are insufficient to address issues of inequity. Rather, working collaboratively with communities to build trust, and identify needs and solutions at the grassroots level, while leveraging community voices to drive change at the systemic/policy level are recommended.Keywords: indigenous, Australia, culture, public health, eye health, diabetes, social determinants of health, sociology, anthropology, health equity, aboriginal and Torres strait islander, primary care
Procedia PDF Downloads 30121 Tip-Enhanced Raman Spectroscopy with Plasmonic Lens Focused Longitudinal Electric Field Excitation
Authors: Mingqian Zhang
Abstract:
Tip-enhanced Raman spectroscopy (TERS) is a scanning probe technique for individual objects and structured surfaces investigation that provides a wealth of enhanced spectral information with nanoscale spatial resolution and high detection sensitivity. It has become a powerful and promising chemical and physical information detection method in the nanometer scale. The TERS technique uses a sharp metallic tip regulated in the near-field of a sample surface, which is illuminated with a certain incident beam meeting the excitation conditions of the wave-vector matching. The local electric field, and, consequently, the Raman scattering, from the sample in the vicinity of the tip apex are both greatly tip-enhanced owning to the excitation of localized surface plasmons and the lightning-rod effect. Typically, a TERS setup is composed of a scanning probe microscope, excitation and collection optical configurations, and a Raman spectroscope. In the illumination configuration, an objective lens or a parabolic mirror is always used as the most important component, in order to focus the incident beam on the tip apex for excitation. In this research, a novel TERS setup was built up by introducing a plasmonic lens to the excitation optics as a focusing device. A plasmonic lens with symmetry breaking semi-annular slits corrugated on gold film was designed for the purpose of generating concentrated sub-wavelength light spots with strong longitudinal electric field. Compared to conventional far-field optical components, the designed plasmonic lens not only focuses an incident beam to a sub-wavelength light spot, but also realizes a strong z-component that dominants the electric field illumination, which is ideal for the excitation of tip-enhancement. Therefore, using a PL in the illumination configuration of TERS contributes to improve the detection sensitivity by both reducing the far-field background and effectively exciting the localized electric field enhancement. The FDTD method was employed to investigate the optical near-field distribution resulting from the light-nanostructure interaction. And the optical field distribution was characterized using an scattering-type scanning near-field optical microscope to demonstrate the focusing performance of the lens. The experimental result is in agreement with the theoretically calculated one. It verifies the focusing performance of the plasmonic lens. The optical field distribution shows a bright elliptic spot in the lens center and several arc-like side-lobes on both sides. After the focusing performance was experimentally verified, the designed plasmonic lens was used as a focusing component in the excitation configuration of TERS setup to concentrate incident energy and generate a longitudinal optical field. A collimated linearly polarized laser beam, with along x-axis polarization, was incident from the bottom glass side on the plasmonic lens. The incident light focused by the plasmonic lens interacted with the silver-coated tip apex and enhanced the Raman signal of the sample locally. The scattered Raman signal was gathered by a parabolic mirror and detected with a Raman spectroscopy. Then, the plasmonic lens based setup was employed to investigate carbon nanotubes and TERS experiment was performed. Experimental results indicate that the Raman signal is considerably enhanced which proves that the novel TERS configuration is feasible and promising.Keywords: longitudinal electric field, plasmonics, raman spectroscopy, tip-enhancement
Procedia PDF Downloads 37320 Diffusion MRI: Clinical Application in Radiotherapy Planning of Intracranial Pathology
Authors: Pomozova Kseniia, Gorlachev Gennadiy, Chernyaev Aleksandr, Golanov Andrey
Abstract:
In clinical practice, and especially in stereotactic radiosurgery planning, the significance of diffusion-weighted imaging (DWI) is growing. This makes the existence of software capable of quickly processing and reliably visualizing diffusion data, as well as equipped with tools for their analysis in terms of different tasks. We are developing the «MRDiffusionImaging» software on the standard C++ language. The subject part has been moved to separate class libraries and can be used on various platforms. The user interface is Windows WPF (Windows Presentation Foundation), which is a technology for managing Windows applications with access to all components of the .NET 5 or .NET Framework platform ecosystem. One of the important features is the use of a declarative markup language, XAML (eXtensible Application Markup Language), with which you can conveniently create, initialize and set properties of objects with hierarchical relationships. Graphics are generated using the DirectX environment. The MRDiffusionImaging software package has been implemented for processing diffusion magnetic resonance imaging (dMRI), which allows loading and viewing images sorted by series. An algorithm for "masking" dMRI series based on T2-weighted images was developed using a deformable surface model to exclude tissues that are not related to the area of interest from the analysis. An algorithm of distortion correction using deformable image registration based on autocorrelation of local structure has been developed. Maximum voxel dimension was 1,03 ± 0,12 mm. In an elementary brain's volume, the diffusion tensor is geometrically interpreted using an ellipsoid, which is an isosurface of the probability density of a molecule's diffusion. For the first time, non-parametric intensity distributions, neighborhood correlations, and inhomogeneities are combined in one segmentation of white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF) algorithm. A tool for calculating the coefficient of average diffusion and fractional anisotropy has been created, on the basis of which it is possible to build quantitative maps for solving various clinical problems. Functionality has been created that allows clustering and segmenting images to individualize the clinical volume of radiation treatment and further assess the response (Median Dice Score = 0.963 ± 0,137). White matter tracts of the brain were visualized using two algorithms: deterministic (fiber assignment by continuous tracking) and probabilistic using the Hough transform. The proposed algorithms test candidate curves in the voxel, assigning to each one a score computed from the diffusion data, and then selects the curves with the highest scores as the potential anatomical connections. White matter fibers were visualized using a Hough transform tractography algorithm. In the context of functional radiosurgery, it is possible to reduce the irradiation volume of the internal capsule receiving 12 Gy from 0,402 cc to 0,254 cc. The «MRDiffusionImaging» will improve the efficiency and accuracy of diagnostics and stereotactic radiotherapy of intracranial pathology. We develop software with integrated, intuitive support for processing, analysis, and inclusion in the process of radiotherapy planning and evaluating its results.Keywords: diffusion-weighted imaging, medical imaging, stereotactic radiosurgery, tractography
Procedia PDF Downloads 8519 A Case Study Report on Acoustic Impact Assessment and Mitigation of the Hyprob Research Plant
Authors: D. Bianco, A. Sollazzo, M. Barbarino, G. Elia, A. Smoraldi, N. Favaloro
Abstract:
The activities, described in the present paper, have been conducted in the framework of the HYPROB-New Program, carried out by the Italian Aerospace Research Centre (CIRA) promoted and funded by the Italian Ministry of University and Research (MIUR) in order to improve the National background on rocket engine systems for space applications. The Program has the strategic objective to improve National system and technology capabilities in the field of liquid rocket engines (LRE) for future Space Propulsion Systems applications, with specific regard to LOX/LCH4 technology. The main purpose of the HYPROB program is to design and build a Propulsion Test Facility (HIMP) allowing test activities on Liquid Thrusters. The development of skills in liquid rocket propulsion can only pass through extensive test campaign. Following its mission, CIRA has planned the development of new testing facilities and infrastructures for space propulsion characterized by adequate sizes and instrumentation. The IMP test cell is devoted to testing articles representative of small combustion chambers, fed with oxygen and methane, both in liquid and gaseous phase. This article describes the activities that have been carried out for the evaluation of the acoustic impact, and its consequent mitigation. The impact of the simulated acoustic disturbance has been evaluated, first, using an approximated method based on experimental data by Baumann and Coney, included in “Noise and Vibration Control Engineering” edited by Vér and Beranek. This methodology, used to evaluate the free-field radiation of jet in ideal acoustical medium, analyzes in details the jet noise and assumes sources acting at the same time. It considers as principal radiation sources the jet mixing noise, caused by the turbulent mixing of jet gas and the ambient medium. Empirical models, allowing a direct calculation of the Sound Pressure Level, are commonly used for rocket noise simulation. The model named after K. Eldred is probably one of the most exploited in this area. In this paper, an improvement of the Eldred Standard model has been used for a detailed investigation of the acoustical impact of the Hyprob facility. This new formulation contains an explicit expression for the acoustic pressure of each equivalent noise source, in terms of amplitude and phase, allowing the investigation of the sources correlation effects and their propagation through wave equations. In order to enhance the evaluation of the facility acoustic impact, including an assessment of the mitigation strategies to be set in place, a more advanced simulation campaign has been conducted using both an in-house code for noise propagation and scattering, and a commercial code for industrial noise environmental impact, CadnaA. The noise prediction obtained with the revised Eldred-based model has then been used for formulating an empirical/BEM (Boundary Element Method) hybrid approach allowing the evaluation of the barrier mitigation effect, at the design. This approach has been compared with the analogous empirical/ray-acoustics approach, implemented within CadnaA using a customized definition of sources and directivity factor. The resulting impact evaluation study is reported here, along with the design-level barrier optimization for noise mitigation.Keywords: acoustic impact, industrial noise, mitigation, rocket noise
Procedia PDF Downloads 14618 Structural Behavior of Subsoil Depending on Constitutive Model in Calculation Model of Pavement Structure-Subsoil System
Authors: M. Kadela
Abstract:
The load caused by the traffic movement should be transferred in the road constructions in a harmless way to the pavement as follows: − on the stiff upper layers of the structure (e.g. layers of asphalt: abrading and binding), and − through the layers of principal and secondary substructure, − on the subsoil, directly or through an improved subsoil layer. Reliable description of the interaction proceeding in a system “road construction – subsoil” should be in such case one of the basic requirements of the assessment of the size of internal forces of structure and its durability. Analyses of road constructions are based on: − elements of mechanics, which allows to create computational models, and − results of the experiments included in the criteria of fatigue life analyses. Above approach is a fundamental feature of commonly used mechanistic methods. They allow to use in the conducted evaluations of the fatigue life of structures arbitrarily complex numerical computational models. Considering the work of the system “road construction – subsoil”, it is commonly accepted that, as a result of repetitive loads on the subsoil under pavement, the growth of relatively small deformation in the initial phase is recognized, then this increase disappears, and the deformation takes the character completely reversible. The reliability of calculation model is combined with appropriate use (for a given type of analysis) of constitutive relationships. Phenomena occurring in the initial stage of the system “road construction – subsoil” is unfortunately difficult to interpret in the modeling process. The classic interpretation of the behavior of the material in the elastic-plastic model (e-p) is that elastic phase of the work (e) is undergoing to phase (e-p) by increasing the load (or growth of deformation in the damaging structure). The paper presents the essence of the calibration process of cooperating subsystem in the calculation model of the system “road construction – subsoil”, created for the mechanistic analysis. Calibration process was directed to show the impact of applied constitutive models on its deformation and stress response. The proper comparative base for assessing the reliability of created. This work was supported by the on-going research project “Stabilization of weak soil by application of layer of foamed concrete used in contact with subsoil” (LIDER/022/537/L-4/NCBR/2013) financed by The National Centre for Research and Development within the LIDER Programme. M. Kadela is with the Department of Building Construction Elements and Building Structures on Mining Areas, Building Research Institute, Silesian Branch, Katowice, Poland (phone: +48 32 730 29 47; fax: +48 32 730 25 22; e-mail: m.kadela@ itb.pl). models should be, however, the actual, monitored system “road construction – subsoil”. The paper presents too behavior of subsoil under cyclic load transmitted by pavement layers. The response of subsoil to cyclic load is recorded in situ by the observation system (sensors) installed on the testing ground prepared for this purpose, being a part of the test road near Katowice, in Poland. A different behavior of the homogeneous subsoil under pavement is observed for different seasons of the year, when pavement construction works as a flexible structure in summer, and as a rigid plate in winter. Albeit the observed character of subsoil response is the same regardless of the applied load and area values, this response can be divided into: - zone of indirect action of the applied load; this zone extends to the depth of 1,0 m under the pavement, - zone of a small strain, extending to about 2,0 m.Keywords: road structure, constitutive model, calculation model, pavement, soil, FEA, response of soil, monitored system
Procedia PDF Downloads 35717 Biochemical and Antiviral Study of Peptides Isolated from Amaranthus hypochondriacus on Tomato Yellow Leaf Curl Virus Replication
Authors: José Silvestre Mendoza Figueroa, Anders Kvarnheden, Jesús Méndez Lozano, Edgar Antonio Rodríguez Negrete, Manuel Soriano García
Abstract:
Agroindustrial plants such as cereals and pseudo cereals offer a substantial source of biomacromolecules, as they contain large amounts per tissue-gram of proteins, polysaccharides and lipids in comparison with other plants. In particular, Amaranthus hypochondriacus seeds have high levels of proteins in comparison with other cereal and pseudo cereal species, which makes the plant a good source of bioactive molecules such as peptides. Geminiviruses are one principal class of pathogens that causes important economic losses in crops, affecting directly the development and production of the plant. One such virus is the Tomato yellow leaf curl virus (TYLCV), which affects mainly Solanacea family plants such as tomato species. The symptoms of the disease are curling of leaves, chlorosis, dwarfing and floral abortion. The aim of this work was to get peptides derived from enzymatic hydrolysis of globulins and albumins from amaranth seeds with specific recognition of the replication origin in the TYLCV genome, and to test the antiviral activity on host plants with the idea to generate a direct control of this viral infection. Globulins and albumins from amaranth were extracted, the fraction was enzymatically digested with papain, and the aromatic peptides fraction was selected for further purification. Six peptides were tested against the replication origin (OR) using affinity assays, surface resonance plasmon and fluorescent titration, and two of these peptides showed high affinity values to the replication origin of the virus, dissociation constant values were calculated and showed specific interaction between the peptide Ampep1 and the OR. An in vitro replication test of the total TYLCV DNA was performed, in which the peptide AmPep1 was added in different concentrations to the system reaction, which resulted in a decrease of viral DNA synthesis when the peptide concentration increased. Also, we showed that the peptide can decrease the complementary DNA chain of the virus in Nicotiana benthamiana leaves, confirming that the peptide binds to the OR and that its expected mechanism of action is to decrease the replication rate of the viral genome. In an infection assay, N. benthamiana plants were agroinfected with TYLCV-Israel and TYLCV-Guasave. After confirming systemic infection, the peptide was infiltrated in new infected leaves, and the plants treated with the peptide showed a decrease of virus symptoms and viral titer. In order to confirm the antiviral activity in a commercial crop, tomato plants were infected with TYLCV. After confirming systemic infection, plants were infiltrated with peptide solution as above, and the symptom development was monitored 21 days after treatment, showing that tomato plants treated with peptides had lower symptom rates and viral titer. The peptide was also tested against other begomovirus such as Pepper huasteco yellow vein virus (PHYVV-Guasave), showing a decrease of symptoms in N. benthamiana infected plants. The model of direct biochemical control of TYLCV infection shown in this work can be extrapolated to other begomovirus infections, and the methods reported here can be used for design of antiviral agrochemicals for other plant virus infections.Keywords: agrochemical screening, antiviral, begomovirus, geminivirus, peptides, plasmon, TYLCV
Procedia PDF Downloads 27716 A Computer-Aided System for Tooth Shade Matching
Authors: Zuhal Kurt, Meral Kurt, Bilge T. Bal, Kemal Ozkan
Abstract:
Shade matching and reproduction is the most important element of success in prosthetic dentistry. Until recently, shade matching procedure was implemented by dentists visual perception with the help of shade guides. Since many factors influence visual perception; tooth shade matching using visual devices (shade guides) is highly subjective and inconsistent. Subjective nature of this process has lead to the development of instrumental devices. Nowadays, colorimeters, spectrophotometers, spectroradiometers and digital image analysing systems are used for instrumental shade selection. Instrumental devices have advantages that readings are quantifiable, can obtain more rapidly and simply, objectively and precisely. However, these devices have noticeable drawbacks. For example, translucent structure and irregular surfaces of teeth lead to defects on measurement with these devices. Also between the results acquired by devices with different measurement principles may make inconsistencies. So, its obligatory to search for new methods for dental shade matching process. A computer-aided system device; digital camera has developed rapidly upon today. Currently, advances in image processing and computing have resulted in the extensive use of digital cameras for color imaging. This procedure has a much cheaper process than the use of traditional contact-type color measurement devices. Digital cameras can be taken by the place of contact-type instruments for shade selection and overcome their disadvantages. Images taken from teeth show morphology and color texture of teeth. In last decades, a new method was recommended to compare the color of shade tabs taken by a digital camera using color features. This method showed that visual and computer-aided shade matching systems should be used as concatenated. Recently using methods of feature extraction techniques are based on shape description and not used color information. However, color is mostly experienced as an essential property in depicting and extracting features from objects in the world around us. When local feature descriptors with color information are extended by concatenating color descriptor with the shape descriptor, that descriptor will be effective on visual object recognition and classification task. Therefore, the color descriptor is to be used in combination with a shape descriptor it does not need to contain any spatial information, which leads us to use local histograms. This local color histogram method is remain reliable under variation of photometric changes, geometrical changes and variation of image quality. So, coloring local feature extraction methods are used to extract features, and also the Scale Invariant Feature Transform (SIFT) descriptor used to for shape description in the proposed method. After the combination of these descriptors, the state-of-art descriptor named by Color-SIFT will be used in this study. Finally, the image feature vectors obtained from quantization algorithm are fed to classifiers such as Nearest Neighbor (KNN), Naive Bayes or Support Vector Machines (SVM) to determine label(s) of the visual object category or matching. In this study, SVM are used as classifiers for color determination and shade matching. Finally, experimental results of this method will be compared with other recent studies. It is concluded from the study that the proposed method is remarkable development on computer aided tooth shade determination system.Keywords: classifiers, color determination, computer-aided system, tooth shade matching, feature extraction
Procedia PDF Downloads 44415 Use of Artificial Intelligence and Two Object-Oriented Approaches (k-NN and SVM) for the Detection and Characterization of Wetlands in the Centre-Val de Loire Region, France
Authors: Bensaid A., Mostephaoui T., Nedjai R.
Abstract:
Nowadays, wetlands are the subject of contradictory debates opposing scientific, political and administrative meanings. Indeed, given their multiple services (drinking water, irrigation, hydrological regulation, mineral, plant and animal resources...), wetlands concentrate many socio-economic and biodiversity issues. In some regions, they can cover vast areas (>100 thousand ha) of the landscape, such as the Camargue area in the south of France, inside the Rhone delta. The high biological productivity of wetlands, the strong natural selection pressures and the diversity of aquatic environments have produced many species of plants and animals that are found nowhere else. These environments are tremendous carbon sinks and biodiversity reserves depending on their age, composition and surrounding environmental conditions, wetlands play an important role in global climate projections. Covering more than 3% of the earth's surface, wetlands have experienced since the beginning of the 1990s a tremendous revival of interest, which has resulted in the multiplication of inventories, scientific studies and management experiments. The geographical and physical characteristics of the wetlands of the central region conceal a large number of natural habitats that harbour a great biological diversity. These wetlands, one of the natural habitats, are still influenced by human activities, especially agriculture, which affects its layout and functioning. In this perspective, decision-makers need to delimit spatial objects (natural habitats) in a certain way to be able to take action. Thus, wetlands are no exception to this rule even if it seems to be a difficult exercise to delimit a type of environment as whose main characteristic is often to occupy the transition between aquatic and terrestrial environment. However, it is possible to map wetlands with databases, derived from the interpretation of photos and satellite images, such as the European database Corine Land cover, which allows quantifying and characterizing for each place the characteristic wetland types. Scientific studies have shown limitations when using high spatial resolution images (SPOT, Landsat, ASTER) for the identification and characterization of small wetlands (1 hectare). To address this limitation, it is important to note that these wetlands generally represent spatially complex features. Indeed, the use of very high spatial resolution images (>3m) is necessary to map small and large areas. However, with the recent evolution of artificial intelligence (AI) and deep learning methods for satellite image processing have shown a much better performance compared to traditional processing based only on pixel structures. Our research work is also based on spectral and textural analysis on THR images (Spot and IRC orthoimage) using two object-oriented approaches, the nearest neighbour approach (k-NN) and the Super Vector Machine approach (SVM). The k-NN approach gave good results for the delineation of wetlands (wet marshes and moors, ponds, artificial wetlands water body edges, ponds, mountain wetlands, river edges and brackish marshes) with a kappa index higher than 85%.Keywords: land development, GIS, sand dunes, segmentation, remote sensing
Procedia PDF Downloads 7214 Assessment and Forecasting of the Impact of Negative Environmental Factors on Public Health
Authors: Nurlan Smagulov, Aiman Konkabayeva, Akerke Sadykova, Arailym Serik
Abstract:
Introduction. Adverse environmental factors do not immediately lead to pathological changes in the body. They can exert the growth of pre-pathology characterized by shifts in physiological, biochemical, immunological and other indicators of the body state. These disorders are unstable, reversible and indicative of body reactions. There is an opportunity to objectively judge the internal structure of the adaptive body reactions at the level of individual organs and systems. In order to obtain a stable response of the body to the chronic effects of unfavorable environmental factors of low intensity (compared to production environment factors), a time called the «lag time» is needed. The obtained results without considering this factor distort reality and, for the most part, cannot be a reliable statement of the main conclusions in any work. A technique is needed to reduce methodological errors and combine mathematical logic using statistical methods and a medical point of view, which ultimately will affect the obtained results and avoid a false correlation. Objective. Development of a methodology for assessing and predicting the environmental factors impact on the population health considering the «lag time.» Methods. Research objects: environmental and population morbidity indicators. The database on the environmental state was compiled from the monthly newsletters of Kazhydromet. Data on population morbidity were obtained from regional statistical yearbooks. When processing static data, a time interval (lag) was determined for each «argument-function» pair. That is the required interval, after which the harmful factor effect (argument) will fully manifest itself in the indicators of the organism's state (function). The lag value was determined by cross-correlation functions of arguments (environmental indicators) with functions (morbidity). Correlation coefficients (r) and their reliability (t), Fisher's criterion (F) and the influence share (R2) of the main factor (argument) per indicator (function) were calculated as a percentage. Results. The ecological situation of an industrially developed region has an impact on health indicators, but it has some nuances. Fundamentally opposite results were obtained in the mathematical data processing, considering the «lag time». Namely, an expressed correlation was revealed after two databases (ecology-morbidity) shifted. For example, the lag period was 4 years for dust concentration, general morbidity, and 3 years – for childhood morbidity. These periods accounted for the maximum values of the correlation coefficients and the largest percentage of the influencing factor. Similar results were observed in relation to the concentration of soot, dioxide, etc. The comprehensive statistical processing using multiple correlation-regression variance analysis confirms the correctness of the above statement. This method provided the integrated approach to predicting the degree of pollution of the main environmental components to identify the most dangerous combinations of concentrations of leading negative environmental factors. Conclusion. The method of assessing the «environment-public health» system (considering the «lag time») is qualitatively different from the traditional (without considering the «lag time»). The results significantly differ and are more amenable to a logical explanation of the obtained dependencies. The method allows presenting the quantitative and qualitative dependence in a different way within the «environment-public health» system.Keywords: ecology, morbidity, population, lag time
Procedia PDF Downloads 8113 Methodology for Temporary Analysis of Production and Logistic Systems on the Basis of Distance Data
Authors: M. Mueller, M. Kuehn, M. Voelker
Abstract:
In small and medium-sized enterprises (SMEs), the challenge is to create a well-grounded and reliable basis for process analysis, optimization and planning due to a lack of data. SMEs have limited access to methods with which they can effectively and efficiently analyse processes and identify cause-and-effect relationships in order to generate the necessary database and derive optimization potential from it. The implementation of digitalization within the framework of Industry 4.0 thus becomes a particular necessity for SMEs. For these reasons, the abstract presents an analysis methodology that is subject to the objective of developing an SME-appropriate methodology for efficient, temporarily feasible data collection and evaluation in flexible production and logistics systems as a basis for process analysis and optimization. The overall methodology focuses on retrospective, event-based tracing and analysis of material flow objects. The technological basis consists of Bluetooth low energy (BLE)-based transmitters, so-called beacons, and smart mobile devices (SMD), e.g. smartphones as receivers, between which distance data can be measured and derived motion profiles. The distance is determined using the Received Signal Strength Indicator (RSSI), which is a measure of signal field strength between transmitter and receiver. The focus is the development of a software-based methodology for interpretation of relative movements of transmitters and receivers based on distance data. The main research is on selection and implementation of pattern recognition methods for automatic process recognition as well as methods for the visualization of relative distance data. Due to an existing categorization of the database regarding process types, classification methods (e.g. Support Vector Machine) from the field of supervised learning are used. The necessary data quality requires selection of suitable methods as well as filters for smoothing occurring signal variations of the RSSI, the integration of methods for determination of correction factors depending on possible signal interference sources (columns, pallets) as well as the configuration of the used technology. The parameter settings on which respective algorithms are based have a further significant influence on result quality of the classification methods, correction models and methods for visualizing the position profiles used. The accuracy of classification algorithms can be improved up to 30% by selected parameter variation; this has already been proven in studies. Similar potentials can be observed with parameter variation of methods and filters for signal smoothing. Thus, there is increased interest in obtaining detailed results on the influence of parameter and factor combinations on data quality in this area. The overall methodology is realized with a modular software architecture consisting of independently modules for data acquisition, data preparation and data storage. The demonstrator for initialization and data acquisition is available as mobile Java-based application. The data preparation, including methods for signal smoothing, are Python-based with the possibility to vary parameter settings and to store them in the database (SQLite). The evaluation is divided into two separate software modules with database connection: the achievement of an automated assignment of defined process classes to distance data using selected classification algorithms and the visualization as well as reporting in terms of a graphical user interface (GUI).Keywords: event-based tracing, machine learning, process classification, parameter settings, RSSI, signal smoothing
Procedia PDF Downloads 13112 Analysis Of Fine Motor Skills in Chronic Neurodegenerative Models of Huntington’s Disease and Amyotrophic Lateral Sclerosis
Authors: T. Heikkinen, J. Oksman, T. Bragge, A. Nurmi, O. Kontkanen, T. Ahtoniemi
Abstract:
Motor impairment is an inherent phenotypic feature of several chronic neurodegenerative diseases, and pharmacological therapies aimed to counterbalance the motor disability have a great market potential. Animal models of chronic neurodegenerative diseases display a number deteriorating motor phenotype during the disease progression. There is a wide array of behavioral tools to evaluate motor functions in rodents. However, currently existing methods to study motor functions in rodents are often limited to evaluate gross motor functions only at advanced stages of the disease phenotype. The most commonly applied traditional motor assays used in CNS rodent models, lack the sensitivity to capture fine motor impairments or improvements. Fine motor skill characterization in rodents provides a more sensitive tool to capture more subtle motor dysfunctions and therapeutic effects. Importantly, similar approach, kinematic movement analysis, is also used in clinic, and applied both in diagnosis and determination of therapeutic response to pharmacological interventions. The aim of this study was to apply kinematic gait analysis, a novel and automated high precision movement analysis system, to characterize phenotypic deficits in three different chronic neurodegenerative animal models, a transgenic mouse model (SOD1 G93A) for amyotrophic lateral sclerosis (ALS), and R6/2 and Q175KI mouse models for Huntington’s disease (HD). The readouts from walking behavior included gait properties with kinematic data, and body movement trajectories including analysis of various points of interest such as movement and position of landmarks in the torso, tail and joints. Mice (transgenic and wild-type) from each model were analyzed for the fine motor kinematic properties at young ages, prior to the age when gross motor deficits are clearly pronounced. Fine motor kinematic Evaluation was continued in the same animals until clear motor dysfunction with conventional motor assays was evident. Time course analysis revealed clear fine motor skill impairments in each transgenic model earlier than what is seen with conventional gross motor tests. Motor changes were quantitatively analyzed for up to ~80 parameters, and the largest data sets of HD models were further processed with principal component analysis (PCA) to transform the pool of individual parameters into a smaller and focused set of mutually uncorrelated gait parameters showing strong genotype difference. Kinematic fine motor analysis of transgenic animal models described in this presentation show that this method isa sensitive, objective and fully automated tool that allows earlier and more sensitive detection of progressive neuromuscular and CNS disease phenotypes. As a result of the analysis a comprehensive set of fine motor parameters for each model is created, and these parameters provide better understanding of the disease progression and enhanced sensitivity of this assay for therapeutic testing compared to classical motor behavior tests. In SOD1 G93A, R6/2, and Q175KI mice, the alterations in gait were evident already several weeks earlier than with traditional gross motor assays. Kinematic testing can be applied to a wider set of motor readouts beyond gait in order to study whole body movement patterns such as with relation to joints and various body parts longitudinally, providing a sophisticated and translatable method for disseminating motor components in rodent disease models and evaluating therapeutic interventions.Keywords: Gait analysis, kinematic, motor impairment, inherent feature
Procedia PDF Downloads 35511 Assessment of Occupational Exposure and Individual Radio-Sensitivity in People Subjected to Ionizing Radiation
Authors: Oksana G. Cherednichenko, Anastasia L. Pilyugina, Sergey N.Lukashenko, Elena G. Gubitskaya
Abstract:
The estimation of accumulated radiation doses in people professionally exposed to ionizing radiation was performed using methods of biological (chromosomal aberrations frequency in lymphocytes) and physical (radionuclides analysis in urine, whole-body radiation meter, individual thermoluminescent dosimeters) dosimetry. A group of 84 "A" category employees after their work in the territory of former Semipalatinsk test site (Kazakhstan) was investigated. The dose rate in some funnels exceeds 40 μSv/h. After radionuclides determination in urine using radiochemical and WBC methods, it was shown that the total effective dose of personnel internal exposure did not exceed 0.2 mSv/year, while an acceptable dose limit for staff is 20 mSv/year. The range of external radiation doses measured with individual thermo-luminescent dosimeters was 0.3-1.406 µSv. The cytogenetic examination showed that chromosomal aberrations frequency in staff was 4.27±0.22%, which is significantly higher than at the people from non-polluting settlement Tausugur (0.87±0.1%) (р ≤ 0.01) and citizens of Almaty (1.6±0.12%) (р≤ 0.01). Chromosomal type aberrations accounted for 2.32±0.16%, 0.27±0.06% of which were dicentrics and centric rings. The cytogenetic analysis of different types group radiosensitivity among «professionals» (age, sex, ethnic group, epidemiological data) revealed no significant differences between the compared values. Using various techniques by frequency of dicentrics and centric rings, the average cumulative radiation dose for group was calculated, and that was 0.084-0.143 Gy. To perform comparative individual dosimetry using physical and biological methods of dose assessment, calibration curves (including own ones) and regression equations based on general frequency of chromosomal aberrations obtained after irradiation of blood samples by gamma-radiation with the dose rate of 0,1 Gy/min were used. Herewith, on the assumption of individual variation of chromosomal aberrations frequency (1–10%), the accumulated dose of radiation varied 0-0.3 Gy. The main problem in the interpretation of individual dosimetry results is reduced to different reaction of the objects to irradiation - radiosensitivity, which dictates the need of quantitative definition of this individual reaction and its consideration in the calculation of the received radiation dose. The entire examined contingent was assigned to a group based on the received dose and detected cytogenetic aberrations. Radiosensitive individuals, at the lowest received dose in a year, showed the highest frequency of chromosomal aberrations (5.72%). In opposite, radioresistant individuals showed the lowest frequency of chromosomal aberrations (2.8%). The cohort correlation according to the criterion of radio-sensitivity in our research was distributed as follows: radio-sensitive (26.2%) — medium radio-sensitivity (57.1%), radioresistant (16.7%). Herewith, the dispersion for radioresistant individuals is 2.3; for the group with medium radio-sensitivity — 3.3; and for radio-sensitive group — 9. These data indicate the highest variation of characteristic (reactions to radiation effect) in the group of radio-sensitive individuals. People with medium radio-sensitivity show significant long-term correlation (0.66; n=48, β ≥ 0.999) between the values of doses defined according to the results of cytogenetic analysis and dose of external radiation obtained with the help of thermoluminescent dosimeters. Mathematical models based on the type of violation of the radiation dose according to the professionals radiosensitivity level were offered.Keywords: biodosimetry, chromosomal aberrations, ionizing radiation, radiosensitivity
Procedia PDF Downloads 18410 RE:SOUNDING a 2000-Year-Old Vietnamese Dong Son Bronze Drum; Artist-Led Collaborations outside the Museum to Challenge the Impasse of Repatriating and Rematriating Cultural Instruments
Authors: H. A. J. Nguyen, V. A. Pham
Abstract:
RE:SOUNDING is an ongoing research project and artwork seeking to return the sound and knowledge of Dong Son bronze drums back to contemporary musicians. Colonial collections of ethnographic instruments are problematic in how they commit acts of conceptual, cultural, and acoustic silencing. The collection (or more honestly), the plagiarism, and pillaging of these instruments have systemically separated them from living and breathing cultures. This includes diasporic communities, who have come to resettle in close proximity - but still have little access - to the museums and galleries that display their cultural objects. Despite recent attempts to 'open up' and 'recognise' the tensions and violence of these ethnographic collections, many museums continue to structurally organize and reproduce knowledge with the same procedural distance and limitations of imperial condescension. Impatient with the slowness of these museums, our diaspora led collaborations participated in the opaque economy of the auction market to gain access and begin the process of digitally recording and archiving the actual sounds of the ancient Dong Son drum. This self-directed, self-initiated artwork not only acoustically reinvigorated an ancient instrument but redistributed these sonic materials back to contemporary musicians, composers, and their diasporic communities throughout Vietnam, South East Asia, and Australia. Our methodologies not only highlight the persistent inflexibility of museum infrastructures but demand that museums refrain from their paternalistic practice of risk-averse ownership, to seriously engage with new technologies and political formations that require all public institutions to be held accountable for the ethical and intellectual viability of their colonial collections. The integrated and practical resolve of diasporic artists and their communities are more than capable of working with new technologies to reclaim and reinvigorate what is culturally and spiritually theirs. The motivation to rematriate – as opposed to merely repatriate – the acoustic legacies of these instruments to contemporary musicians and artists is a new model for decolonial and restorative practices. Exposing the inadequacies of western scholarship that continues to treat these instruments as discreet, disembodied, and detached artifacts, these collaborative strategies have thus far produced a wealth of new knowledge – new to the west perhaps – but not that new to these, our own communities. This includes the little-acknowledged fact that the Dong Son drum were political instruments of war and technology, rather than their simplistic description in the museum and western academia as agrarian instruments of fertility and harvest. Through the collective and continued sharing of knowledge and sound materials produced from this research, these drums are gaining a contemporary relevance beyond the cultural silencing of the museum display cabinet. Acknowledgement: We acknowledge the Wurundjeri and Boon Wurrung of the Kulin Nation and the Gadigal of the Eora Nation where we began this project. We pay our respects to the Peoples, Lands, Traditional Custodians, Practices, and Creator Ancestors of these Great Nations, as well as those First Nations peoples throughout Australia, Vietnam, and Indonesia, where this research continues, and upon whose stolen lands and waterways were never ceded.Keywords: acoustic archaeology, decolonisation, museum collections, rematriation, repatriation, Dong Son, experimental music, digital recording
Procedia PDF Downloads 1519 Posts by Influencers Promoting Water Saving: The Impact of Distance and the Perception of Effectiveness on Behavior
Authors: Sancho-Esper Franco, Rodríguez Sánchez Carla, Sánchez Carolina, Orús-Sanclemente Carlos
Abstract:
Water scarcity is a reality that affects many regions of the world and is aggravated by climate change and population growth. Saving water has become an urgent need to ensure the sustainability of the planet and the survival of many communities, where youth and social networks play a key role in promoting responsible practices and adopting habits that contribute to environmental preservation. This study analyzes the persuasion capacity of messages designed to promote pro-environmental behaviors among youth. Specifically, it studies how the efficacy (effectiveness) of the response (personal response efficacy/effectiveness) and the perception of distance from the source of the message influence the water-saving behavior of the audience. To do so, two communication frameworks are combined. First, the Construal Level Theory, which is based on the concept of "psychological distance", that is, people, objects or events can be perceived as psychologically near or far, and this subjective distance (i.e., social, temporal, or spatial) determines their attitudes, emotions, and actions. This perceived distance can be social, temporal, or spatial. This research focuses on studying the spatial distance and social distance generated by cultural differences between influencers and their audience to understand how cultural distance can influence the persuasiveness of a message. Research on the effects of psychological distance between influencers-followers in the pro-environmental field is very limited, being relevant because people could learn specific behaviors suggested by opinion leaders such as influencers in social networks. Second, different approaches to behavioral change suggest that the perceived efficacy of a behavior can explain individual pro-environmental actions. People will be more likely to adopt a new behavior if they perceive that they are capable of performing it (efficacy belief) and that their behavior will effectively contribute to solving that problem (personal response efficacy). It is also important to study the different actors (social and individual) that are perceived as responsible for addressing environmental problems. Specifically, we analyze to what extent the belief individual’s water-saving actions are effective in solving the problem can influence water-saving behavior since this individual effectiveness increases people's sense of obligation and responsibility with the problem. However, in this regard, empirical evidence presents mixed results. Our study addresses the call for experimental studies manipulating different subtypes of response effectiveness to generate robust causal evidence. Based on all the above, this research analyzes whether cultural distance (local vs. international influencer) and the perception of effectiveness of behavior (personal response efficacy) (personal/individual vs. collective) affect the actual behavior and the intention to conserve water of social network users. An experiment of 2 (local influencer vs. international influencer) x 2 (effectiveness of individual vs. collective response) is designed and estimated. The results show that a message from a local influencer appealing to individual responsibility exerts greater influence on intention and actual water-saving behavior, given the cultural closeness between influencer-follower, and the appeal to individual responsibility increases the feeling of obligation to participate in pro-environmental actions. These results offer important implications for social marketing campaigns that seek to promote water conservation.Keywords: social marketing, influencer, message framing, experiment, personal response efficacy, water saving
Procedia PDF Downloads 628 Stabilizing Additively Manufactured Superalloys at High Temperatures
Authors: Keivan Davami, Michael Munther, Lloyd Hackel
Abstract:
The control of properties and material behavior by implementing thermal-mechanical processes is based on mechanical deformation and annealing according to a precise schedule that will produce a unique and stable combination of grain structure, dislocation substructure, texture, and dispersion of precipitated phases. The authors recently developed a thermal-mechanical technique to stabilize the microstructure of additively manufactured nickel-based superalloys even after exposure to high temperatures. However, the mechanism(s) that controls this stability is still under investigation. Laser peening (LP), also called laser shock peening (LSP), is a shock based (50 ns duration) post-processing technique used for extending performance levels and improving service life of critical components by developing deep levels of plastic deformation, thereby generating high density of dislocations and inducing compressive residual stresses in the surface and deep subsurface of components. These compressive residual stresses are usually accompanied with an increase in hardness and enhance the material’s resistance to surface-related failures such as creep, fatigue, contact damage, and stress corrosion cracking. While the LP process enhances the life span and durability of the material, the induced compressive residual stresses relax at high temperatures (>0.5Tm, where Tm is the absolute melting temperature), limiting the applicability of the technology. At temperatures above 0.5Tm, the compressive residual stresses relax, and yield strength begins to drop dramatically. The principal reason is the increasing rate of solid-state diffusion, which affects both the dislocations and the microstructural barriers. Dislocation configurations commonly recover by mechanisms such as climbing and recombining rapidly at high temperatures. Furthermore, precipitates coarsen, and grains grow; virtually all of the available microstructural barriers become ineffective.Our results indicate that by using “cyclic” treatments with sequential LP and annealing steps, the compressive stresses survive, and the microstructure is stable after exposure to temperatures exceeding 0.5Tm for a long period of time. When the laser peening process is combined with annealing, dislocations formed as a result of LPand precipitates formed during annealing have a complex interaction that provides further stability at high temperatures. From a scientific point of view, this research lays the groundwork for studying a variety of physical, materials science, and mechanical engineering concepts. This research could lead to metals operating at higher sustained temperatures enabling improved system efficiencies. The strengthening of metals by a variety of means (alloying, work hardening, and other processes) has been of interest for a wide range of applications. However, the mechanistic understanding of the often complex processes of interactionsbetween dislocations with solute atoms and with precipitates during plastic deformation have largely remained scattered in the literature. In this research, the elucidation of the actual mechanisms involved in the novel cyclic LP/annealing processes as a scientific pursuit is investigated through parallel studies of dislocation theory and the implementation of advanced experimental tools. The results of this research help with the validation of a novel laser processing technique for high temperature applications. This will greatly expand the applications of the laser peening technology originally devised only for temperatures lower than half of the melting temperature.Keywords: laser shock peening, mechanical properties, indentation, high temperature stability
Procedia PDF Downloads 149