Search results for: nonlinear behavior; pushover analysis
30913 The Role of Product’s Aesthetic Criteria in Customer Behavior: An Approach on Design Process
Authors: Mozhgan Sabzehparvar, Mohammad Montazeri, Mahdie Jafarnejad Shahri, Neda Boroumandi, Shakib Alipour, Hamide Torabi, Zahra Dehghani
Abstract:
In this article, the aesthetic criteria, which are regarded as the key factors in the product development, and design process are carefully taken into account and an attempt has been made to extract the influential concepts in successful product design. This review article was conducted from 22.05.2021 to 22.06.2021, recent published paper in English (2017-2021) in three search engines of JSTOR, IEEE, and EMERALD were selected. The selected main keywords in our search were "Customer, Behavior, Aesthetics, Marketing and Product". During the screenings, 21 articles were analyzed. The aesthetic criteria play a role in increasing the power of choice, loyalty, satisfaction and purchase intention of the customers. Also, product design has a positive effect on the customers’ perception of aesthetics and acts effectively on customer behavior. Aesthetics has a significant relationship with the customer's intention to buy products and can make the product popular and satisfy people.Keywords: product design, design process, customer behaviour, aesthetic, marketing
Procedia PDF Downloads 9030912 Exploration of Cone Foam Breaker Behavior Using Computational Fluid Dynamic
Authors: G. St-Pierre-Lemieux, E. Askari Mahvelati, D. Groleau, P. Proulx
Abstract:
Mathematical modeling has become an important tool for the study of foam behavior. Computational Fluid Dynamic (CFD) can be used to investigate the behavior of foam around foam breakers to better understand the mechanisms leading to the ‘destruction’ of foam. The focus of this investigation was the simple cone foam breaker, whose performance has been identified in numerous studies. While the optimal pumping angle is known from the literature, the contribution of pressure drop, shearing, and centrifugal forces to the foam syneresis are subject to speculation. This work provides a screening of those factors against changes in the cone angle and foam rheology. The CFD simulation was made with the open source OpenFOAM toolkits on a full three-dimensional model discretized using hexahedral cells. The geometry was generated using a python script then meshed with blockMesh. The OpenFOAM Volume Of Fluid (VOF) method was used (interFOAM) to obtain a detailed description of the interfacial forces, and the model k-omega SST was used to calculate the turbulence fields. The cone configuration allows the use of a rotating wall boundary condition. In each case, a pair of immiscible fluids, foam/air or water/air was used. The foam was modeled as a shear thinning (Herschel-Buckley) fluid. The results were compared to our measurements and to results found in the literature, first by computing the pumping rate of the cone, and second by the liquid break-up at the exit of the cone. A 3D printed version of the cones submerged in foam (shaving cream or soap solution) and water, at speeds varying between 400 RPM and 1500 RPM, was also used to validate the modeling results by calculating the torque exerted on the shaft. While most of the literature is focusing on cone behavior using Newtonian fluids, this works explore its behavior in shear thinning fluid which better reflects foam apparent rheology. Those simulations bring new light on the cone behavior within the foam and allow the computation of shearing, pressure, and velocity of the fluid, enabling to better evaluate the efficiency of the cones as foam breakers. This study contributes to clarify the mechanisms behind foam breaker performances, at least in part, using modern CFD techniques.Keywords: bioreactor, CFD, foam breaker, foam mitigation, OpenFOAM
Procedia PDF Downloads 20530911 A Large-Strain Thermoviscoplastic Damage Model
Authors: João Paulo Pascon
Abstract:
A constitutive model accounting for large strains, thermoviscoplasticity, and ductile damage evolution is proposed in the present work. To this end, a fully Lagrangian framework is employed, considering plane stress conditions and multiplicative split of the deformation gradient. The full model includes Gurson’s void growth, nucleation and coalescence, plastic work heating, strain and strain-rate hardening, thermal softening, and heat conductivity. The contribution of the work is the combination of all the above-mentioned features within the finite-strain setting. The model is implemented in a computer code using triangular finite elements and nonlinear analysis. Two mechanical examples involving ductile damage and finite strain levels are analyzed: an inhomogeneous tension specimen and the necking problem. Results demonstrate the capabilities of the developed formulation regarding ductile fracture and large deformations.Keywords: ductile damage model, finite element method, large strains, thermoviscoplasticity
Procedia PDF Downloads 8630910 Reproductive Behavior of Caspian Red Deer (Cervus Elaphus Maral) in Wildlife Refuge of Semeskande, Sari
Authors: Behrang Ekrami, Amin Tamadon
Abstract:
Caspian red deer or maral (Cervus elaphus maral) is a ruminant from the family of Cervidae. Maintenance and protection of maral requires knowing the behavioral, physiological, environmental characteristics and factors harmful to this species. In this article, reproductive and behavioral traits of this species in both sexes are presented based on observations and the available records of protected deer in Wildlife Refuge of Semeskande, Sari (one of the sites that preserve the maral in the Free Zones of Hyrcanian forest) from 2006 to 2011. Hart characteristics including sexual behavior, apparent changes during reproductive season and reproductive physiology; and hind characteristics including of ovulation, reproductive cycle, mating, pregnancy and parturition, have been evaluated. Identification of maral reproductive characteristics in Wildlife Refuge of Semeskande, Sari is one of the most important information requirements to preserve and breed this species and will open up new routes for performing new methods of reproduction of this species in Iran wildlife parks or other refuge areas.Keywords: caspian red deer, reproduction, behavior, Iran
Procedia PDF Downloads 48930909 Identifying and Understand Pragmatic Failures in Portuguese Foreign Language by Chinese Learners in Macau
Authors: Carla Lopes
Abstract:
It is clear nowadays that the proper performance of different speech acts is one of the most difficult obstacles that a foreign language learner has to overcome to be considered communicatively competent. This communication presents the results of an investigation on the pragmatic performance of Portuguese Language students at the University of Macau. The research discussed herein is based on a survey consisting of fourteen speaking situations to which the participants must respond in writing, and that includes different types of speech acts: apology, response to a compliment, refusal, complaint, disagreement and the understanding of the illocutionary force of indirect speech acts. The responses were classified in a five levels Likert scale (quantified from 1 to 5) according to their suitability for the particular situation. In general terms, we can summarize that about 45% of the respondents' answers were pragmatically competent, 10 % were acceptable and 45 % showed weaknesses at socio-pragmatic competence level. Given that the linguistic deviations were not taken into account, we can conclude that the faults are of cultural origin. It is natural that in the presence of orthogonal cultures, such as Chinese and Portuguese, there are failures of this type, barely solved in the four years of the undergraduate program. The target population, native speakers of Cantonese or Mandarin, make their first contact with the English language before joining the Bachelor of Portuguese Language. An analysis of the socio - pragmatic failures in the respondents’ answers suggests the conclusion that many of them are due to the lack of cultural knowledge. They try to compensate for this either using their native culture or resorting to a Western culture that they consider close to the Portuguese, that is the English or US culture, previously studied, and also widely present in the media and on the internet. This phenomenon, known as 'pragmatic transfer', can result in a linguistic behavior that may be considered inauthentic or pragmatically awkward. The resulting speech act is grammatically correct but is not pragmatically feasible, since it is not suitable to the culture of the target language, either because it does not exist or because the conditions of its use are in fact different. Analysis of the responses also supports the conclusion that these students present large deviations from the expected and stereotyped behavior of Chinese students. We can speculate while this linguistic behavior is the consequence of the Macao globalization that culturally casts the students, makes them more open, and distinguishes them from the typical Chinese students.Keywords: Portuguese foreign language, pragmatic failures, pragmatic transfer, pragmatic competence
Procedia PDF Downloads 21030908 Study of the Late Phase of Core Degradation during Reflooding by Safety Injection System for VVER1000 with ASTECv2 Computer Code
Authors: Antoaneta Stefanova, Rositsa Gencheva, Pavlin Groudev
Abstract:
This paper presents the modeling approach in SBO sequence for VVER 1000 reactors and describes the reactor core behavior at late in-vessel phase in case of late reflooding by HPIS and gives preliminary results for the ASTECv2 validation. The work is focused on investigation of plant behavior during total loss of power and the operator actions. The main goal of these analyses is to assess the phenomena arising during the Station blackout (SBO) followed by primary side high pressure injection system (HPIS) reflooding of already damaged reactor core at very late ‘in-vessel’ phase. The purpose of the analysis is to define how the later HPIS switching on can delay the time of vessel failure or possibly avoid vessel failure. For this purpose has been simulated an SBO scenario with injection of cold water by a high pressure pump (HPP) in cold leg at different stages of core degradation. The times for HPP injection were chosen based on previously performed investigations.Keywords: VVER, operator action validation, reflooding of overheated reactor core, ASTEC computer code
Procedia PDF Downloads 41530907 Anonymous Gel-Fluid Transition of Solid Supported Lipids
Authors: Asma Poursoroush
Abstract:
Solid-supported lipid bilayers are often used as a simple model for studies of biological membranes. The presence of a solid substrate that interacts attractively with lipid head-groups is expected to affect the phase behavior of the supported bilayer. Molecular dynamics simulations of a coarse-grained model are thus performed to investigate the phase behavior of supported one-component lipid bilayer membranes. Our results show that the attraction of the lipid head groups to the substrate leads to a phase behavior that is different from that of a free standing lipid bilayer. In particular, we found that the phase behaviors of the two leaflets are decoupled in the presence of a substrate. The proximal leaflet undergoes a clear gel-to-fluid phase transition at a temperature lower than that of a free standing bilayer, and that decreases with increasing strength of the substrate-lipid attraction. The distal leaflet, however, undergoes a change from a homogeneous liquid phase at high temperatures to a heterogeneous state consisting of small liquid and gel domains, with the average size of the gel domains that increases with decreasing temperature. While the chain order parameter of the proximal leaflet clearly shows a gel-fluid phase transition, the chain order parameter of the distal leaflet does not exhibit a clear phase transition. The decoupling in the phase behavior of the two leaflets is due to a non-symmteric lipid distribution in the two leaflets resulting from the presence of the substrate.Keywords: membrane, substrate, molecular dynamics, simulation
Procedia PDF Downloads 19530906 Harmonic Analysis to Improve Power Quality
Authors: Rumana Ali
Abstract:
The presence of nonlinear and power electronic switching devices produce distorted output and harmonics into the system. This paper presents a technique to analyze harmonics using digital series oscilloscope (DSO). In power distribution system further measurements are done by DSO, and the waveforms are analyzed using FFT program. The results of this proposed work are helpful for the investigator to install an appropriate compensating device to mitigate the harmonics, in turn, improve the power quality. This case study is carried out at AIT Chikmagalur. It is done as a starting step towards the improvement of energy efficiency at AIT Chikmagalur, and with an overall aim of reducing the electricity bill with a complete energy audit of the institution. Strategies were put forth to reach the above objective: The following strategies were proposed to be implemented to analyze the power quality in EEE department of the institution. Strategy 1: The power factor has to be measured using the energy meter. Power factor improvement may reduce the voltage drop in lines. This brings the voltages at the socket in the labs closer to the nominal voltage of 230V, and thus power quality improves. Strategy 2: The harmonics at the power inlet has to be measured by means of a DSO. The DSO waveform is analyzed using FFT to know the percentage harmonic up to the 13th harmonics of 50Hz. Reduction in the harmonics in the inlet of the EEE department may reduce line losses and therefore reduces energy bill to the institution.Keywords: harmonic analysis, energy bill, power quality, electronic switching devices
Procedia PDF Downloads 30930905 Comparative Assessment of Finite Element Methodologies for Predicting Post-Buckling Collapse in Stiffened Carbon Fiber-Reinforced Plastic (CFRP) Panels
Authors: Naresh Reddy Kolanu
Abstract:
The stability and collapse behavior of thin-walled composite structures, particularly carbon fiber-reinforced plastic (CFRP) panels, are paramount concerns for structural designers. Accurate prediction of collapse loads necessitates precise modeling of damage evolution in the post-buckling regime. This study conducts a comparative assessment of various finite element (FE) methodologies employed in predicting post-buckling collapse in stiffened CFRP panels. A systematic approach is adopted, wherein FE models with various damage capabilities are constructed and analyzed. The study investigates the influence of interacting intra- and interlaminar damage modes on the post-buckling response and failure behavior of the stiffened CFRP structure. Additionally, the capabilities of shell and brick FE-based models are evaluated and compared to determine their effectiveness in capturing the complex collapse behavior. Conclusions are drawn through quantitative comparison with experimental results, focusing on post-buckling response and collapse load. This comprehensive evaluation provides insights into the most effective FE methodologies for accurately predicting the collapse behavior of stiffened CFRP panels, thereby aiding structural designers in enhancing the stability and safety of composite structures.Keywords: CFRP stiffened panels, delamination, Hashin’s failure, post-buckling, progressive damage model
Procedia PDF Downloads 4230904 Analysis of Exploitation Damages of the Frame Scaffolding
Authors: A. Robak, M. Pieńko, E. Błazik-Borowa, J. Bęc, I. Szer
Abstract:
The analyzes and classifications presented in the article were based on the research carried out in year 2016 and 2017 on a group of nearly one hundred scaffoldings assembled and used on construction sites in different parts of Poland. During scaffolding selection process efforts were made to maintain diversification in terms of parameters such as scaffolding size, investment size, type of investment, location and nature of conducted works. This resulted in the research being carried out on scaffoldings used for church renovation in a small town or attached to the facades of classic apartment blocks, as well as on scaffoldings used during construction of skyscrapers or facilities of the largest power plants. This variety allows to formulate general conclusions about the technical condition of used frame scaffoldings. Exploitation damages of the frame scaffolding elements were divided into three groups. The first group includes damages to the main structural components, which reduce the strength of the scaffolding elements and hence the whole structure. The qualitative analysis of these damages was made on the basis of numerical models that take into account the geometry of the damage and on the basis of computational nonlinear static analyzes. The second group focuses on exploitation damages such as the lack of a pin on the guardrail bolt which may cause an imminent threat to people using scaffolding. These are local damages that do not affect the bearing capacity and stability of the whole structure but are very important for safe use. The last group consider damages that reduce only aesthetic values and do not have direct impact on bearing capacity and safety of use. Apart from qualitative analyzes the article will present quantitative analyzes showing how frequently given type of damage occurs.Keywords: scaffolding, damage, safety, numerical analysis
Procedia PDF Downloads 25930903 A Mixed-Integer Nonlinear Program to Optimally Pace and Fuel Ultramarathons
Authors: Kristopher A. Pruitt, Justin M. Hill
Abstract:
The purpose of this research is to determine the pacing and nutrition strategies which minimize completion time and carbohydrate intake for athletes competing in ultramarathon races. The model formulation consists of a two-phase optimization. The first-phase mixed-integer nonlinear program (MINLP) determines the minimum completion time subject to the altitude, terrain, and distance of the race, as well as the mass and cardiovascular fitness of the athlete. The second-phase MINLP determines the minimum total carbohydrate intake required for the athlete to achieve the completion time prescribed by the first phase, subject to the flow of carbohydrates through the stomach, liver, and muscles. Consequently, the second phase model provides the optimal pacing and nutrition strategies for a particular athlete for each kilometer of a particular race. Validation of the model results over a wide range of athlete parameters against completion times for real competitive events suggests strong agreement. Additionally, the kilometer-by-kilometer pacing and nutrition strategies, the model prescribes for a particular athlete suggest unconventional approaches could result in lower completion times. Thus, the MINLP provides prescriptive guidance that athletes can leverage when developing pacing and nutrition strategies prior to competing in ultramarathon races. Given the highly-variable topographical characteristics common to many ultramarathon courses and the potential inexperience of many athletes with such courses, the model provides valuable insight to competitors who might otherwise fail to complete the event due to exhaustion or carbohydrate depletion.Keywords: nutrition, optimization, pacing, ultramarathons
Procedia PDF Downloads 18930902 The Moderating Effect of Organizational Commitment in the Relationship between Emotional Intelligence and Work Outcomes
Authors: Ali Muhammad
Abstract:
The purpose of this study is to determine the moderating of effect of organizational commitment in the relationship between emotional intelligence and work outcomes. The study presents a new model to explain the mechanism through which emotional intelligence influences work outcomes. The model includes emotional intelligence as an independent variable, organizational commitment as a moderating variable, and work performance, job involvement, job satisfaction, organizational citizenship behavior, and intention to leave as dependent variables. A sample of 208 employees working in eight Kuwaiti business organizations (from industrial, banking, service, and financial sectors) were surveyed, and data was analyzed using structural equation modeling. Results indicate that emotional intelligence is positively associated with organizational commitment and that the positive effect of emotional intelligence on job involvement and organizational citizenship behavior is moderated by organizational commitment. The results of the current study are discussed and are compared to the results of previous studies in this area. Finally, the directions for future research are suggested.Keywords: emotional intelligence, organizational commitment, job involvement, job satisfaction, organizational citizenship behavior, intention to leave
Procedia PDF Downloads 31930901 Finite Element Simulation of an Offshore Monopile Subjected to Cyclic Loading Using Hypoplasticity with Intergranular Strain Anisotropy (ISA) for the Soil
Authors: William Fuentes, Melany Gil
Abstract:
Numerical simulations of offshore wind turbines (OWTs) in shallow waters demand sophisticated models considering the cyclic nature of the environmental loads. For the case of an OWT founded on sands, rapid loading may cause a reduction of the effective stress of the soil surrounding the structure. This eventually leads to its settlement, tilting, or other issues affecting its serviceability. In this work, a 3D FE model of an OWT founded on sand is constructed and analyzed. Cyclic loading with different histories is applied at certain points of the tower to simulate some environmental forces. The mechanical behavior of the soil is simulated through the recently proposed ISA-hypoplastic model for sands. The Intergranular Strain Anisotropy ISA can be interpreted as an enhancement of the intergranular strain theory, often used to extend hypoplastic formulations for the simulation of cyclic loading. In contrast to previous formulations, the proposed constitutive model introduces an elastic range for small strain amplitudes, includes the cyclic mobility effect and is able to capture the cyclic behavior of sands under a larger number of cycles. The model performance is carefully evaluated on the FE dynamic analysis of the OWT.Keywords: offshore wind turbine, monopile, ISA, hypoplasticity
Procedia PDF Downloads 24630900 Analysis of Multilayer Neural Network Modeling and Long Short-Term Memory
Authors: Danilo López, Nelson Vera, Luis Pedraza
Abstract:
This paper analyzes fundamental ideas and concepts related to neural networks, which provide the reader a theoretical explanation of Long Short-Term Memory (LSTM) networks operation classified as Deep Learning Systems, and to explicitly present the mathematical development of Backward Pass equations of the LSTM network model. This mathematical modeling associated with software development will provide the necessary tools to develop an intelligent system capable of predicting the behavior of licensed users in wireless cognitive radio networks.Keywords: neural networks, multilayer perceptron, long short-term memory, recurrent neuronal network, mathematical analysis
Procedia PDF Downloads 42030899 Driver Behavior Analysis and Inter-Vehicular Collision Simulation Approach
Authors: Lu Zhao, Nadir Farhi, Zoi Christoforou, Nadia Haddadou
Abstract:
The safety test of deploying intelligent connected vehicles (ICVs) on the road network is a critical challenge. Road traffic network simulation can be used to test the functionality of ICVs, which is not only time-saving and less energy-consuming but also can create scenarios with car collisions. However, the relationship between different human driver behaviors and the car-collision occurrences has been not understood clearly; meanwhile, the procedure of car-collisions generation in the traffic numerical simulators is not fully integrated. In this paper, we propose an approach to identify specific driver profiles from real driven data; then, we replicate them in numerical traffic simulations with the purpose of generating inter-vehicular collisions. We proposed three profiles: (i) 'aggressive': short time-headway, (ii) 'inattentive': long reaction time, and (iii) 'normal' with intermediate values of reaction time and time-headway. These three driver profiles are extracted from the NGSIM dataset and simulated using the intelligent driver model (IDM), with an extension of reaction time. At last, the generation of inter-vehicular collisions is performed by varying the percentages of different profiles.Keywords: vehicular collisions, human driving behavior, traffic modeling, car-following models, microscopic traffic simulation
Procedia PDF Downloads 17130898 Investigation of Flow Behavior inside the Single Channel Catalytic Combustor for Lean Mixture
Authors: Kumaresh Selvakumar, Man Young Kim
Abstract:
Catalytic combustor substantially reduces emission entailing fuel-air premixing at very low equivalence ratios. The catalytic combustion of natural gas has the potential to become sufficiently active at light off temperature by the convection of heat from the catalyst surface. Only one channel is selected to investigate both the gas and surface reactions in the catalyst bed because of the honeycomb structure of the catalytic combustor. The objective of the present study is to find the methane catalytic combustion behavior inside the catalytic combustor, where the gas phase kinetics is employed by homogeneous methane combustion and surface chemistry is described with the heterogeneous catalysis of the oxidation of methane on a platinum catalyst. The reaction of the premixed mixture in the catalytic regime improves flame stability with complete combustion for lower operating flame temperature. An overview of the flow behavior is presented inside the single channel catalytic combustor including the operation of catalytic combustion with various F/A ratios and premixed inlet temperature.Keywords: catalytic combustor, equivalence ratios, flame temperature, heterogeneous catalysis, homogeneous combustion
Procedia PDF Downloads 26430897 An Experimental Investigation on the Droplet Behavior Impacting a Hot Surface above the Leidenfrost Temperature
Authors: Khaleel Sami Hamdan, Dong-Eok Kim, Sang-Ki Moon
Abstract:
An appropriate model to predict the size of the droplets resulting from the break-up with the structures will help in a better understanding and modeling of the two-phase flow calculations in the simulation of a reactor core loss-of-coolant accident (LOCA). A droplet behavior impacting on a hot surface above the Leidenfrost temperature was investigated. Droplets of known size and velocity were impacted to an inclined plate of hot temperature, and the behavior of the droplets was observed by a high-speed camera. It was found that for droplets of Weber number higher than a certain value, the higher the Weber number of the droplet the smaller the secondary droplets. The COBRA-TF model over-predicted the measured secondary droplet sizes obtained by the present experiment. A simple model for the secondary droplet size was proposed using the mass conservation equation. The maximum spreading diameter of the droplets was also compared to previous correlations and a fairly good agreement was found. A better prediction of the heat transfer in the case of LOCA can be obtained with the presented model.Keywords: break-up, droplet, impact, inclined hot plate, Leidenfrost temperature, LOCA
Procedia PDF Downloads 39930896 The Effect of Adding Microsilica on the Rheological Behavior and Injectability of the Paste in the Injection Molding of Silica-Based Ceramic Cores
Authors: Arghavan Kazemi, Hossein Radipour
Abstract:
Microsilica (silica foam) is a byproduct of ferrosilicon production and silicon metal. Microsilica particles have a spherical shape, an average diameter of 0.15 µm, and a specific surface area of 15-25 m². g-¹. The overall density of this material is 150-700 kg.m-³. Many researchers have investigated the effect of adding microsilica on the flow properties of cement mixtures. This paper investigated the effect of adding microsilica on the flow behavior and injectability of silica-based paste. For this purpose, different percentages of microsilica have been used to prepare the paste. The rheometric test was performed on all the samples with different percentages of microsilica additives using an MCR300 rotary viscometer at a temperature of 70°C. In addition, the ability to inject pastes containing different amounts of microsilica at pressures of 25, 40, 50, and (bar) 60 at constant temperature and flow in a mold with dimensions of 80 × 80 × 0.5 mm³ has been investigated. Then, the effect of microsilica addition on the strength, porosity percentage, and leachability of the sintered core was studied. The results show that the rheological behavior of the paste is pseudoplastic; also, the silane index decreases with the increase in the percentage of microsilica addition, and the viscosity increases. On the other hand, the addition of microsilica has led to the appearance of thixotropic in the paste. By increasing the amount of microsilica, the injectability has significantly improved at low pressures. The strength of the sintered core increases with the increase of microsilica and the amount of remaining porosity and leachability decreases.Keywords: microsilica, rheological behavior, injectability, injection molding, silica-based ceramic cores, leachability
Procedia PDF Downloads 3330895 Stabilization of the Bernoulli-Euler Plate Equation: Numerical Analysis
Authors: Carla E. O. de Moraes, Gladson O. Antunes, Mauro A. Rincon
Abstract:
The aim of this paper is to study the internal stabilization of the Bernoulli-Euler equation numerically. For this, we consider a square plate subjected to a feedback/damping force distributed only in a subdomain. An algorithm for obtaining an approximate solution to this problem was proposed and implemented. The numerical method used was the Finite Difference Method. Numerical simulations were performed and showed the behavior of the solution, confirming the theoretical results that have already been proved in the literature. In addition, we studied the validation of the numerical scheme proposed, followed by an analysis of the numerical error; and we conducted a study on the decay of the energy associated.Keywords: Bernoulli-Euler plate equation, numerical simulations, stability, energy decay, finite difference method
Procedia PDF Downloads 41630894 Novel Numerical Technique for Dusty Plasma Dynamics (Yukawa Liquids): Microfluidic and Role of Heat Transport
Authors: Aamir Shahzad, Mao-Gang He
Abstract:
Currently, dusty plasmas motivated the researchers' widespread interest. Since the last two decades, substantial efforts have been made by the scientific and technological community to investigate the transport properties and their nonlinear behavior of three-dimensional and two-dimensional nonideal complex (dusty plasma) liquids (NICDPLs). Different calculations have been made to sustain and utilize strongly coupled NICDPLs because of their remarkable scientific and industrial applications. Understanding of the thermophysical properties of complex liquids under various conditions is of practical interest in the field of science and technology. The determination of thermal conductivity is also a demanding question for thermophysical researchers, due to some reasons; very few results are offered for this significant property. Lack of information of the thermal conductivity of dense and complex liquids at different parameters related to the industrial developments is a major barrier to quantitative knowledge of the heat flux flow from one medium to another medium or surface. The exact numerical investigation of transport properties of complex liquids is a fundamental research task in the field of thermophysics, as various transport data are closely related with the setup and confirmation of equations of state. A reliable knowledge of transport data is also important for an optimized design of processes and apparatus in various engineering and science fields (thermoelectric devices), and, in particular, the provision of precise data for the parameters of heat, mass, and momentum transport is required. One of the promising computational techniques, the homogenous nonequilibrium molecular dynamics (HNEMD) simulation, is over viewed with a special importance on the application to transport problems of complex liquids. This proposed work is particularly motivated by the FIRST TIME to modify the problem of heat conduction equations leads to polynomial velocity and temperature profiles algorithm for the investigation of transport properties with their nonlinear behaviors in the NICDPLs. The aim of proposed work is to implement a NEMDS algorithm (Poiseuille flow) and to delve the understanding of thermal conductivity behaviors in Yukawa liquids. The Yukawa system is equilibrated through the Gaussian thermostat in order to maintain the constant system temperature (canonical ensemble ≡ NVT)). The output steps will be developed between 3.0×105/ωp and 1.5×105/ωp simulation time steps for the computation of λ data. The HNEMD algorithm shows that the thermal conductivity is dependent on plasma parameters and the minimum value of lmin shifts toward higher G with an increase in k, as expected. New investigations give more reliable simulated data for the plasma conductivity than earlier known simulation data and generally the plasma λ0 by 2%-20%, depending on Γ and κ. It has been shown that the obtained results at normalized force field are in satisfactory agreement with various earlier simulation results. This algorithm shows that the new technique provides more accurate results with fast convergence and small size effects over a wide range of plasma states.Keywords: molecular dynamics simulation, thermal conductivity, nonideal complex plasma, Poiseuille flow
Procedia PDF Downloads 27430893 Creating Positive Learning Environment
Authors: Samia Hassan, Fouzia Latif
Abstract:
In many countries, education is still far from being a knowledge industry in the sense of own practices that are not yet being transformed by knowledge about the efficacy of those practices. The core question of this paper is why students get bored in class? Have we balanced between the creation and advancement of an engaging learning community and effective learning environment? And between, giving kids confidence to achieve their maximum and potential goals, we sand managing student’s behavior. We conclude that creating a positive learning environment enhances opportunities for young children to feel safe, secure, and to supported in order to do their best learning. Many factors can use in classrooms aid to the positive environment like course content, class preparation, and behavior.Keywords: effective, environment, learning, positive
Procedia PDF Downloads 57430892 Integrated Intensity and Spatial Enhancement Technique for Color Images
Authors: Evan W. Krieger, Vijayan K. Asari, Saibabu Arigela
Abstract:
Video imagery captured for real-time security and surveillance applications is typically captured in complex lighting conditions. These less than ideal conditions can result in imagery that can have underexposed or overexposed regions. It is also typical that the video is too low in resolution for certain applications. The purpose of security and surveillance video is that we should be able to make accurate conclusions based on the images seen in the video. Therefore, if poor lighting and low resolution conditions occur in the captured video, the ability to make accurate conclusions based on the received information will be reduced. We propose a solution to this problem by using image preprocessing to improve these images before use in a particular application. The proposed algorithm will integrate an intensity enhancement algorithm with a super resolution technique. The intensity enhancement portion consists of a nonlinear inverse sign transformation and an adaptive contrast enhancement. The super resolution section is a single image super resolution technique is a Fourier phase feature based method that uses a machine learning approach with kernel regression. The proposed technique intelligently integrates these algorithms to be able to produce a high quality output while also being more efficient than the sequential use of these algorithms. This integration is accomplished by performing the proposed algorithm on the intensity image produced from the original color image. After enhancement and super resolution, a color restoration technique is employed to obtain an improved visibility color image.Keywords: dynamic range compression, multi-level Fourier features, nonlinear enhancement, super resolution
Procedia PDF Downloads 55430891 Numerical Evaluation of the Flow Behavior inside the Scrubber Unit with Engine Exhaust Pipe
Authors: Kumaresh Selvakumar, Man Young Kim
Abstract:
A wet scrubber is an air pollution control device that removes particulate matter and acid gases from waste gas streams found in marine engine exhaust. If the flue gases in the exhaust is employed for CFD simulation, it makes the problem complicate due to the involvement of emissions. Owing to the fact, the scrubber system in this paper is handled with appropriate approach by designing with the flow properties of hot air and water droplet injections to evaluate the flow behavior inside the system. Since the wet scrubber has the capability of operating over wide range of mixture compositions, the current scrubber model with the designing approach doesn’t deviate from the actual behavior of the system. The scrubber design is constructed with engine exhaust pipe with the purpose of measuring the flow properties inside the scrubber by the influence of exhaust pipe characteristics. The flow properties are computed by the thermodynamic variables such as temperature and pressure with the flow velocity. In this work, numerical analyses have been conducted for the flow of fluid in the scrubber system through CFD technique.Keywords: wet scrubber, water droplet injections, thermodynamic variables, CFD technique
Procedia PDF Downloads 34530890 Investigation on Pull-Out-Behavior and Interface Critical Parameters of Polymeric Fibers Embedded in Concrete and Their Correlation with Particular Fiber Characteristics
Authors: Michael Sigruener, Dirk Muscat, Nicole Struebbe
Abstract:
Fiber reinforcement is a state of the art to enhance mechanical properties in plastics. For concrete and civil engineering, steel reinforcements are commonly used. Steel reinforcements show disadvantages in their chemical resistance and weight, whereas polymer fibers' major problems are in fiber-matrix adhesion and mechanical properties. In spite of these facts, longevity and easy handling, as well as chemical resistance motivate researches to develop a polymeric material for fiber reinforced concrete. Adhesion and interfacial mechanism in fiber-polymer-composites are already studied thoroughly. For polymer fibers used as concrete reinforcement, the bonding behavior still requires a deeper investigation. Therefore, several differing polymers (e.g., polypropylene (PP), polyamide 6 (PA6) and polyetheretherketone (PEEK)) were spun into fibers via single screw extrusion and monoaxial stretching. Fibers then were embedded in a concrete matrix, and Single-Fiber-Pull-Out-Tests (SFPT) were conducted to investigate bonding characteristics and microstructural interface of the composite. Differences in maximum pull-out-force, displacement and slope of the linear part of force vs displacement-function, which depicts the adhesion strength and the ductility of the interfacial bond were studied. In SFPT fiber, debonding is an inhomogeneous process, where the combination of interfacial bonding and friction mechanisms add up to a resulting value. Therefore, correlations between polymeric properties and pull-out-mechanisms have to be emphasized. To investigate these correlations, all fibers were introduced to a series of analysis such as differential scanning calorimetry (DSC), contact angle measurement, surface roughness and hardness analysis, tensile testing and scanning electron microscope (SEM). Of each polymer, smooth and abraded fibers were tested, first to simulate the abrasion and damage caused by a concrete mixing process and secondly to estimate the influence of mechanical anchoring of rough surfaces. In general, abraded fibers showed a significant increase in maximum pull-out-force due to better mechanical anchoring. Friction processes therefore play a major role to increase the maximum pull-out-force. The polymer hardness affects the tribological behavior and polymers with high hardness lead to lower surface roughness verified by SEM and surface roughness measurements. This concludes into a decreased maximum pull-out-force for hard polymers. High surface energy polymers show better interfacial bonding strength in general, which coincides with the conducted SFPT investigation. Polymers such as PEEK or PA6 show higher bonding strength in smooth and roughened fibers, revealed through high pull-out-force and concrete particles bonded on the fiber surface pictured via SEM analysis. The surface energy divides into dispersive and polar part, at which the slope is correlating with the polar part. Only polar polymers increase their SFPT-function slope due to better wetting abilities when showing a higher bonding area through rough surfaces. Hence, the maximum force and the bonding strength of an embedded fiber is a function of polarity, hardness, and consequently surface roughness. Other properties such as crystallinity or tensile strength do not affect bonding behavior. Through the conducted analysis, it is now feasible to understand and resolve different effects in pull-out-behavior step-by-step based on the polymer properties itself. This investigation developed a roadmap on how to engineer high adhering polymeric materials for fiber reinforcement of concrete.Keywords: fiber-matrix interface, polymeric fibers, fiber reinforced concrete, single fiber pull-out test
Procedia PDF Downloads 11330889 Modal Analysis for Study of Minor Historical Architecture
Authors: Milorad Pavlovic, Anna Manzato, Antonella Cecchi
Abstract:
Cultural heritage conservation is a challenge for contemporary society. In recent decades, significant resources have been allocated for the conservation and restoration of architectural heritage. Historical buildings were restored, protected and reinforced with the intent to limit the risks of degradation or loss, due to phenomena of structural damage and to external factors such as differential settlements, earthquake effects, etc. The wide diffusion of historic masonry constructions in Italy, Europe and the Mediterranean area requires reliable tools for the evaluation of their structural safety. In this paper is presented a free modal analysis performed on a minor historical architecture located in the village of Bagno Grande, near the city of L’Aquila in Italy. The location is characterized by a complex urban context, seriously damaged by the earthquake of 2009. The aim of this work is to check the structural behavior of a masonry building characterized by several boundary conditions imposed by adjacent buildings and infrastructural facilities.Keywords: FEM, masonry, minor historical architecture, modal analysis
Procedia PDF Downloads 31830888 The Traditional Ceramics Value in the Middle East
Authors: Abdelmessih Malak Sadek Labib
Abstract:
Ceramic materials are known for their stability in harsh environments and excellent electrical, mechanical, and thermal properties. They have been widely used in various applications despite the emergence of new materials such as plastics and composites. However, ceramics are often brittle, which can lead to catastrophic failure. The fragility of ceramics and the mechanisms behind their failure have been a topic of extensive research, particularly in load-bearing applications like veneers. Porcelain, a type of traditional pottery, is commonly used in such applications. Traditional pottery consists of clay, silica, and feldspar, and the presence of quartz in the ceramic body can lead to microcracks and stress concentrations. The mullite hypothesis suggests that the strength of porcelain can be improved by increasing the interlocking of mullite needles in the ceramic body. However, there is a lack of reports on Young's moduli in the literature, leading to erroneous conclusions about the mechanical behavior of porcelain. This project aims to investigate the role of quartz and mullite on the mechanical strength of various porcelains while considering factors such as particle size, flexural strength, and fractographic forces. Research Aim: The aim of this research project is to assess the role of quartz and mullite in enhancing the mechanical strength of different porcelains. The project will also explore the effect of reducing particle size on the properties of porcelain, as well as investigate flexural strength and fractographic techniques. Methodology: The methodology for this project involves using scientific expressions and a mix of modern English to ensure the understanding of all attendees. It will include the measurement of Young's modulus and the evaluation of the mechanical behavior of porcelains through various experimental techniques. Findings: The findings of this study will provide a realistic assessment of the role of quartz and mullite in strengthening and reducing the fragility of porcelain. The research will also contribute to a better understanding of the mechanical behavior of ceramics, specifically in load-bearing applications. Theoretical Importance: The theoretical importance of this research lies in its contribution to the understanding of the factors influencing the mechanical strength and fragility of ceramics, particularly porcelain. By investigating the interplay between quartz, mullite, and other variables, this study will enhance our knowledge of the properties and behavior of traditional ceramics. Data Collection and Analysis Procedures: Data for this research will be collected through experiments involving the measurement of Young's modulus and other mechanical properties of porcelains. The effects of quartz, mullite, particle size, flexural strength, and fractographic forces will be examined and analyzed using appropriate statistical techniques and fractographic analysis. Questions Addressed: This research project aims to address the following questions: (1) How does the presence of quartz and mullite affect the mechanical strength of porcelain? (2) What is the impact of reducing particle size on the properties of porcelain? (3) How do flexural strength and fractographic forces influence the behavior of porcelains? Conclusion: In conclusion, this research project aims to enhance the understanding of the role of quartz and mullite in strengthening and reducing the fragility of porcelain. By investigating the mechanical properties of porcelains and considering factors such as particle size, flexural strength, and fractographic forces, this study will contribute to the knowledge of traditional ceramics and their potential applications. The findings will have practical implications for the use of ceramics in various fields.Keywords: stability, harsh environments, electrical, techniques, mechanical disadvantages, materials
Procedia PDF Downloads 6830887 Design and Analysis of Flexible Slider Crank Mechanism
Authors: Thanh-Phong Dao, Shyh-Chour Huang
Abstract:
This study presents the optimal design and formulation of a kinematic model of a flexible slider crank mechanism. The objective of the proposed innovative design is to take extra advantage of the compliant mechanism and maximize the fatigue life by applying the Taguchi method. A formulated kinematic model is developed using a Pseudo-Rigid-Body Model (PRBM). By means of mathematic models, the kinematic behaviors of the flexible slider crank mechanism are captured using MATLAB software. Finite Element Analysis (FEA) is used to show the stress distribution. The results show that the optimal shape of the flexible hinge includes a force of 8.5N, a width of 9mm and a thickness of 1.1mm. Analysis of variance shows that the thickness of the proposed hinge is the most significant parameter, with an F test of 15.5. Finally, a prototype is manufactured to prepare for testing the kinematic and dynamic behaviors.Keywords: kinematic behavior, fatigue life, pseudo-rigid-body model, flexible slider crank mechanism
Procedia PDF Downloads 45930886 Andrea's Lifestyle Changes in Lauren Weisberger's 'The Devil Wears Prada'
Authors: Dini Riandini
Abstract:
The research is aimed to find out the causes and effect of Andrea’s lifestyle changes and the other factors that contribute to Andrea’s lifestyle changes which influence Andrea’s behavior and personality in The Devil Wears Prada novel. The method of this research is descriptive qualitative method. Theory of Anderson (1999) about social psychology is used to figure out Andrea’s lifestyle changes. Lifestyle changes are influenced by social and environment in which people live. Andrea changes her lifestyle from simple to luxurious because of society and environment in which she lives. Social interaction creates humans’ lifestyles which influence their personality and behavior.Keywords: lifestyle, lifestyle changes, personality, behaviour
Procedia PDF Downloads 32730885 Investigation of Tribological Behavior of Electrodeposited Cr, Co-Cr and Co-Cr/Tio2 Nano-Composite Coatings
Authors: S. Mahdavi, S.R. Allahkaram
Abstract:
Electrodeposition is a simple and economic technique for precision coating of different shaped substrates with pure metal, alloy or composite films. Dc electrodeposition was used to produce Cr, Co-Cr and Co-Cr/TiO2 nano-composite coatings from Cr(III) based electrolytes onto 316L SS substrates. The effects of TiO2 nano-particles concentration on co-deposition of these particles along with Cr content and microhardness of the coatings were investigated. Morphology of the Cr, Co-Cr and Co-Cr/TiO2 coatings besides their tribological behavior were studied. The results showed that increment of TiO2 nano-particles concentration from 0 to 30 g L-1 in the bath increased their co-deposition and Cr content of the coatings from 0 to 3.5 wt.% and from 23.7 to 31.2 wt.%, respectively. Microhardness of Cr coating was about 920 Hv which was higher than Co-Cr and even Co-Cr/TiO2 films. Microhardness of Co-Cr and Co-Cr/TiO2 coatings were improved by increasing their Cr and TiO2 content. All the coatings had nodular morphology and contained microcracks. Nodules sizes and the number of microcracks in the alloy and composite coatings were lower than the Cr film. Wear results revealed that the Co-Cr/TiO2 coating had the lowest wear loss between all the samples, while the Cr film had the worst wear resistance.Keywords: Co-Cr alloy, electrodeposition, nano-composite, tribological behavior, trivalent chromium
Procedia PDF Downloads 48730884 The Knowledge-Behavior Gap in the Online Information Seeking Process
Authors: Yen-Mei Lee
Abstract:
The concept of a knowledge-behavior gap has been discussed for several years. It is addressed that an individual’s knowledge does not sufficiently transfer to his or her actual actions. This concept is mostly focused on fields related to medicine or applied to health care issues to explain how people or patients connect their personal knowledge to actual health care behaviors. To our knowledge, seldomly has this research been applied to discuss people’s online information seeking behavior. In the current study, the main purpose is to investigate the relationship between web users’ personal values and their actual performances when seeking information on the Internet. The total number of twenty-eight participants, divided into one experienced group (n=14) and one novice group (n=14), were recruited and asked to complete a self-report questionnaire of fifty items related to information seeking actions and behaviors. During the execution, participants needed to rate the importance level (how important each item is) and the performance level (how often they actually do each item) from 1 to 10 points on each item. In this paper, the mean scores of the importance and the performance level are analyzed and discussed. The results show that there is a gap between web user’s knowledge and their actual online seeking behaviors. Both experienced group and novice group have higher average scores of the importance level (experienced group = 7.57, novice group = 6.01) than the actual performance level (experienced group = 6.89, novice group = 5.00) in terms of the fifty online information seeking actions. On the other hand, the experienced group perceives more importance of the fifty online seeking actions and performs actual behaviors better than the novice group. Moreover, experienced participants express a consistent result between their concept knowledge and actual behaviors. For instance, they feel extending a seeking strategy is important and frequently perform this action when seeking online. However, novice participants do not have a consistency between their knowledge and behaviors. For example, though they perceive browsing and judging information are less important than they get lost in the online information seeking process. However, in the actual behavior rating, the scores show that novices do browsing and judge information more often than they get lost when seeking information online. These results, therefore, help scholars and educators have a better understanding of the difference between experienced and novice web users regarding their concept knowledge and actual behaviors. In future study, figuring out how to narrow down the knowledge-behavior gap and create practical guidance for novice users to increase their online seeking efficiency is crucial. Not only could it help experienced users be aware of their actual information seeking behaviors, but also help the novice become mastery to concisely obtain information on the Internet.Keywords: experienced web user, information seeking behavior, knowledge-behavior gap, novice, online seeking efficiency
Procedia PDF Downloads 120