Search results for: molecular differentiation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2586

Search results for: molecular differentiation

876 Characterization of Biodiesel Produced from Cow-Tallow

Authors: Nwadike Emmanuel Chinagoron, Achebe Chukwunonso, Ezeliora Chukwuemeka Daniel, Azaka Onyemazuwa Andrew

Abstract:

In this research work, the process of biodiesel production in a pilot plant was studied using cow tallow as raw material, methanol as the solvent and potassium hydroxide as catalysts. The biodiesel quality was determined by characterization. The tallow used in the production had a molecular weight of 860g. Its oil had a density value of 0.8g/ml, iodine value of 63.45, viscosity at 300C was 9.83pas, acid value was 1.96, free fatty acid (FFA) of 0.98%, saponification value of 82.75mleq/kg, specific gravity of 0.898, flash point of 1100C, cloud point of 950C and Calorific value also called Higher Heating Value (HHV) of 38.365MJ/Kg. The produced biodiesel had a density of 0.82g/ml, iodine value of 126.9, viscosity of 4.32pas at 300C, acid value of 0.561, FFA of 0.2805%, saponification value of 137.45 mleq/kg.Flash point, cloud point and centane number of the biodiesel produced are 1390C, 980C and 57.5 respectively, with fat content, protein content, ash content, moisture content, fiber content and carbohydrate content values of 10%, 2.8%, 5%, 5%, 20%, and 37.2% respectively. The biodiesel higher heating values (calorific values) when estimated from viscosity, density and flash points were 41.4MJ/Kg, 63.8MJ/Kg, and 34.6MJ/Kg respectively. The biodiesel was blended with conventional diesel. The blend B-10 had values of 1320C and 960C for flash and cloud points, with Calorific value (or HHV) of 34.6 MJ/Kg (when estimated from its Flash point) and fat content, protein content, ash content, moisture content, fiber content and carbohydrate content values of 5%, 2.1%,10%, 5%, 15%, and 62.9% respectively.

Keywords: biodiesel, characterization, cow-tallow, cetane rating

Procedia PDF Downloads 537
875 Detection of Important Biological Elements in Drug-Drug Interaction Occurrence

Authors: Reza Ferdousi, Reza Safdari, Yadollah Omidi

Abstract:

Drug-drug interactions (DDIs) are main cause of the adverse drug reactions and nature of the functional and molecular complexity of drugs behavior in human body make them hard to prevent and treat. With the aid of new technologies derived from mathematical and computational science the DDIs problems can be addressed with minimum cost and efforts. Market basket analysis is known as powerful method to identify co-occurrence of thing to discover patterns and frequency of the elements. In this research, we used market basket analysis to identify important bio-elements in DDIs occurrence. For this, we collected all known DDIs from DrugBank. The obtained data were analyzed by market basket analysis method. We investigated all drug-enzyme, drug-carrier, drug-transporter and drug-target associations. To determine the importance of the extracted bio-elements, extracted rules were evaluated in terms of confidence and support. Market basket analysis of the over 45,000 known DDIs reveals more than 300 important rules that can be used to identify DDIs, CYP 450 family were the most frequent shared bio-elements. We applied extracted rules over 2,000,000 unknown drug pairs that lead to discovery of more than 200,000 potential DDIs. Analysis of the underlying reason behind the DDI phenomena can help to predict and prevent DDI occurrence. Ranking of the extracted rules based on strangeness of them can be a supportive tool to predict the outcome of an unknown DDI.

Keywords: drug-drug interaction, market basket analysis, rule discovery, important bio-elements

Procedia PDF Downloads 309
874 Solubility Enhancement of Poorly Soluble Anticancer Drug, Docetaxel Using a Novel Polymer, Soluplus via Solid Dispersion Technique

Authors: Adinarayana Gorajana, Venkata Srikanth Meka, Sanjay Garg, Lim Sue May

Abstract:

This study was designed to evaluate and enhance the solubility of poorly soluble drug, docetaxel through solid dispersion (SD) technique prepared using freeze drying method. Docetaxel solid dispersions were formulated with Soluplus in different weight ratios. Freeze drying method was used to prepare the solid dispersions. Solubility of the solid dispersions were evaluated respectively and the optimized of drug-solubilizers ratio systems were characterized with different analytical methods like Differential scanning calorimeter (DSC), Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) to confirm the formation of complexes between drug and solubilizers. The solubility data revealed an overall improvement in solubility for all SD formulations. The ternary combination 1:5:2 gave the highest increase in solubility that is approximately 3 folds from the pure drug, suggesting the optimum drug-solubilizers ratio system. This data corresponds with the DSC and SEM analyses, which demonstrates presence of drug in amorphous state and the dispersion in the solubilizers in molecular level. The solubility of the poorly soluble drug, docetaxel was enhanced through preparation of solid dispersion formulations employing freeze drying method. Solid dispersion with multiple carrier system shows better solubility compared to single carrier system.

Keywords: docetaxel, freeze drying, soluplus, solid dispersion technique

Procedia PDF Downloads 502
873 Magnetic SF (Silk Fibroin) E-Gel Scaffolds Containing bFGF-Conjugated Fe3O4 Nanoparticles

Authors: Z. Karahaliloğlu, E. Yalçın, M. Demirbilek, E.B. Denkbaş

Abstract:

Critical-sized bone defects caused by trauma, bone diseases, prosthetic implant revision or tumor excision cannot be repaired by physiological regenerative processes. Current orthopedic applications for critical-sized bone defects are to use autologous bone grafts, bone allografts, or synthetic graft materials. However, these strategies are unable to solve completely the problem, and motivate the development of novel effective biological scaffolds for tissue engineering applications and regenerative medicine applications. In particular, scaffolds combined with a variety of bio-agents as fundamental tools emerge to provide the regeneration of damaged bone tissues due to their ability to promote cell growth and function. In this study, a magnetic silk fibroin (SF) hydrogel scaffold was prepared by electrogelation process of the concentrated Bombxy mori silk fibroin (8 %wt) aqueous solution. For enhancement of osteoblast-like cells (SaOS-2) growth and adhesion, basal fibroblast growth factor (bFGF) were conjugated physically to the HSA-coated magnetic nanoparticles (Fe3O4) and magnetic SF e-gel scaffolds were prepared by incorporation of Fe3O4, HSA (human serum albumin)=Fe3O4 and HSA=Fe3O4-bFGF nanoparticles. HSA=Fe3O4, HSA=Fe3O4-bFGF loaded and bare SF e-gels scaffolds were characterized using scanning electron microscopy (SEM.) For cell studies, human osteoblast-like cell line (SaOS-2) was used and an MTT assay was used to assess the cytotoxicity of magnetic silk fibroin e-gel scaffolds and cell density on these surfaces. For the evaluation osteogenic activation, ALP (alkaline phosphatase), the amount of mineralized calcium, total protein and collagen were studied. Fe3O4 nanoparticles were successfully synthesized and bFGF was conjugated to HSA=Fe3O4 nanoparticles with %97.5 of binding yield which has a particle size of 71.52±2.3 nm. Electron microscopy images of the prepared HSA and bFGF incorporated SF e-gel scaffolds showed a 3D porous morphology. In terms of water uptake results, bFGF conjugated HSA=Fe3O4 nanoparticles has the best water absorbability behavior among all groups. In the in-vitro cell culture studies realized using SaOS-2 cell line, the coating of Fe3O4 nanoparticles surface with a protein enhance the cell viability and HSA coating and bFGF conjugation, the both have an inductive effect in the cell proliferation. One of the markers of bone formation and osteoblast differentiation, according to the ALP activity and total protein results, HSA=Fe3O4-bFGF loaded SF e-gels had significantly enhanced ALP activity. Osteoblast cultured HSA=Fe3O4-bFGF loaded SF e-gels deposited more calcium compared with SF e-gel. The proposed magnetic scaffolds seem to be promising for bone tissue regeneration and used in future work for various applications.

Keywords: basic fibroblast growth factor (bFGF), e-gel, iron oxide nanoparticles, silk fibroin

Procedia PDF Downloads 288
872 Marketing in the Fashion Industry and Its Critical Success Factors: The Case of Fashion Dealers in Ghana

Authors: Kumalbeo Paul Kamani

Abstract:

Marketing plays a very important role in the success of any firm since it represents the means through which a firm can reach its customers and also promotes its products and services. In fact, marketing aids the firm in identifying customers who the business can competitively serve, and tailoring product offerings, prices, distribution, promotional efforts, and services towards those customers. Unfortunately, in many firms, marketing has been reduced to merely advertisement. For effective marketing, firms must go beyond this often-limited function of advertisement. In the fashion industry in particular, marketing faces challenges due to its peculiar characteristics. Previous research for instance affirms the idiosyncrasy and peculiarities that differentiate the fashion industry from other industrial areas. It has been documented that the fashion industry is characterized seasonal intensity, short product life cycles, the difficulty of competitive differentiation, and long time for companies to reach financial stability. These factors are noted to pose obstacles to the fashion entrepreneur’s endeavours and can be the reasons that explain their low survival rates. In recent times, the fashion industry has been described as a market that is accessible market, has low entry barriers, both in terms of needed capital and skills which have all accounted for the burgeoning nature of startups. Yet as already stated, marketing is particularly challenging in the industry. In particular, areas such as marketing, branding, growth, project planning, financial and relationship management might represent challenges for the fashion entrepreneur but that have not been properly addressed by previous research. It is therefore important to assess marketing strategies of fashion firms and the factors influencing their success. This study generally sought to examine marketing strategies of fashion dealers in Ghana and their critical success factors. The study employed the quantitative survey research approach. A total of 120 fashion dealers were sampled. Questionnaires were used as instrument of data collection. Data collected was analysed using quantitative techniques including descriptive statistics and Relative Importance Index. The study revealed that the marketing strategies used by fashion apparels are text messages using mobile phones, referrals, social media marketing, and direct marketing. Results again show that the factors influencing fashion marketing effectiveness are strategic management, marketing mix (product, price, promotion etc), branding and business development. Policy implications are finally outlined. The study recommends among others that there is a need for the top management executive to craft and adopt marketing strategies that enable that are compatible with the fashion trends and the needs of the customers. This will improve customer satisfaction and hence boost market penetration. The study further recommends that the fashion industry in Ghana should seek to ensure that fashion apparels accommodate the diversity and the cultural setting of different customers to meet their unique needs.

Keywords: marketing, fashion, industry, success factors

Procedia PDF Downloads 41
871 Isolation, Characterization and Application of Bacteriophages on the Biocontrol of Listeria monocytogenes in Soft Cheese

Authors: Vinicius Buccelli Ribeiro, Maria Teresa Destro, Mariza Landgraf

Abstract:

Bacteriophages are one of the most abundant replicating entities on Earth and can be found everywhere in which their hosts live and there are reports regarding isolation from different niches such as soil and foods. Since studies are moving forward with regard to biotechnology area, different research projects are being performed focusing on the phage technology and its use by the food industry. This study aimed to evaluate a cocktail (LP501) of phages isolated in Brazil for its lytic potential against Listeria monocytogenes. Three bacteriophages (LP05, LP12 and LP20) were isolated from soil samples and all of them showed 100% lysis against a panel of 10 L. monocytogenes strains representing different serotypes of this pathogen. A mix of L. monocytogenes 1/2a and 4b were inoculated in soft cheeses (approximately 105 cfu/cm2) with the phage cocktail added thereafter (1 x 109 PFU/cm2). Samples were analyzed immediately and then stored at 10°C for ten days. At 30 min post-infection, the cocktail reduced L. monocytogenes counts approximately 1.5 logs, compared to controls without bacteriophage. The treatment produced a statistically significant decrease in the counts of viable cells (p < 0.05) and in all assays performed we observed a decrease of up to 4 logs of L. monocytogenes. This study will make available to the international community behavioral and molecular data regarding bacteriophages present in soil samples in Brazil. Furthermore, there is the possibility to apply this new cocktail of phages in different food products to combat L. monocytogenes.

Keywords: bacteriophages, biocontrol, listeria monocytogenes, soft cheese

Procedia PDF Downloads 362
870 Design and Identification of Mycobacterium tuberculosis Glutamate Racemase (MurI) Inhibitors

Authors: Prasanthi Malapati, R. Reshma, Vijay Soni, Perumal Yogeeswari, Dharmarajan Sriram

Abstract:

In the present study, we attempted to develop Mycobacterium tuberculosis (Mtb) inhibitors by exploring the pharmaceutically underexploited enzyme targets which are majorly involved in cell wall biosynthesis of mycobacteria. For this purpose, glutamate racemase (coded by MurI gene) was selected. This enzyme racemize L-glutamate to D-glutamate required for the construction of peptidoglycan in the bacterial cell wall synthesis process. Furthermore this enzyme is neither expressed nor its product, D-glutamate is normally found in mammals, and hence designing inhibitors against this enzyme will not affect the host system as well act as potential antitubercular drugs. A library of BITS in house compounds were screened against Mtb MurI enzyme. Based on docking score, interactions and synthetic feasibility one hit lead was identified. Further optimization of lead was attempted and its derivatives were synthesized. Forty eight derivatives of 2-phenylbenzo[d]oxazole and 2-phenylbenzo[d]thiazole were synthesized and evaluated for Mtb MurI inhibition study, in vitro activities against Mtb, cytotoxicity against RAW 264.7 cell line. Chemical derivatization of the lead resulted in compounds NR-1213 AND NR-1124 as the potent M. tuberculosis glutamate racemase inhibitors with IC50 of 4-5µM which are remarkable and were found to be non-cytotoxic. Molecular dynamics, dormant models and cardiotoxicity studies of the most active molecules are in process.

Keywords: cell wall biosynthesis, dormancy, glutamate racemase, tuberculosis

Procedia PDF Downloads 269
869 Use of Electrokinetic Technology to Enhance Chemical and Biological Remediation of Contaminated Sands and Soils

Authors: Brian Wartell, Michel Boufadel

Abstract:

Contaminants such as polycyclic aromatic hydrocarbons (PAHs) are compounds present in crude and petroleum oils and are known to be toxic and often carcinogenic. Therefore, a major effort is placed on tracking their subsurface soil concentrations following an oil spill. The PAHs can persist for years in the subsurface especially if there is a lack of oxygen. Both aerobic and anaerobic biodegradation of PAHs encounter the difficulties of both nutrient transport and bioavailability (proximal access) to the organisms of the contaminants. A technology, known as electrokinetics (EK or EK-BIO for ‘electrokinetic bioremediation’) has been found to transport efficiently nutrients or other chemicals in the subsurface. Experiments were conducted to demonstrate migration patterns in both sands and clay for both ionic and nonionic compounds and aerobic biodegradation studies were conducted with soil spiked with Polycyclic Aromatic Hydrocarbons yielding interesting results. In one set of experiment, Self-designed electrokinetic setups were constructed to examine the differences in electromigration and electroosmotic rates. Anionic and non-ionic dyes were used to visualize these phenomena, respectively. In another experiment, a silt-clay soil was spiked with three low-molecular-weight compounds (fluorene, phenanthrene, fluoranthene) and placed within self-designed electrokinetic setups and monitored for aerobic degradation. Plans for additional studies are in progress including the transport of peroxide through anaerobic sands.

Keywords: bioavailability, bioremediation, electrokinetics, subsurface transport

Procedia PDF Downloads 155
868 Determination of Biomolecular Interactions Using Microscale Thermophoresis

Authors: Lynn Lehmann, Dinorah Leyva, Ana Lazic, Stefan Duhr, Philipp Baaske

Abstract:

Characterization of biomolecular interactions, such as protein-protein, protein-nucleic acid or protein-small molecule, provides critical insights into cellular processes and is essential for the development of drug diagnostics and therapeutics. Here we present a novel, label-free, and tether-free technology to analyze picomolar to millimolar affinities of biomolecular interactions by Microscale Thermophoresis (MST). The entropy of the hydration shell surrounding molecules determines thermophoretic movement. MST exploits this principle by measuring interactions using optically generated temperature gradients. MST detects changes in the size, charge and hydration shell of molecules and measures biomolecule interactions under close-to-native conditions: immobilization-free and in bioliquids of choice, including cell lysates and blood serum. Thus, MST measures interactions under close-to-native conditions, and without laborious sample purification. We demonstrate how MST determines the picomolar affinities of antibody::antigen interactions, and protein::protein interactions measured from directly from cell lysates. MST assays are highly adaptable to fit to the diverse requirements of different and complex biomolecules. NanoTemper´s unique technology is ideal for studies requiring flexibility and sensitivity at the experimental scale, making MST suitable for basic research investigations and pharmaceutical applications.

Keywords: biochemistry, biophysics, molecular interactions, quantitative techniques

Procedia PDF Downloads 523
867 Use of Yeast-Chitosan Bio-Microcapsules with Ultrafiltration Membrane to Remove Ammonia Nitrogen and Organic Matter in Raw Water

Authors: Chao Ding, Jun Shi, Huiping Deng

Abstract:

This study reports the preparation of a new type yeast-chitosan bio-microcapsule coating sodium alginate and chitosan, with good biocompatibility and mechanical strength. Focusing on the optimum preparation conditions of bio-microcapsule, a dynamic test of yeast-chitosan bio-microcapsule combined with ultrafiltration membrane was established to evaluate both the removal efficiency of major pollutants from raw water and the applicability of this system. The results of orthogonal experiments showed that the optimum preparation procedure are as follows: mix sodium alginate solution (3%) with bacteria liquid in specific proportion, drop in calcium chloride solution (4%) and solidify for 30 min; put the plastic beads into chitosan liquid (1.8%) to overlay film for 10 min and then into glutaraldehyde solution (1%) to get cross-linked for 5 min. In dynamic test, the microcapsules were effective as soon as were added in the system, without any start-up time. The removal efficiency of turbidity, ammonia nitrogen and organic matter was 60%, 80%, and 40%. Besides, the bio-microcapsules were prospective adsorbent for heavy metal; they adsorb Pb and Cr⁶⁺ in water while maintaining high biological activity to degrade ammonia nitrogen and small molecular organics through assimilation. With the presence of bio-microcapsules, the internal yeast strains’ adaptability on the external environment and resistance ability on toxic pollutants will be increased.

Keywords: ammonia nitrogen, bio-microcapsules, ultrafiltration membrane, yeast-chitosan

Procedia PDF Downloads 346
866 Improved Production, Purification and Characterization of Invertase from Penicillium lilacinum by Shaken Flask Technique of Submerged Fermentation

Authors: Kashif Ahmed

Abstract:

Recent years researchers have been motivated towards extensive exploring of living organism, which could be utilized effectively in intense industrial conditions. The present study shows enhanced production, purification and characterization of industrial enzyme, invertase (Beta-D-fructofuranosidase) from Penicillium lilacinum. Various agricultural based by-products (cotton stalk, sunflower waste, rice husk, molasses and date syrup) were used as energy source. The highest amount of enzyme (13.05 Units/mL) was produced when the strain was cultured on growth medium containing date syrup as energy source. Yeast extract was used as nitrogen source after 96 h of incubation at incubation temperature of 40º C. Initial pH of medium was 8.0, inoculum size 6x10⁶ conidia and 200 rev/min agitation rate. The enzyme was also purified (7 folds than crude) and characterized. Molecular mass of purified enzyme (65 kDa) was determined by 10 % SDS-PAGE. Lineweaver-Burk Plot was used to determine Kinetic constants (Vmax 178.6 U/mL/min and Km 2.76 mM). Temperature and pH optima were 55º C and 5.5 respectively. MnCl₂ (52.9 %), MgSO₄ (48.9 %), BaCl₂ (24.6 %), MgCl₂ (9.6 %), CoCl₂ (5.7 %) and NaCl (4.2 %) enhanced the relative activity of enzyme and HgCl₂ (-92.8 %), CuSO₄ (-80.2 %) and CuCl₂ (-76.6 %) were proved inhibitors. The strain was showing enzyme activity even at extreme conditions of temperature (up to 60º C) and pH (up to 9), so it can be used in industries.

Keywords: invertase, Penicillium lilacinum, submerged fermentation, industrial enzyme

Procedia PDF Downloads 150
865 Analysis of Coal Tar Compositions Produced from Sub-Bituminous Kalimantan Coal Tar

Authors: Dewi Selvia Fardhyanti, Astrilia Damayanti

Abstract:

Coal tar is a liquid by-product of coal pyrolysis processes. This liquid oil mixture contains various kind of useful compounds such as benzoic aromatic compounds and phenolic compounds. These compounds are widely used as raw material for insecticides, dyes, medicines, perfumes, coloring matters, and many others. The coal tar was collected by pyrolysis process of coal obtained from PT Kaltim Prima Coal and Arutmin-Kalimantan. The experiments typically occurred at the atmospheric pressure in a laboratory furnace at temperatures ranging from 300 to 550oC with a heating rate of 10oC/min and a holding time of 1 hour at the pyrolysis temperature. Nitrogen gas has been used to obtain the inert condition and to carry the gaseous pyrolysis products. The pyrolysis transformed organic materials into gaseous components, small quantities of liquid, and a solid residue (coke) containing fixed amount of carbon and ash. The composition of gas which is produced from the pyrolysis is carbon monoxide, hydrogen, methane, and other hydrocarbon compounds. The gas was condensed and the liquid containing oil/tar and water was obtained. The Gas Chromatography-Mass Spectroscopy (GC-MS) was used to analyze the coal tar components. The obtained coal tar has the viscosity of 3.12 cp, the density of 2.78 g/cm3, the calorific value of 11,048.44 cal/g, and the molecular weight of 222.67. The analysis result showed that the coal tar contained more than 78 chemical compounds such as benzene, cresol, phenol, xylene, naphtalene, etc. The total phenolic compounds contained in coal tar is 33.25% (PT KPC) and 17.58% (Arutmin-Kalimantan). The total naphtalene compounds contained in coal tar is 14.15% (PT KPC) and 17.13% (Arutmin-Kalimantan).

Keywords: coal tar, pyrolysis, gas chromatography-mass spectroscopy

Procedia PDF Downloads 328
864 Novel Pyrimidine Based Semicarbazones: Confirmation of Four Binding Site Pharmacophoric Model Hypothesis for Antiepileptic Activity

Authors: Harish Rajak, Swati Singh

Abstract:

A series of novel pyrimidine based semicarbazone were designed and synthesized on the basis of semicarbazone based pharmacophoric model to satisfy the structural prerequisite crucial for antiepileptic activity. The semicarbazones based pharmacophoric model consists of following four essential binding sites: (i) An aryl hydrophobic binding site with halo substituent; (ii) A hydrogen bonding domain; (iii) An electron donor group and (iv) Another hydrophobic-hydrophilic site controlling the pharmacokinetic features of the anticonvulsant. The aryl semicarbazones has been recognized as a structurally novel class of compounds with remarkable anticonvulsant activity. In the present study, all the test semicarbazones were subjected to molecular docking using Glide v5.8. Some of the compounds were found to interact with ARG192, GLU270 and THR353 residues of 1OHV protein, present in GABA-AT receptor. The chemical structures of the synthesized molecules were characterized by elemental and spectral (IR, 1H NMR, 13C NMR and MS) analysis. The anticonvulsant activities of the compounds were investigated using maximal electroshock seizure (MES) and subcutaneous pentylenetrtrazole (scPTZ) models. The neurotoxicity was evaluated in mice by the rotorod test. The attempts were also made to establish structure-activity relationships among synthesized compounds. The results of the present study confirmed that the pharmacophore model with four binding sites is essential for antiepileptic activity.

Keywords: pyrimidine, semicarbazones, anticonvulsant activity, neurotoxicity

Procedia PDF Downloads 253
863 RACK1 Integrates Light and Brassinosteroid Signaling to Coordinate Cell Division During Root Soil Penetration

Authors: Liang Jiansheng, Zhu Wei

Abstract:

Light and brassinosteroids are essential external and internal cues for plant survival. Although the coordination of light with phytohormone signals is crucial for plant growth and development, the molecular connection between light and brassinosteroid signaling during root soil penetration remains elusive. Here, we reveal that light-stabilized RACK1 couples a brassinosteroid signaling cascade to drive cell division in root meristems. RACK1 family scaffold proteins positively regulate light-induced the promotion of root elongation during soil penetration. Under the light condition, RACK1A interacts with both phyB and SPA1, then reinforces the phyB-SPA1 association to accumulate its abundance in roots. In response to brassinosteroid signals, RACK1A competes with BKI1 to attenuate the BRI1-BKI1 interaction, thereby leading to activating BRI1 actions in root development. Furthermore, RACK1A binds to BES1 to repress its DNA binding activity toward the target gene CYCD3;1. This ultimately allows to release the inhibition of CYCD3;1 transcription, and promotes cell division during root growth. Our study illustrates a new mechanistic model of how plants engage scaffold proteins in transducing light information to facilitate brassinosteroid signaling for root growth in the soil.

Keywords: root growth, cell division, light signaling, brassinosteroid signaling, soil penetration, scaffold protein, RACK1

Procedia PDF Downloads 80
862 Application to Molecular Electronics of Thin Layers of Organic Materials

Authors: M. I. Benamrani, H. Benamrani

Abstract:

In the research to replace silicon and other thin-film semiconductor technologies and to develop long-term technology that is environmentally friendly, low-cost, and abundant, there is growing interest today given to organic materials. Our objective is to prepare polymeric layers containing metal particles deposited on a surface of semiconductor material which can have better electrical properties and which could be applied in the fields of nanotechnology as an alternative to the existing processes involved in the design of electronic circuits. This work consists in the development of composite materials by complexation and electroreduction of copper in a film of poly (pyrrole benzoic acid). The deposition of the polymer film on a monocrystalline silicon substrate is made by electrochemical oxidation in an organic medium. The incorporation of copper particles into the polymer is achieved by dipping the electrode in a solution of copper sulphate to complex the cupric ions, followed by electroreduction in an aqueous solution to precipitate the copper. In order to prepare the monocrystalline silicon substrate as an electrode for electrodeposition, an in-depth study on its surface state was carried out using photoacoustic spectroscopy. An analysis of the optical properties using this technique on the effect of pickling using a chemical solution was carried out. Transmission-photoacoustic and impedance spectroscopic techniques give results in agreement with those of photoacoustic spectroscopy.

Keywords: photoacoustic, spectroscopy, copper sulphate, chemical solution

Procedia PDF Downloads 88
861 Simulation of Mid Infrared Supercontinuum Generation in Silicon Germanium Photonic Waveguides for Gas Spectroscopy

Authors: Proficiency Munsaka, Peter Baricholo, Erich Rohwer

Abstract:

Pulse evolutions along the 5 cm long, 6.0 ×4.2 μm² cross-section silicon germanium (SiGe) photonic waveguides were simulated and compared with experiments. Simulations were carried out by solving a generalized nonlinear Schrodinger equation (GNLSE) for an optical pulse evolution along the length of the SiGe photonic waveguides by the split-step Fourier method (SSFM). The solution obtained from the SSFM gave the pulse envelope in both time and spectral domain calculated at each distance step along the propagation direction. The SiGe photonic waveguides were pumped in an anomalous group velocity dispersion (GVD) regime using a 4.7 μm, 210 fs femtosecond laser to produce a significant supercontinuum (SC). The simulated propagation of ultrafast pulse along the SiGe photonic waveguides produced an SC covering the atmospheric window (2.5-8.5 μm) containing the molecular fingerprints for important gases. Thus, the mid-infrared supercontinuum generation in SiGe photonic waveguides system can be commercialized for gas spectroscopy for detecting gases that include CO₂, CH₄, H₂O, SO₂, SO₃, NO₂, H₂S, CO, and NO at trace level using absorption spectroscopy technique. The simulated profile evolutions are spectrally and temporally similar to those obtained by other researchers. Obtained evolution profiles are characterized by pulse compression, Soliton fission, dispersive wave generation, stimulated Raman Scattering, and Four Wave mixing.

Keywords: silicon germanium photonic waveguide, supercontinuum generation, spectroscopy, mid infrared

Procedia PDF Downloads 131
860 A Novel Protein Elicitor Extracted From Lecanicillium lecanii Induced Resistance Against Whitefly, Bemisia tabaci in Cotton

Authors: Yusuf Ali Abdulle, Azhar Uddin Keerio

Abstract:

Background: Protein elicitors play a key role in signaling or displaying plant defense mechanisms and emerging as vital tools for bio-control of insects. This study was aimed at the characterization of the novel protein elicitor isolated from entomopathogenic fungi Lecanicillium lecanii (V3) strain and its activity against Whitefly, Bemisia tabaci in cotton. The sequence of purified elicitor protein showed 100% similarity with hypothetical protein LEL_00878 [Cordyceps confragosa RCEF 1005], GenBank no (OAA81333.1). This novel protein elicitor has 253 amino acid residues and 762bp with a molecular mass of 29 kDa. The protein recombinant was expressed in Escherichia coli using pET‐28a (+) plasmid. Effects of purified novel protein elicitor on Bemisia tabaci were determined at three concentrations of protein (i.e., 58.32, 41.22, 35.41 μg mL⁻¹) on cotton plants and were exposed to newly molted adult B.tabaci. Bioassay results showed a significant effect of the exogenous application of novel protein elicitor on B. tabaci in cotton. In addition, the gene expression analysis found a significant up-regulation of the major genes associated with salicylic acid (SA) and jasmonic acid (JA) linked plant defense pathways in elicitor protein-treated plants. Our results suggested the potential application of a novel protein elicitor derived from Lecanicillium lecanii as a future bio-intensive controlling approach against the whitefly, Bemisia tabaci.

Keywords: resistance, Lecanicillium lecanii, secondary metabolites, whitefly

Procedia PDF Downloads 184
859 Phenotypic and Genotypic Diagnosis of Gaucher Disease in Algeria

Authors: S. Hallal, Z. Chami, A. Hadji-Lehtihet, S. Sokhal-Boudella, A. Berhoune, L. Yargui

Abstract:

Gaucher disease is the most common lysosomal storage in our population, it is due to a deficiency of β –glucosidase acid. The enzyme deficiency causes a pathological accumulation of undegraded substrate in lysosomes. This metabolic overload is responsible for a multisystemic disease with hepatosplenomegaly, anemia, thrombocytopenia, and bone involvement. Neurological involvement is rare. The laboratory diagnosis of Gaucher disease consists of phenotypic diagnosis by determining the enzymatic activity of β - glucosidase by fluorimetric method, a study by genotypic diagnosis in the GBA gene, limiting the search recurrent mutations (N370S, L444P, 84 GG); PCR followed by an enzymatic digestion. Abnormal profiles were verified by sequencing. Monitoring of treated patients is provided by the determination of chitotriosidase. Our experience spaning a period of 6 years (2007-2014) has enabled us to diagnose 78 patients out of a total of 328 requests from the various departments of pediatrics, internal medicine, neurology. Genotypic diagnosis focused on the entire family of 9 children treated at pediatric CHU Mustapha, which help define the clinical form; or 5 of them had type III disease, carrying the L444P mutation in the homozygous state. Three others were composite (N370/L444P) (N370S/other unintended mutation in our study), and only in one family no recurrent mutation has been found. This molecular study permits screening of heterozygous essential for genetic counseling.

Keywords: Gaucher disease, mutations, N370S, L444P

Procedia PDF Downloads 405
858 Genotyping of Salmonella enterica Collected from Poultry Farms Located in Riyadh, KSA by Multiplex-PCR

Authors: Moussa I. Mohamed, Turki, K. A. Al-Faraj, Abdullah A. Al-Arfaj, Ashgan M. Hessain

Abstract:

The objective of the present study is to detect the incidences of Salmonella enterica from different poultry farms located in Egypt on molecular basis. During the summer of 2012, a total of 1800 cloacal swabs were collected from poultry farms located I Cairo, Egypt to be subjected for isolation of Salmonella enteric. Moreover, a total of 300 samples of poultry and poultry products were collected from different retail establishment markets in Cairo, Egypt including, 150 local whole frozen chickens, 50 imported whole frozen chickens, 100 local chicken cut samples. The highest rate of isolation 8% was obtained from imported frozen chickens and local chicken cuts, followed by local frozen chickens 6.66% and finally rectal swabs from apparently health chickens 6.4 %. Salmonella Typhimurium and Salmonella Enteritidis were most frequent among the total Salmonella isolates. Multiplex-PCR for the rapid detection of Salmonella Typhimurium and Salmonella Enteritidis from field samples especially after pre-enrichment on Rappaport-Vassiliadis (RV) selective broth (PCR-RV), revealed the same positive samples. Therefore PCR-RV technique is rabid, time saving and applicable to detect Salmonella serovars directly from chicken samples. Moreover, detecting Salmonella Typhimurium and Salmonella Enteritidis by this assay was carried out within 2 days opposed to 5–6 d by the bacteriological and serological methods.

Keywords: Salmonella enterica, Salmonella typhimurium, Salmonella enteritidis enrichment, multiplex-PCR

Procedia PDF Downloads 374
857 Preparation and Characterization of Iron/Titanium-Pillared Clays

Authors: Rezala Houria, Valverde Jose Luis, Romero Amaya, Molinari Alessandra, Maldotti Andrea

Abstract:

The escalation of oil prices in 1973 confronted the oil industry with the problem of how to maximize the processing of crude oil, especially the heavy fractions, to give gasoline components. Strong impetus was thus given to the development of catalysts with relatively large pore sizes, which were able to deal with larger molecules than the existing molecular sieves, and with good thermal and hydrothermal stability. The oil embargo in 1973 therefore acted as a stimulus for the investigation and development of pillared clays. Iron doped titania-pillared montmorillonite clays was prepared using bentonite from deposits of Maghnia in western-Algeria. The preparation method consists of differents steps (purification of the raw bentonite, preparation of a pillaring agent solution and exchange of the cations located between the clay layers with the previously formed iron/titanium solution). The characterization of this material was carried out by X-ray fluorescence spectrometry, X-ray diffraction, textural measures by BET method, inductively coupled plasma atomic emission spectroscopy, diffuse reflectance UV visible spectroscopy, temperature- programmed desorption of ammonia and atomic absorption.This new material was investigated as photocatalyst for selective oxygenation of the liquid alkylaromatics such as: toluene, paraxylene and orthoxylene and the photocatalytic properties of it were compared with those of the titanium-pillared clays.

Keywords: iron doping, montmorillonite clays, pillared clays, oil industry

Procedia PDF Downloads 302
856 First Experimental Evidence on Feasibility of Molecular Magnetic Particle Imaging of Tumor Marker Alpha-1-Fetoprotein Using Antibody Conjugated Nanoparticles

Authors: Kolja Them, Priyal Chikhaliwala, Sudeshna Chandra

Abstract:

Purpose: The purpose of this work is to examine possibilities for noninvasive imaging and identification of tumor markers for cancer diagnosis. The proposed method uses antibody conjugated iron oxide nanoparticles and multicolor Magnetic Particle Imaging (mMPI). The method has the potential for radiation exposure free real-time estimation of local tumor marker concentrations in vivo. In this study, the method is applied to human Alpha-1-Fetoprotein. Materials and Methods: As tracer material AFP antibody-conjugated Dendrimer-Fe3O4 nanoparticles were used. The nanoparticle bioconjugates were then incubated with bovine serum albumin (BSA) to block any possible nonspecific binding sites. Parts of the resulting solution were then incubated with AFP antigen. MPI measurements were done using the preclinical MPI scanner (Bruker Biospin MRI GmbH) and the multicolor method was used for image reconstruction. Results: In multicolor MPI images the nanoparticles incubated only with BSA were clearly distinguished from nanoparticles incubated with BSA and AFP antigens. Conclusion: Tomographic imaging of human tumor marker Alpha-1-Fetoprotein is possible using AFP antibody conjugated iron oxide nanoparticles in presence of BSA. This opens interesting perspectives for cancer diagnosis.

Keywords: noninvasive imaging, tumor antigens, antibody conjugated iron oxide nanoparticles, multicolor magnetic particle imaging, cancer diagnosis

Procedia PDF Downloads 303
855 Conformation Prediction of Human Plasmin and Docking on Gold Nanoparticle

Authors: Wen-Shyong Tzou, Chih-Ching Huang, Chin-Hwa Hu, Ying-Tsang Lo, Tun-Wen Pai, Chia-Yin Chiang, Chung-Hao Li, Hong-Jyuan Jian

Abstract:

Plasmin plays an important role in the human circulatory system owing to its catalytic ability of fibrinolysis. The immediate injection of plasmin in patients of strokes has intrigued many scientists to design vectors that can transport plasmin to the desired location in human body. Here we predict the structure of human plasmin and investigate the interaction of plasmin with the gold-nanoparticle. Because the crystal structure of plasminogen has been solved, we deleted N-terminal domain (Pan-apple domain) of plasminogen and generate a mimic of the active form of this enzyme (plasmin). We conducted a simulated annealing process on plasmin and discovered a very large conformation occurs. Kringle domains 1, 4 and 5 had been observed to leave its original location relative to the main body of the enzyme and the original doughnut shape of this enzyme has been transformed to a V-shaped by opening its two arms. This observation of conformational change is consistent with the experimental results of neutron scattering and centrifugation. We subsequently docked the plasmin on the simulated gold surface to predict their interaction. The V-shaped plasmin could utilize its Kringle domain and catalytic domain to contact the gold surface. Our findings not only reveal the flexibility of plasmin structure but also provide a guide for the design of a plasmin-gold nanoparticle.

Keywords: docking, gold nanoparticle, molecular simulation, plasmin

Procedia PDF Downloads 472
854 Production of Fish Hydrolyzates by Single and Multiple Protease Treatments under Medium High Pressure of 300 MPa

Authors: Namsoo Kim, So-Hee Son, Jin-Soo Maeng, Yong-Jin Cho, Chong-Tai Kim

Abstract:

It has been reported that some enzymes such as trypsin and Alcalase 2.4L are tolerant to a medium high pressure of 300 MPa and preparation of protein hydrolyzates under 300 MPa was advantageous with regard to hydrolysis rate and thus production yield compared with the counterpart under ambient pressure.1,2) In this study, nine fish comprising halibut, soft shell clam and carp were hydrolyzed using Flavourzyme 500MG only, and the combination of Flavourzyme 500 mg, Alcalase 2.4 L, Marugoto E, and Protamex under 300 MPa. Then, the effects of single and multiple protease treatments were determined with respect to contents of soluble solid (SS) and soluble nitrogen, sensory attributes, electrophoretic profiles, and HPLC peak patterns of the fish hydrolyzates (FHs) from various species. The contents of SS of the FHs were quite species-specific and the hydrolyzates of halibut showed the highest SS contents. At this point, multiple protease treatment increased SS content conspicuously in all fish tested. The contents of total soluble nitrogen and TCA-soluble nitrogen were well correlated with those of SS irrespective of fish species and methods of enzyme treatment. Also, it was noticed that multiple protease treatment improved sensory attributes of the FHs considerably. Electropherograms of the FHs showed fast migrating peptide bands that had the molecular masses mostly lower than 1 kDa and this was confirmed by peptide patterns from HPLC analysis for some FHs that had good sensory quality.

Keywords: production, fish hydrolyzates, protease treatments, high pressure

Procedia PDF Downloads 283
853 Serotype Distribution and Demographics of Dengue Patients in a Tertiary Hospital of Lahore, Pakistan During the 2011 Epidemic

Authors: Muhammad Munir, Riffat Mehboob, Samina Naeem, Muhammad Salman, Shehryar Ahmed, Irshad Hussain Qureshi, Tahira Murtaza Cheema, Ashraf Sultan, Akmal Laeeq, Nakhshab Choudhry, Asad Aslam Khan, Fridoon Jawad Ahmad

Abstract:

A dengue outbreak in Lahore, Pakistan during 2011 was unprecedented in terms of severity and magnitude. This research aims to determine the serotype distribution of dengue virus during this outbreak and classify the patients demographically. 5ml of venous blood was drawn aseptically from 166 patients with dengue-like signs to test for the virus between the months of August to November 2011. The samples were sent to the CDC, Atlanta, Georgia for the purpose of molecular assays to determine their serotype. RT-PCR protocol was performed targeting at the 4 dengue serotypes. Out of 166 cases, dengue infection was detected with RT-PCR in 95 cases, all infected with same serotype DEN-2. 75% of positive cases were males while 25% were females. Most positive patients were in the age range of 16-30 years. 33% positive cases had accompanying bleeding. This is first study during the 2011 dengue epidemic in Lahore that reports DEN-2 as the only prevalent serotype. It also indicates that more infected patients were males, adults, within age range of 16-30 years, peaked in the month of November, Dengue hemorrhagic fever (DHF) is manifested more in females, Ravi town was heavily hit by dengue virus infection.

Keywords: dengue, serotypes, Pakistan, DEN 2, Lahore, demography, serotype distrbution, 2011 epidemic

Procedia PDF Downloads 500
852 Aberrant Acetylation/Methylation of Homeobox (HOX) Family Genes in Cumulus Cells of Infertile Women with Polycystic Ovary Syndrome (PCOS)

Authors: P. Asiabi, M. Shahhoseini, R. Favaedi, F. Hassani, N. Nassiri, B. Movaghar, L. Karimian, P. Eftekhariyazdi

Abstract:

Introduction: Polycystic Ovary Syndrome is a common gynecologic disorder. Many factors including environment, metabolism, hormones and genetics are involved in etiopathogenesis of PCOS. Of genes that have altered expression in human reproductive system disorders are HOX family genes which act as transcription factors in regulation of cell proliferation, differentiation, adhesion and migration. Since recent evidences consider epigenetic factors as causative mechanisms of PCOS, evaluation of association between known epigenetic marks of acetylation/methylation of histone 3 (H3K9ac/me) with regulatory regions of these genes can represent better insight about PCOS. In the current study, cumulus cells (CCs) which have critical roles during folliculogenesis, oocyte maturation, ovulation and fertilization were aimed to monitor epigenetic alterations of HOX genes. Material and methods: CCs were collected from 20 PCOS patients and 20 fertile women (18-36 year) with male infertility problems referred to the Royan Institute to have ICSI under GnRH antagonist protocol. Informed consents were obtained from the participants. Thirty six hours after hCG injection, ovaries were punctured and cumulus oocyte complexes were dissected. Soluble chromatin were extracted from CCs and Chromatin Immune precipitation (ChIP) coupled with Real Time PCR was performed to quantify the epigenetic marks of histone H3K9 acetylation/methylation (H3K9ac/me) on regulatory regions of 15 members of HOX genes from A-D subfamily. Results: Obtained data showed significant increase of H3K9ac epigenetic mark on regulatory regions of HOXA1, HOXB2, HOXC4, HOXD1, HOXD3 and HOXD4 (P < 0.01) and HOXC5 (P < 0.05) and also significant decrease of H3K9ac into regulatory regions of HOXA2, HOXA4, HOXA5, HOXB1 and HOXB5 (P < 0.01) and HOXB3 (P<0.05) in PCOS patients vs. control group. On the other side, there was a significant decrease in incorporation of H3K9me level on regulatory region of HOXA2, HOXA3, HOXA4, HOXA5, HOXB3 and HOXC4 (P≤0.01) and HOXB5 (P < 0.05) in PCOS patients vs. control group. This epigenetic mark (H3K9me2) has significant increase on regulatory region of HOXB1, HOXB2, HOXC5, HOXD1, HOXD3 and HOXD4 (P ≤ 0.01) and HOXB4 (P < 0.05) in patients vs. control group. There were no significant changes in acetylation/methylation levels of H3K9 on regulatory regions of the other studied genes. Conclusion: Current study suggests that epigenetic alterations of HOX genes can be correlated with PCOS and consequently female infertility. This finding might offer additional definitions of PCOS, and eventually provides insight for novel treatments with epidrugs for this disease.

Keywords: epigenetic, HOX genes, PCOS, female infertility

Procedia PDF Downloads 319
851 Antibacterial Evaluation, in Silico ADME and QSAR Studies of Some Benzimidazole Derivatives

Authors: Strahinja Kovačević, Lidija Jevrić, Miloš Kuzmanović, Sanja Podunavac-Kuzmanović

Abstract:

In this paper, various derivatives of benzimidazole have been evaluated against Gram-negative bacteria Escherichia coli. For all investigated compounds the minimum inhibitory concentration (MIC) was determined. Quantitative structure-activity relationships (QSAR) attempts to find consistent relationships between the variations in the values of molecular properties and the biological activity for a series of compounds so that these rules can be used to evaluate new chemical entities. The correlation between MIC and some absorption, distribution, metabolism and excretion (ADME) parameters was investigated, and the mathematical models for predicting the antibacterial activity of this class of compounds were developed. The quality of the multiple linear regression (MLR) models was validated by the leave-one-out (LOO) technique, as well as by the calculation of the statistical parameters for the developed models and the results are discussed on the basis of the statistical data. The results of this study indicate that ADME parameters have a significant effect on the antibacterial activity of this class of compounds. Principal component analysis (PCA) and agglomerative hierarchical clustering algorithms (HCA) confirmed that the investigated molecules can be classified into groups on the basis of the ADME parameters: Madin-Darby Canine Kidney cell permeability (MDCK), Plasma protein binding (PPB%), human intestinal absorption (HIA%) and human colon carcinoma cell permeability (Caco-2).

Keywords: benzimidazoles, QSAR, ADME, in silico

Procedia PDF Downloads 375
850 Identification of Individuals in Forensic Situations after Allo-Hematopoietic Stem Cell Transplantation

Authors: Anupuma Raina, Ajay Parkash

Abstract:

In forensic investigation, DNA analysis helps in the identification of a particular individual under investigation. A set of Short Tandem Repeats loci are widely used for individualization at a molecular level in forensic testing. STRs with tetrameric repeats of DNA are highly polymorphic and widely used for forensic DNA analysis. Identification of an individual became challenging for forensic examiners after Hematopoietic Stem Cell Transplantation. HSCT is a well-accepted and life-saving treatment to treat malignant and nonmalignant diseases. It involves the administration of healthy donor stem cells to replace the patient’s own unhealthy stem cells. A successful HSCT results in complete donor-derived cells in a patient’s hematopoiesis and hence have the capability to change the genetic makeup of the patient. Although an individual who has undergone HSCT and then committed a crime is a very rare situation, but not impossible. Keeping such a situation in mind, various biological samples like blood, buccal swab, and hair follicle were collected and studied after a certain interval of time after HSCT. Blood was collected from both the patient and the donor before the transplant. The DNA profile of both was analyzed using a short tandem repeat kit for autosomal chromosomes. Among all exhibits studied, only hair follicles were found to be the most suitable biological exhibit, as no donor DNA profile was observed for up to 90 days of study.

Keywords: chimerism, HSCT, STRs analysis, forensic identification

Procedia PDF Downloads 65
849 Investigation into the Homoepitaxy of AlGaN/GaN Heterostructure via Molecular Beam Epitaxy

Authors: Jiajia Yao, Guanlin Wu, Fang Liu, Junshuai Xue, Yue Hao

Abstract:

As the production process of self-standing GaN substrates evolves, the commercialization of low dislocation density, large-scale, semi-insulating self-standing GaN substrates is gradually becoming a reality. This advancement has given rise to increased interest in GaN materials' homoepitaxial technology. However, at the homoepitaxial interface, there are considerable concentrations of impurity elements, including C, Si, and O, which generate parasitic leakage channels at the re-growth junction. This phenomenon results in leaked HEMTs that prove difficult to switch off, rendering them effectively non-functional. The emergence of leakage channels can also degrade the high-frequency properties and lower the power devices' breakdown voltage. In this study, the uniform epitaxy of AlGaN/GaN heterojunction with high electron mobility was accomplished through the surface treatment of the GaN substrates prior to growth and the design of the AlN isolation layer structure. By employing a procedure combining gallium atom in-situ cleaning and plasma nitridation, the C and O impurity concentrations at the homoepitaxial interface were diminished to the scale of 10¹⁷ cm-³. Additionally, the 1.5 nm nitrogen-rich AlN isolation layer successfully prevented the diffusion of Si impurities into the GaN channel layer. The result was an AlGaN/GaN heterojunction with an electron mobility of 1552 cm²/Vs and an electron density of 1.1 × 10¹³ cm-² at room temperature, obtained on a Fe-doped semi-insulating GaN substrate.

Keywords: MBE, AlGaN/GaN, homogenerous epitaxy, HEMT

Procedia PDF Downloads 68
848 Durability Study of Pultruded CFRP Plates under Sustained Bending in Distilled Water and Seawater Immersions: Effects on the Visco-Elastic Properties

Authors: Innocent Kafodya, Guijun Xian

Abstract:

This paper presents effects of distilled water, seawater and sustained bending strains of 30% and 50% ultimate strain at room temperature, on the durability of unidirectional pultruded carbon fiber reinforced polymer (CFRP) plates. In this study, dynamic mechanical analyzer (DMA) was used to investigate the synergic effects of the immersions and bending strains on the visco-elastic properties of (CFRP) such as storage modulus, tan delta and glass transition temperature. The study reveals that the storage modulus and glass transition temperature increase while tan delta peak decreases in the initial stage of both immersions due to the progression of curing. The storage modulus and Tg subsequently decrease and tan delta increases due to the matrix plasticization. The blister induced damages in the unstrained seawater samples enhance water uptake and cause more serious degradation of Tg and storage modulus than in water immersion. Increasing sustained bending decreases Tg and storage modulus in a long run for both immersions due to resin matrix cracking and debonding. The combined effects of immersions and strains are not clearly reflected due to the statistical effects of DMA sample sizes and competing processes of molecular reorientation and postcuring.

Keywords: pultruded CFRP plate, bending strain, glass transition temperature, storage modulus, tan delta

Procedia PDF Downloads 269
847 Genome Sequencing of Infectious Bronchitis Virus QX-Like Strain Isolated in Malaysia

Authors: M. Suwaibah, S. W. Tan, I. Aiini, K. Yusoff, A. R. Omar

Abstract:

Respiratory diseases are the most important infectious diseases affecting poultry worldwide. One of the avian respiratory virus of global importance causing significant economic losses is Infectious Bronchitis Virus (IBV). The virus causes a wide spectrum disease known as Infectious Bronchitis (IB), affecting not only the respiratory system but also the kidney and the reproductive system, depending on its strain. IB and Newcastle disease are two of the most prevalent diseases affecting poultry in Malaysia. However, a study on the molecular characterization of Malaysian IBV is lacking. In this study, an IBV strain IBS130 which was isolated in 2015 was fully sequenced using next-gene sequencing approach. Sequence analysis of IBS130 based on the complete genome, polyprotein 1ab and S1 genes were compared with other IBV sequences available in Genbank, National Center for Biotechnology Information (NCBI). IBV strain IBS130 is characterised as QX-like strain based on whole genome and S1 gene sequence analysis. Comparisons of the virus with other IBV strains showed that the nucleotide identity ranged from 67% to 99.2%, depending on the region analysed. The similarity in whole genome nucleotide ranging from 84.9% to 90.7% with the least similar was from Singapore strains (84.9%) and highly similar with China QX-like strains. Meanwhile, the similarity in polyprotein 1ab ranging from 85.3% to 89.9% with the least similar to Singapore strains (85.3%) and highly similar with Mass strains from USA.

Keywords: infectious bronchitis virus, phylogenetic analysis, chicken, Malaysia

Procedia PDF Downloads 186