Search results for: mathematical modeling membrane bioreactor
4727 Investigation of Crack Formation in Ordinary Reinforced Concrete Beams and in Beams Strengthened with Carbon Fiber Sheet: Theory and Experiment
Authors: Anton A. Bykov, Irina O. Glot, Igor N. Shardakov, Alexey P. Shestakov
Abstract:
This paper presents the results of experimental and theoretical investigations of the mechanisms of crack formation in reinforced concrete beams subjected to quasi-static bending. The boundary-value problem has been formulated in the framework of brittle fracture mechanics and has been solved by using the finite-element method. Numerical simulation of the vibrations of an uncracked beam and a beam with cracks of different size serves to determine the pattern of changes in the spectrum of eigenfrequencies observed during crack evolution. Experiments were performed on the sequential quasistatic four-point bending of the beam leading to the formation of cracks in concrete. At each loading stage, the beam was subjected to an impulse load to induce vibrations. Two stages of cracking were detected. At the first stage the conservative process of deformation is realized. The second stage is an active cracking, which is marked by a sharp change in eingenfrequencies. The boundary of a transition from one stage to another is well registered. The vibration behavior was examined for the beams strengthened by carbon-fiber sheet before loading and at the intermediate stage of loading after the grouting of initial cracks. The obtained results show that the vibrodiagnostic approach is an effective tool for monitoring of cracking and for assessing the quality of measures aimed at strengthening concrete structures.Keywords: crack formation, experiment, mathematical modeling, reinforced concrete, vibrodiagnostics
Procedia PDF Downloads 3094726 Business-Intelligence Mining of Large Decentralized Multimedia Datasets with a Distributed Multi-Agent System
Authors: Karima Qayumi, Alex Norta
Abstract:
The rapid generation of high volume and a broad variety of data from the application of new technologies pose challenges for the generation of business-intelligence. Most organizations and business owners need to extract data from multiple sources and apply analytical methods for the purposes of developing their business. Therefore, the recently decentralized data management environment is relying on a distributed computing paradigm. While data are stored in highly distributed systems, the implementation of distributed data-mining techniques is a challenge. The aim of this technique is to gather knowledge from every domain and all the datasets stemming from distributed resources. As agent technologies offer significant contributions for managing the complexity of distributed systems, we consider this for next-generation data-mining processes. To demonstrate agent-based business intelligence operations, we use agent-oriented modeling techniques to develop a new artifact for mining massive datasets.Keywords: agent-oriented modeling (AOM), business intelligence model (BIM), distributed data mining (DDM), multi-agent system (MAS)
Procedia PDF Downloads 4364725 Statistical Time-Series and Neural Architecture of Malaria Patients Records in Lagos, Nigeria
Authors: Akinbo Razak Yinka, Adesanya Kehinde Kazeem, Oladokun Oluwagbenga Peter
Abstract:
Time series data are sequences of observations collected over a period of time. Such data can be used to predict health outcomes, such as disease progression, mortality, hospitalization, etc. The Statistical approach is based on mathematical models that capture the patterns and trends of the data, such as autocorrelation, seasonality, and noise, while Neural methods are based on artificial neural networks, which are computational models that mimic the structure and function of biological neurons. This paper compared both parametric and non-parametric time series models of patients treated for malaria in Maternal and Child Health Centres in Lagos State, Nigeria. The forecast methods considered linear regression, Integrated Moving Average, ARIMA and SARIMA Modeling for the parametric approach, while Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) Network were used for the non-parametric model. The performance of each method is evaluated using the Mean Absolute Error (MAE), R-squared (R2) and Root Mean Square Error (RMSE) as criteria to determine the accuracy of each model. The study revealed that the best performance in terms of error was found in MLP, followed by the LSTM and ARIMA models. In addition, the Bootstrap Aggregating technique was used to make robust forecasts when there are uncertainties in the data.Keywords: ARIMA, bootstrap aggregation, MLP, LSTM, SARIMA, time-series analysis
Procedia PDF Downloads 834724 A Mathematical Model for Studying Landing Dynamics of a Typical Lunar Soft Lander
Authors: Johns Paul, Santhosh J. Nalluveettil, P. Purushothaman, M. Premdas
Abstract:
Lunar landing is one of the most critical phases of lunar mission. The lander is provided with a soft landing system to prevent structural damage of lunar module by absorbing the landing shock and also assure stability during landing. Presently available software are not capable to simulate the rigid body dynamics coupled with contact simulation and elastic/plastic deformation analysis. Hence a separate mathematical model has been generated for studying the dynamics of a typical lunar soft lander. Parameters used in the analysis includes lunar surface slope, coefficient of friction, initial touchdown velocity (vertical and horizontal), mass and moment of inertia of lander, crushing force due to energy absorbing material in the legs, number of legs and geometry of lander. The mathematical model is capable to simulate plastic and elastic deformation of honey comb, frictional force between landing leg and lunar soil, surface contact simulation, lunar gravitational force, rigid body dynamics and linkage dynamics of inverted tripod landing gear. The non linear differential equations generated for studying the dynamics of lunar lander is solved by numerical method. Matlab programme has been used as a computer tool for solving the numerical equations. The position of each kinematic joint is defined by mathematical equations for the generation of equation of motion. All hinged locations are defined by position vectors with respect to body fixed coordinate. The vehicle rigid body rotations and motions about body coordinate are only due to the external forces and moments arise from footpad reaction force due to impact, footpad frictional force and weight of vehicle. All these force are mathematically simulated for the generation of equation of motion. The validation of mathematical model is done by two different phases. First phase is the validation of plastic deformation of crushable elements by employing conservation of energy principle. The second phase is the validation of rigid body dynamics of model by simulating a lander model in ADAMS software after replacing the crushable elements to elastic spring element. Simulation of plastic deformation along with rigid body dynamics and contact force cannot be modeled in ADAMS. Hence plastic element of primary strut is replaced with a spring element and analysis is carried out in ADAMS software. The same analysis is also carried out using the mathematical model where the simulation of honeycomb crushing is replaced by elastic spring deformation and compared the results with ADAMS analysis. The rotational motion of linkages and 6 degree of freedom motion of lunar Lander about its CG can be validated by ADAMS software by replacing crushing element to spring element. The model is also validated by the drop test results of 4 leg lunar lander. This paper presents the details of mathematical model generated and its validation.Keywords: honeycomb, landing leg tripod, lunar lander, primary link, secondary link
Procedia PDF Downloads 3544723 An Integrated Approach to the Carbonate Reservoir Modeling: Case Study of the Eastern Siberia Field
Authors: Yana Snegireva
Abstract:
Carbonate reservoirs are known for their heterogeneity, resulting from various geological processes such as diagenesis and fracturing. These complexities may cause great challenges in understanding fluid flow behavior and predicting the production performance of naturally fractured reservoirs. The investigation of carbonate reservoirs is crucial, as many petroleum reservoirs are naturally fractured, which can be difficult due to the complexity of their fracture networks. This can lead to geological uncertainties, which are important for global petroleum reserves. The problem outlines the key challenges in carbonate reservoir modeling, including the accurate representation of fractures and their connectivity, as well as capturing the impact of fractures on fluid flow and production. Traditional reservoir modeling techniques often oversimplify fracture networks, leading to inaccurate predictions. Therefore, there is a need for a modern approach that can capture the complexities of carbonate reservoirs and provide reliable predictions for effective reservoir management and production optimization. The modern approach to carbonate reservoir modeling involves the utilization of the hybrid fracture modeling approach, including the discrete fracture network (DFN) method and implicit fracture network, which offer enhanced accuracy and reliability in characterizing complex fracture systems within these reservoirs. This study focuses on the application of the hybrid method in the Nepsko-Botuobinskaya anticline of the Eastern Siberia field, aiming to prove the appropriateness of this method in these geological conditions. The DFN method is adopted to model the fracture network within the carbonate reservoir. This method considers fractures as discrete entities, capturing their geometry, orientation, and connectivity. But the method has significant disadvantages since the number of fractures in the field can be very high. Due to limitations in the amount of main memory, it is very difficult to represent these fractures explicitly. By integrating data from image logs (formation micro imager), core data, and fracture density logs, a discrete fracture network (DFN) model can be constructed to represent fracture characteristics for hydraulically relevant fractures. The results obtained from the DFN modeling approaches provide valuable insights into the East Siberia field's carbonate reservoir behavior. The DFN model accurately captures the fracture system, allowing for a better understanding of fluid flow pathways, connectivity, and potential production zones. The analysis of simulation results enables the identification of zones of increased fracturing and optimization opportunities for reservoir development with the potential application of enhanced oil recovery techniques, which were considered in further simulations on the dual porosity and dual permeability models. This approach considers fractures as separate, interconnected flow paths within the reservoir matrix, allowing for the characterization of dual-porosity media. The case study of the East Siberia field demonstrates the effectiveness of the hybrid model method in accurately representing fracture systems and predicting reservoir behavior. The findings from this study contribute to improved reservoir management and production optimization in carbonate reservoirs with the use of enhanced and improved oil recovery methods.Keywords: carbonate reservoir, discrete fracture network, fracture modeling, dual porosity, enhanced oil recovery, implicit fracture model, hybrid fracture model
Procedia PDF Downloads 824722 Material Chemistry Level Deformation and Failure in Cementitious Materials
Authors: Ram V. Mohan, John Rivas-Murillo, Ahmed Mohamed, Wayne D. Hodo
Abstract:
Cementitious materials, an excellent example of highly complex, heterogeneous material systems, are cement-based systems that include cement paste, mortar, and concrete that are heavily used in civil infrastructure; though commonly used are one of the most complex in terms of the material morphology and structure than most materials, for example, crystalline metals. Processes and features occurring at the nanometer sized morphological structures affect the performance, deformation/failure behavior at larger length scales. In addition, cementitious materials undergo chemical and morphological changes gaining strength during the transient hydration process. Hydration in cement is a very complex process creating complex microstructures and the associated molecular structures that vary with hydration. A fundamental understanding can be gained through multi-scale level modeling for the behavior and properties of cementitious materials starting from the material chemistry level atomistic scale to further explore their role and the manifested effects at larger length and engineering scales. This predictive modeling enables the understanding, and studying the influence of material chemistry level changes and nanomaterial additives on the expected resultant material characteristics and deformation behavior. Atomistic-molecular dynamic level modeling is required to couple material science to engineering mechanics. Starting at the molecular level a comprehensive description of the material’s chemistry is required to understand the fundamental properties that govern behavior occurring across each relevant length scale. Material chemistry level models and molecular dynamics modeling and simulations are employed in our work to describe the molecular-level chemistry features of calcium-silicate-hydrate (CSH), one of the key hydrated constituents of cement paste, their associated deformation and failure. The molecular level atomic structure for CSH can be represented by Jennite mineral structure. Jennite has been widely accepted by researchers and is typically used to represent the molecular structure of the CSH gel formed during the hydration of cement clinkers. This paper will focus on our recent work on the shear and compressive deformation and failure behavior of CSH represented by Jennite mineral structure that has been widely accepted by researchers and is typically used to represent the molecular structure of CSH formed during the hydration of cement clinkers. The deformation and failure behavior under shear and compression loading deformation in traditional hydrated CSH; effect of material chemistry changes on the predicted stress-strain behavior, transition from linear to non-linear behavior and identify the on-set of failure based on material chemistry structures of CSH Jennite and changes in its chemistry structure will be discussed.Keywords: cementitious materials, deformation, failure, material chemistry modeling
Procedia PDF Downloads 2914721 A Methodology to Integrate Data in the Company Based on the Semantic Standard in the Context of Industry 4.0
Authors: Chang Qin, Daham Mustafa, Abderrahmane Khiat, Pierre Bienert, Paulo Zanini
Abstract:
Nowadays, companies are facing lots of challenges in the process of digital transformation, which can be a complex and costly undertaking. Digital transformation involves the collection and analysis of large amounts of data, which can create challenges around data management and governance. Furthermore, it is also challenged to integrate data from multiple systems and technologies. Although with these pains, companies are still pursuing digitalization because by embracing advanced technologies, companies can improve efficiency, quality, decision-making, and customer experience while also creating different business models and revenue streams. In this paper, the issue that data is stored in data silos with different schema and structures is focused. The conventional approaches to addressing this issue involve utilizing data warehousing, data integration tools, data standardization, and business intelligence tools. However, these approaches primarily focus on the grammar and structure of the data and neglect the importance of semantic modeling and semantic standardization, which are essential for achieving data interoperability. In this session, the challenge of data silos in Industry 4.0 is addressed by developing a semantic modeling approach compliant with Asset Administration Shell (AAS) models as an efficient standard for communication in Industry 4.0. The paper highlights how our approach can facilitate the data mapping process and semantic lifting according to existing industry standards such as ECLASS and other industrial dictionaries. It also incorporates the Asset Administration Shell technology to model and map the company’s data and utilize a knowledge graph for data storage and exploration.Keywords: data interoperability in industry 4.0, digital integration, industrial dictionary, semantic modeling
Procedia PDF Downloads 974720 Post-Earthquake Damage Detection Using System Identification with a Pair of Seismic Recordings
Authors: Lotfi O. Gargab, Ruichong R. Zhang
Abstract:
A wave-based framework is presented for modeling seismic motion in multistory buildings and using measured response for system identification which can be utilized to extract important information regarding structure integrity. With one pair of building response at two locations, a generalized model response is formulated based on wave propagation features and expressed as frequency and time response functions denoted, respectively, as GFRF and GIRF. In particular, GIRF is fundamental in tracking arrival times of impulsive wave motion initiated at response level which is dependent on local model properties. Matching model and measured-structure responses can help in identifying model parameters and infer building properties. To show the effectiveness of this approach, the Millikan Library in Pasadena, California is identified with recordings of the Yorba Linda earthquake of September 3, 2002.Keywords: system identification, continuous-discrete mass modeling, damage detection, post-earthquake
Procedia PDF Downloads 3724719 Homomorphic Conceptual Framework for Effective Supply Chain Strategy (HCEFSC) within Operational Research (OR) with Sustainability and Phenomenology
Authors: Hussain Abdullah Al-Salamin, Elias Ogutu Azariah Tembe
Abstract:
Supply chain (SC) is an operational research (OR) approach and technique which acts as catalyst within central nervous system of business today. Without SC, any type of business is at doldrums, hence entropy. SC is the lifeblood of business today because it is the pivotal hub which provides imperative competitive advantage. The paper present a conceptual framework dubbed as Homomorphic Conceptual Framework for Effective Supply Chain Strategy (HCEFSC).The term homomorphic is derived from abstract algebraic mathematical term homomorphism (same shape) which also embeds the following mathematical application sets: monomorphism, isomorphism, automorphisms, and endomorphism. The HCFESC is intertwined and integrated with wide and broad sets of elements.Keywords: homomorphism, isomorphism, monomorphisms, automorphisms, epimorphisms, endomorphism, supply chain, operational research (OR)
Procedia PDF Downloads 3764718 The Influence of the Diameter of the Flow Conducts on the Rheological Behavior of a Non-Newtonian Fluid
Authors: Hacina Abchiche, Mounir Mellal, Imene Bouchelkia
Abstract:
The knowledge of the rheological behavior of the used products in different fields is essential, both in digital simulation and the understanding of phenomenon involved during the flow of these products. The fluids presenting a nonlinear behavior represent an important category of materials used in the process of food-processing, chemical, pharmaceutical and oil industries. The issue is that the rheological characterization by classical rheometer cannot simulate, or take into consideration, the different parameters affecting the characterization of a complex fluid flow during real-time. The main objective of this study is to investigate the influence of the diameter of the flow conducts or pipe on the rheological behavior of a non-Newtonian fluid and Propose a mathematical model linking the rheologic parameters and the diameter of the conduits of flow. For this purpose, we have developed an experimental system based on the principal of a capillary rheometer.Keywords: rhéologie, non-Newtonian fluids, experimental stady, mathematical model, cylindrical conducts
Procedia PDF Downloads 2944717 Numerical Study of the Influence of the Primary Stream Pressure on the Performance of the Ejector Refrigeration System Based on Heat Exchanger Modeling
Authors: Elhameh Narimani, Mikhail Sorin, Philippe Micheau, Hakim Nesreddine
Abstract:
Numerical models of the heat exchangers in ejector refrigeration system (ERS) were developed and validated with the experimental data. The models were based on the switched heat exchangers model using the moving boundary method, which were capable of estimating the zones’ lengths, the outlet temperatures of both sides and the heat loads at various experimental points. The developed models were utilized to investigate the influence of the primary flow pressure on the performance of an R245fa ERS based on its coefficient of performance (COP) and exergy efficiency. It was illustrated numerically and proved experimentally that increasing the primary flow pressure slightly reduces the COP while the exergy efficiency goes through a maximum before decreasing.Keywords: Coefficient of Performance, COP, Ejector Refrigeration System, ERS, exergy efficiency (ηII), heat exchangers modeling, moving boundary method
Procedia PDF Downloads 2064716 PWM Based Control of Dstatcom for Voltage Sag, Swell Mitigation in Distribution Systems
Authors: A. Assif
Abstract:
This paper presents the modeling of a prototype distribution static compensator (D-STATCOM) for voltage sag and swell mitigation in an unbalanced distribution system. Here the concept that an inverter can be used as generalized impedance converter to realize either inductive or capacitive reactance has been used to mitigate power quality issues of distribution networks. The D-STATCOM is here supposed to replace the widely used StaticVar Compensator (SVC). The scheme is based on the Voltage Source Converter (VSC) principle. In this model PWM based control scheme has been implemented to control the electronic valves of VSC. Phase shift control Algorithm method is used for converter control. The D-STATCOM injects a current into the system to mitigate the voltage sags. In this paper the modeling of D¬STATCOM has been designed using MATLAB SIMULINIC. Accordingly, simulations are first carried out to illustrate the use of D-STATCOM in mitigating voltage sag in a distribution system. Simulation results prove that the D-STATCOM is capable of mitigating voltage sag as well as improving power quality of a system.Keywords: D-STATCOM, voltage sag, voltage source converter (VSC), phase shift control
Procedia PDF Downloads 3484715 Some Integral Inequalities of Hermite-Hadamard Type on Time Scale and Their Applications
Authors: Artion Kashuri, Rozana Liko
Abstract:
In this paper, the authors establish an integral identity using delta differentiable functions. By applying this identity, some new results via a general class of convex functions with respect to two nonnegative functions on a time scale are given. Also, for suitable choices of nonnegative functions, some special cases are deduced. Finally, in order to illustrate the efficiency of our main results, some applications to special means are obtained as well. We hope that current work using our idea and technique will attract the attention of researchers working in mathematical analysis, mathematical inequalities, numerical analysis, special functions, fractional calculus, quantum mechanics, quantum calculus, physics, probability and statistics, differential and difference equations, optimization theory, and other related fields in pure and applied sciences.Keywords: convex functions, Hermite-Hadamard inequality, special means, time scale
Procedia PDF Downloads 1544714 Moderate Electric Field Influence on Carotenoids Extraction Time from Heterochlorella luteoviridis
Authors: Débora P. Jaeschke, Eduardo A. Merlo, Rosane Rech, Giovana D. Mercali, Ligia D. F. Marczak
Abstract:
Carotenoids are high value added pigments that can be alternatively extracted from some microalgae species. However, the application of carotenoids synthetized by microalgae is still limited due to the utilization of organic toxic solvents. In this context, studies involving alternative extraction methods have been conducted with more sustainable solvents to replace and reduce the solvent volume and the extraction time. The aim of the present work was to evaluate the extraction time of carotenoids from the microalgae Heterochlorella luteoviridis using moderate electric field (MEF) as a pre-treatment to the extraction. The extraction methodology consisted of a pre-treatment in the presence of MEF (180 V) and ethanol (25 %, v/v) for 10 min, followed by a diffusive step performed for 50 min using a higher ethanol concentration (75 %, v/v). The extraction experiments were conducted at 30 °C and, to keep the temperature at this value, it was used an extraction cell with a water jacket that was connected to a water bath. Also, to enable the evaluation of MEF effect on the extraction, control experiments were performed using the same cell and conditions without voltage application. During the extraction experiments, samples were withdrawn at 1, 5 and 10 min of the pre-treatment and at 1, 5, 30, 40 and 50 min of the diffusive step. Samples were, then, centrifuged and carotenoids analyses were performed in the supernatant. Furthermore, an exhaustive extraction with ethyl acetate and methanol was performed, and the carotenoids content found for this analyses was considered as the total carotenoids content of the microalgae. The results showed that the application of MEF as a pre-treatment to the extraction influenced the extraction yield and the extraction time during the diffusive step; after the MEF pre-treatment and 50 min of the diffusive step, it was possible to extract up to 60 % of the total carotenoids content. Also, results found for carotenoids concentration of the extracts withdrawn at 5 and 30 min of the diffusive step did not presented statistical difference, meaning that carotenoids diffusion occurs mainly in the very beginning of the extraction. On the other hand, the results for control experiments showed that carotenoids diffusion occurs mostly during 30 min of the diffusive step, which evidenced MEF effect on the extraction time. Moreover, carotenoids concentration on samples withdrawn during the pre-treatment (1, 5 and 10 min) were below the quantification limit of the analyses, indicating that the extraction occurred in the diffusive step, when ethanol (75 %, v/v) was added to the medium. It is possible that MEF promoted cell membrane permeabilization and, when ethanol (75 %) was added, carotenoids interacted with the solvent and the diffusion occurred easily. Based on the results, it is possible to infer that MEF promoted the decrease of carotenoids extraction time due to the increasing of the permeability of the cell membrane which facilitates the diffusion from the cell to the medium.Keywords: moderate electric field (MEF), pigments, microalgae, ethanol
Procedia PDF Downloads 4674713 Cytokine Profiling in Cultured Endometrial Cells after Hormonal Treatment
Authors: Mark Gavriel, Ariel J. Jaffa, Dan Grisaru, David Elad
Abstract:
The human endometrium-myometrium interface (EMI) is the uterine inner barrier without a separatig layer. It is composed of endometrial epithelial cells (EEC) and endometrial stromal cells (ESC) in the endometrium and myometrial smooth muscle cells (MSMC) in the myometrium. The EMI undergoes structural remodeling during the menstruation cycle which are essential for human reproduction. Recently, we co-cultured a layer-by-layer in vitro model of EEC, ESC and MSMC on a synthetic membrane for mechanobiology experiments. We also treated the model with progesterone and β-estradiol in order to mimic the in vivo receptive uterus In the present study we analyzed the cytokines profile in a single layer of EEC the hormonal treated in vitro model of the EMI. The methodologies of this research include simple tissue-engineering . First, we cultured commercial EEC (RL95-2, ATCC® CRL-1671™) in 24-wellplate. Then, we applied an hormonal stimuli protocol with 17-β-estradiol and progesterone in time dependent concentration according to the human physiology that mimics the menstrual cycle. We collected cell supernatant samples of control, pre-ovulation, ovulation and post-ovulaton periods for analysis of the secreted proteins and cytokines. The cytokine profiling was performed using the Proteome Profiler Human XL Cytokine Array Kit (R&D Systems, Inc., USA) that can detect105 human soluble cytokines. The relative quantification of all the cytokines will be analyzed using xMAP – LUMINEX. We conducted a fishing expedition with the 4 membranes Proteome Profiler. We processed the images, quantified the spots intensity and normalized these values by the negative control and reference spots at the membrane. Analyses of the relative quantities that reflected change higher than 5% of the control points of the kit revealed the The results clearly showed that there are significant changes in the cytokine level for inflammation and angiogenesis pathways. Analysis of tissue-engineered models of the uterine wall will enable deeper investigation of molecular and biomechanical aspects of early reproductive stages (e.g. the window of implantation) or developments of pathologies.Keywords: tissue-engineering, hormonal stimuli, reproduction, multi-layer uterine model, progesterone, β-estradiol, receptive uterine model, fertility
Procedia PDF Downloads 1364712 Instant Fire Risk Assessment Using Artifical Neural Networks
Authors: Tolga Barisik, Ali Fuat Guneri, K. Dastan
Abstract:
Major industrial facilities have a high potential for fire risk. In particular, the indices used for the detection of hidden fire are used very effectively in order to prevent the fire from becoming dangerous in the initial stage. These indices provide the opportunity to prevent or intervene early by determining the stage of the fire, the potential for hazard, and the type of the combustion agent with the percentage values of the ambient air components. In this system, artificial neural network will be modeled with the input data determined using the Levenberg-Marquardt algorithm, which is a multi-layer sensor (CAA) (teacher-learning) type, before modeling the modeling methods in the literature. The actual values produced by the indices will be compared with the outputs produced by the network. Using the neural network and the curves to be created from the resulting values, the feasibility of performance determination will be investigated.Keywords: artifical neural networks, fire, Graham Index, levenberg-marquardt algoritm, oxygen decrease percentage index, risk assessment, Trickett Index
Procedia PDF Downloads 1424711 A Comparative Soft Computing Approach to Supplier Performance Prediction Using GEP and ANN Models: An Automotive Case Study
Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari
Abstract:
In multi-echelon supply chain networks, optimal supplier selection significantly depends on the accuracy of suppliers’ performance prediction. Different methods of multi criteria decision making such as ANN, GA, Fuzzy, AHP, etc have been previously used to predict the supplier performance but the “black-box” characteristic of these methods is yet a major concern to be resolved. Therefore, the primary objective in this paper is to implement an artificial intelligence-based gene expression programming (GEP) model to compare the prediction accuracy with that of ANN. A full factorial design with %95 confidence interval is initially applied to determine the appropriate set of criteria for supplier performance evaluation. A test-train approach is then utilized for the ANN and GEP exclusively. The training results are used to find the optimal network architecture and the testing data will determine the prediction accuracy of each method based on measures of root mean square error (RMSE) and correlation coefficient (R2). The results of a case study conducted in Supplying Automotive Parts Co. (SAPCO) with more than 100 local and foreign supply chain members revealed that, in comparison with ANN, gene expression programming has a significant preference in predicting supplier performance by referring to the respective RMSE and R-squared values. Moreover, using GEP, a mathematical function was also derived to solve the issue of ANN black-box structure in modeling the performance prediction.Keywords: Supplier Performance Prediction, ANN, GEP, Automotive, SAPCO
Procedia PDF Downloads 4234710 Energy Consumption Modeling for Strawberry Greenhouse Crop by Adaptive Nero Fuzzy Inference System Technique: A Case Study in Iran
Authors: Azar Khodabakhshi, Elham Bolandnazar
Abstract:
Agriculture as the most important food manufacturing sector is not only the energy consumer, but also is known as energy supplier. Using energy is considered as a helpful parameter for analyzing and evaluating the agricultural sustainability. In this study, the pattern of energy consumption of strawberry greenhouses of Jiroft in Kerman province of Iran was surveyed. The total input energy required in the strawberries production was calculated as 113314.71 MJ /ha. Electricity with 38.34% contribution of the total energy was considered as the most energy consumer in strawberry production. In this study, Neuro Fuzzy networks was used for function modeling in the production of strawberries. Results showed that the best model for predicting the strawberries function had a correlation coefficient, root mean square error (RMSE) and mean absolute percentage error (MAPE) equal to 0.9849, 0.0154 kg/ha and 0.11% respectively. Regards to these results, it can be said that Neuro Fuzzy method can be well predicted and modeled the strawberry crop function.Keywords: crop yield, energy, neuro-fuzzy method, strawberry
Procedia PDF Downloads 3864709 Modeling of Oxygen Supply Profiles in Stirred-Tank Aggregated Stem Cells Cultivation Process
Authors: Vytautas Galvanauskas, Vykantas Grincas, Rimvydas Simutis
Abstract:
This paper investigates a possible practical solution for reasonable oxygen supply during the pluripotent stem cells expansion processes, where the stem cells propagate as aggregates in stirred-suspension bioreactors. Low glucose and low oxygen concentrations are preferred for efficient proliferation of pluripotent stem cells. However, strong oxygen limitation, especially inside of cell aggregates, can lead to cell starvation and death. In this research, the oxygen concentration profile inside of stem cell aggregates in a stem cell expansion process was predicted using a modified oxygen diffusion model. This profile can be realized during the stem cells cultivation process by manipulating the oxygen concentration in inlet gas or inlet gas flow. The proposed approach is relatively simple and may be attractive for installation in a real pluripotent stem cell expansion processes.Keywords: aggregated stem cells, dissolved oxygen profiles, modeling, stirred-tank, 3D expansion
Procedia PDF Downloads 3104708 Price Prediction Line, Investment Signals and Limit Conditions Applied for the German Financial Market
Authors: Cristian Păuna
Abstract:
In the first decades of the 21st century, in the electronic trading environment, algorithmic capital investments became the primary tool to make a profit by speculations in financial markets. A significant number of traders, private or institutional investors are participating in the capital markets every day using automated algorithms. The autonomous trading software is today a considerable part in the business intelligence system of any modern financial activity. The trading decisions and orders are made automatically by computers using different mathematical models. This paper will present one of these models called Price Prediction Line. A mathematical algorithm will be revealed to build a reliable trend line, which is the base for limit conditions and automated investment signals, the core for a computerized investment system. The paper will guide how to apply these tools to generate entry and exit investment signals, limit conditions to build a mathematical filter for the investment opportunities, and the methodology to integrate all of these in automated investment software. The paper will also present trading results obtained for the leading German financial market index with the presented methods to analyze and to compare different automated investment algorithms. It was found that a specific mathematical algorithm can be optimized and integrated into an automated trading system with good and sustained results for the leading German Market. Investment results will be compared in order to qualify the presented model. In conclusion, a 1:6.12 risk was obtained to reward ratio applying the trigonometric method to the DAX Deutscher Aktienindex on 24 months investment. These results are superior to those obtained with other similar models as this paper reveal. The general idea sustained by this paper is that the Price Prediction Line model presented is a reliable capital investment methodology that can be successfully applied to build an automated investment system with excellent results.Keywords: algorithmic trading, automated trading systems, high-frequency trading, DAX Deutscher Aktienindex
Procedia PDF Downloads 1344707 Seismic Assessment of an Existing Dual System RC Buildings in Madinah City
Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail
Abstract:
A 15-storey RC building, studied in this paper, is representative of modern building type constructed in Madina City in Saudi Arabia before 10 years ago. These buildings are almost consisting of reinforced concrete skeleton, i. e. columns, beams and flat slab as well as shear walls in the stairs and elevator areas arranged in the way to have a resistance system for lateral loads (wind–earthquake loads). In this study, the dynamic properties of the 15-storey RC building were identified using ambient motions recorded at several spatially-distributed locations within each building. After updating the mathematical models for this building with the experimental results, three dimensional pushover analysis (nonlinear static analysis) was carried out using SAP2000 software incorporating inelastic material properties for concrete, infill and steel. The effect of modeling the building with and without infill walls on the performance point as well as capacity and demand spectra due to EQ design spectrum function in Madina area has been investigated. The response modification factor (R) for the 15 storey RC building is evaluated from capacity and demand spectra (ATC-40). The purpose of this analysis is to evaluate the expected performance of structural systems by estimating, strength and deformation demands in design, and comparing these demands to available capacities at the performance levels of interest. The results are summarized and discussed.Keywords: seismic assessment, pushover analysis, ambient vibration, modal update
Procedia PDF Downloads 3944706 Learning from Dendrites: Improving the Point Neuron Model
Authors: Alexander Vandesompele, Joni Dambre
Abstract:
The diversity in dendritic arborization, as first illustrated by Santiago Ramon y Cajal, has always suggested a role for dendrites in the functionality of neurons. In the past decades, thanks to new recording techniques and optical stimulation methods, it has become clear that dendrites are not merely passive electrical components. They are observed to integrate inputs in a non-linear fashion and actively participate in computations. Regardless, in simulations of neural networks dendritic structure and functionality are often overlooked. Especially in a machine learning context, when designing artificial neural networks, point neuron models such as the leaky-integrate-and-fire (LIF) model are dominant. These models mimic the integration of inputs at the neuron soma, and ignore the existence of dendrites. In this work, the LIF point neuron model is extended with a simple form of dendritic computation. This gives the LIF neuron increased capacity to discriminate spatiotemporal input sequences, a dendritic functionality as observed in another study. Simulations of the spiking neurons are performed using the Bindsnet framework. In the common LIF model, incoming synapses are independent. Here, we introduce a dependency between incoming synapses such that the post-synaptic impact of a spike is not only determined by the weight of the synapse, but also by the activity of other synapses. This is a form of short term plasticity where synapses are potentiated or depressed by the preceding activity of neighbouring synapses. This is a straightforward way to prevent inputs from simply summing linearly at the soma. To implement this, each pair of synapses on a neuron is assigned a variable,representing the synaptic relation. This variable determines the magnitude ofthe short term plasticity. These variables can be chosen randomly or, more interestingly, can be learned using a form of Hebbian learning. We use Spike-Time-Dependent-Plasticity (STDP), commonly used to learn synaptic strength magnitudes. If all neurons in a layer receive the same input, they tend to learn the same through STDP. Adding inhibitory connections between the neurons creates a winner-take-all (WTA) network. This causes the different neurons to learn different input sequences. To illustrate the impact of the proposed dendritic mechanism, even without learning, we attach five input neurons to two output neurons. One output neuron isa regular LIF neuron, the other output neuron is a LIF neuron with dendritic relationships. Then, the five input neurons are allowed to fire in a particular order. The membrane potentials are reset and subsequently the five input neurons are fired in the reversed order. As the regular LIF neuron linearly integrates its inputs at the soma, the membrane potential response to both sequences is similar in magnitude. In the other output neuron, due to the dendritic mechanism, the membrane potential response is different for both sequences. Hence, the dendritic mechanism improves the neuron’s capacity for discriminating spa-tiotemporal sequences. Dendritic computations improve LIF neurons even if the relationships between synapses are established randomly. Ideally however, a learning rule is used to improve the dendritic relationships based on input data. It is possible to learn synaptic strength with STDP, to make a neuron more sensitive to its input. Similarly, it is possible to learn dendritic relationships with STDP, to make the neuron more sensitive to spatiotemporal input sequences. Feeding structured data to a WTA network with dendritic computation leads to a significantly higher number of discriminated input patterns. Without the dendritic computation, output neurons are less specific and may, for instance, be activated by a sequence in reverse order.Keywords: dendritic computation, spiking neural networks, point neuron model
Procedia PDF Downloads 1384705 Physical Modeling of Woodwind Ancient Greek Musical Instruments: The Case of Plagiaulos
Authors: Dimitra Marini, Konstantinos Bakogiannis, Spyros Polychronopoulos, Georgios Kouroupetroglou
Abstract:
Archaemusicology cannot entirely depend on the study of the excavated ancient musical instruments as most of the time their condition is not ideal (i.e., missing/eroded parts) and moreover, because of the concern damaging the originals during the experiments. Researchers, in order to overcome the above obstacles, build replicas. This technique is still the most popular one, although it is rather expensive and time-consuming. Throughout the last decades, the development of physical modeling techniques has provided tools that enable the study of musical instruments through their digitally simulated models. This is not only a more cost and time-efficient technique but also provides additional flexibility as the user can easily modify parameters such as their geometrical features and materials. This paper thoroughly describes the steps to create a physical model of a woodwind ancient Greek instrument, Plagiaulos. This instrument could be considered as the ancestor of the modern flute due to the common geometry and air-jet excitation mechanism. Plagiaulos is comprised of a single resonator with an open end and a number of tone holes. The combination of closed and open tone holes produces the pitch variations. In this work, the effects of all the instrument’s components are described by means of physics and then simulated based on digital waveguides. The synthesized sound of the proposed model complies with the theory, highlighting its validity. Further, the synthesized sound of the model simulating the Plagiaulos of Koile (2nd century BCE) was compared with its replica build in our laboratory by following the scientific methodologies of archeomusicology. The aforementioned results verify that robust dynamic digital tools can be introduced in the field of computational, experimental archaemusicology.Keywords: archaeomusicology, digital waveguides, musical acoustics, physical modeling
Procedia PDF Downloads 1184704 Optimization of a Combined Ejector-Vapor Compression Refrigeration Systems with R134a
Authors: Ilhem Ouelhazi, Mouna Elakhdar, Lakdar Kairouani
Abstract:
A computer simulation model for a combined ejector-vapor compression cycle that uses working fluid R134a. A refrigeration system was developed which combines a basic vapor compression refrigeration cycle with an ejector cooling cycle. A one-dimensional mathematical model was developed using the equations governing the flow and thermodynamics based on the constant area ejector flow model. The effects of the operating parameters on the cooling capacity, the performance coefficient, and the entrainment ratio are studied. The current model is based on the NIST-REFPROP database for refrigerants properties calculations. The simulated performance is compared with the available experimental data from the literature for validation.Keywords: combined refrigeration cycle, constant area ejector, R134a, ejector-cooling cycle, performance, mathematical simulation, vapor compression cycle
Procedia PDF Downloads 2294703 Assessing the Effectiveness of Machine Learning Algorithms for Cyber Threat Intelligence Discovery from the Darknet
Authors: Azene Zenebe
Abstract:
Deep learning is a subset of machine learning which incorporates techniques for the construction of artificial neural networks and found to be useful for modeling complex problems with large dataset. Deep learning requires a very high power computational and longer time for training. By aggregating computing power, high performance computer (HPC) has emerged as an approach to resolving advanced problems and performing data-driven research activities. Cyber threat intelligence (CIT) is actionable information or insight an organization or individual uses to understand the threats that have, will, or are currently targeting the organization. Results of review of literature will be presented along with results of experimental study that compares the performance of tree-based and function-base machine learning including deep learning algorithms using secondary dataset collected from darknet.Keywords: deep-learning, cyber security, cyber threat modeling, tree-based machine learning, function-based machine learning, data science
Procedia PDF Downloads 1604702 Application of Causal Inference and Discovery in Curriculum Evaluation and Continuous Improvement
Authors: Lunliang Zhong, Bin Duan
Abstract:
The undergraduate graduation project is a vital part of the higher education curriculum, crucial for engineering accreditation. Current evaluations often summarize data without identifying underlying issues. This study applies the Peter-Clark algorithm to analyze causal relationships within the graduation project data of an Electronics and Information Engineering program, creating a causal model. Structural equation modeling confirmed the model's validity. The analysis reveals key teaching stages affecting project success, uncovering problems in the process. Introducing causal discovery and inference into project evaluation helps identify issues and propose targeted improvement measures. The effectiveness of these measures is validated by comparing the learning outcomes of two student cohorts, stratified by confounding factors, leading to improved teaching quality.Keywords: causal discovery, causal inference, continuous improvement, Peter-Clark algorithm, structural equation modeling
Procedia PDF Downloads 264701 The Quantitative Optical Modulation of Dopamine Receptor-Mediated Endocytosis Using an Optogenetic System
Authors: Qiaoyue Kuang, Yang Li, Mizuki Endo, Takeaki Ozawa
Abstract:
G protein-coupled receptors (GPCR) are the largest family of receptor proteins that detect molecules outside the cell and activate cellular responses. Of the GPCRs, dopamine receptors, which recognize extracellular dopamine, are essential to mammals due to their roles in numerous physiological events, including autonomic movement, hormonal regulation, emotions, and the reward system in the brain. To precisely understand the physiological roles of dopamine receptors, it is important to spatiotemporally control the signaling mediated by dopamine receptors, which is strongly dependent on their surface expression. Conventionally, chemical-induced interactions were applied to trigger the endocytosis of cell surface receptors. However, these methods were subjected to diffusion and therefore lacked temporal and special precision. To further understand the receptor-mediated signaling and to control the plasma membrane expression of receptors, an optogenetic tool called E-fragment was developed. The C-terminus of a light-sensitive photosensory protein cyptochrome2 (CRY2) was attached to β-Arrestin, and the E-fragment was generated by fusing the C-terminal peptide of vasopressin receptor (V2R) to CRY2’s binding partner protein CIB. The CRY2-CIB heterodimerization triggered by blue light stimulation brings β-Arrestin to the vicinity of membrane receptors and results in receptor endocytosis. In this study, the E-fragment system was applied to dopamine receptors 1 and 2 (DRD1 and DRD2) to control dopamine signaling. First, confocal fluorescence microscope observation qualitatively confirmed the light-induced endocytosis of E-fragment fused receptors. Second, NanoBiT bioluminescence assay verified quantitatively that the surface amount of E-fragment labeled receptors decreased after light treatment. Finally, GloSensor bioluminescence assay results suggested that the E-fragment-dependent receptor light-induced endocytosis decreased cAMP production in DRD1 signaling and attenuated the inhibition effect of DRD2 on cAMP production. The developed optogenetic tool was able to induce receptor endocytosis by external light, providing opportunities to further understand numerous physiological activities by controlling receptor-mediated signaling spatiotemporally.Keywords: dopamine receptors, endocytosis, G protein-coupled receptors, optogenetics
Procedia PDF Downloads 1074700 The Use of Microalgae Cultivation for Improving the Effluent Behavior of Anaerobic Digestion of Food Wastes at Psychrophilic Range
Authors: Pedro M. Velasco, Cecilia C. Alday, Oscar C. Avello, Ximena T. Faundez, Luis M. Velasco
Abstract:
Anaerobic digestion (AD) plants of food waste (FW) produced by agro-industry, have been widely developed from last decade to nowadays, because of the advantages over aerobic active sludge systems. Despite several bioreactor configurations and operation modes have been successfully improved and implemented at industrial scale in a wide range of applications, effluent behavior, after AD, does not commonly meet requirements for direct disposal into the environment without further treatments. In addition, literature has rarely shown AD of food waste at psychrophilic range. This temperature range may be of interest for making AD plant operation easier and increasing the stability of digestion. In spite of literature shows several methods for post-treatment, such as the use of microalgae, these have not been cultivated on effluents from AD at psychrophilic range. Hence, with the aim of showing the potential use of AD of FW at the psychrophilic range (25ºC) and the viability of microalgae post-treatment, single batch reactors have been used for methane potential tests at laboratory scale. Afterwards, digestates, derived from this AD of FW sludge, were diluted with fresh water at different ratios (1:0, 1:1; 1:4) and used as culture media for photoautotrophic microalgae. Several parameters, such as pH, biogas production, and chemical oxygen demand, were measured periodically over several months. Results show that methane potential is 150 ml g-1 per volatile solid with up to 57.7 % of methane content. Moreover, microalgae has been successfully cultivated on all tested effluents and in case of 1:1 and 1:4 rates, the resulting effluents meet the quality levels required for irrigation water.Keywords: anaerobic digestion, biogas, food waste, microalgae, psychrophilic range
Procedia PDF Downloads 3064699 Hybrid Intelligent Optimization Methods for Optimal Design of Horizontal-Axis Wind Turbine Blades
Authors: E. Tandis, E. Assareh
Abstract:
Designing the optimal shape of MW wind turbine blades is provided in a number of cases through evolutionary algorithms associated with mathematical modeling (Blade Element Momentum Theory). Evolutionary algorithms, among the optimization methods, enjoy many advantages, particularly in stability. However, they usually need a large number of function evaluations. Since there are a large number of local extremes, the optimization method has to find the global extreme accurately. The present paper introduces a new population-based hybrid algorithm called Genetic-Based Bees Algorithm (GBBA). This algorithm is meant to design the optimal shape for MW wind turbine blades. The current method employs crossover and neighborhood searching operators taken from the respective Genetic Algorithm (GA) and Bees Algorithm (BA) to provide a method with good performance in accuracy and speed convergence. Different blade designs, twenty-one to be exact, were considered based on the chord length, twist angle and tip speed ratio using GA results. They were compared with BA and GBBA optimum design results targeting the power coefficient and solidity. The results suggest that the final shape, obtained by the proposed hybrid algorithm, performs better compared to either BA or GA. Furthermore, the accuracy and speed convergence increases when the GBBA is employedKeywords: Blade Design, Optimization, Genetic Algorithm, Bees Algorithm, Genetic-Based Bees Algorithm, Large Wind Turbine
Procedia PDF Downloads 3204698 The Impact of Gamification on Self-Assessment for English Language Learners in Saudi Arabia
Authors: Wala A. Bagunaid, Maram Meccawy, Arwa Allinjawi, Zilal Meccawy
Abstract:
Continuous self-assessment becomes crucial in self-paced online learning environments. Students often depend on themselves to assess their progress; which is considered an essential requirement for any successful learning process. Today’s education institutions face major problems around student motivation and engagement. Thus, personalized e-learning systems aim to help and guide the students. Gamification provides an opportunity to help students for self-assessment and social comparison with other students through attempting to harness the motivational power of games and apply it to the learning environment. Furthermore, Open Social Student Modeling (OSSM) as considered as the latest user modeling technologies is believed to improve students’ self-assessment and to allow them to social comparison with other students. This research integrates OSSM approach and gamification concepts in order to provide self-assessment for English language learners at King Abdulaziz University (KAU). This is achieved through an interactive visual representation of their learning progress.Keywords: e-learning system, gamification, motivation, social comparison, visualization
Procedia PDF Downloads 156