Search results for: learning management systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22991

Search results for: learning management systems

21281 Optimization for Autonomous Robotic Construction by Visual Guidance through Machine Learning

Authors: Yangzhi Li

Abstract:

Network transfer of information and performance customization is now a viable method of digital industrial production in the era of Industry 4.0. Robot platforms and network platforms have grown more important in digital design and construction. The pressing need for novel building techniques is driven by the growing labor scarcity problem and increased awareness of construction safety. Robotic approaches in construction research are regarded as an extension of operational and production tools. Several technological theories related to robot autonomous recognition, which include high-performance computing, physical system modeling, extensive sensor coordination, and dataset deep learning, have not been explored using intelligent construction. Relevant transdisciplinary theory and practice research still has specific gaps. Optimizing high-performance computing and autonomous recognition visual guidance technologies improves the robot's grasp of the scene and capacity for autonomous operation. Intelligent vision guidance technology for industrial robots has a serious issue with camera calibration, and the use of intelligent visual guiding and identification technologies for industrial robots in industrial production has strict accuracy requirements. It can be considered that visual recognition systems have challenges with precision issues. In such a situation, it will directly impact the effectiveness and standard of industrial production, necessitating a strengthening of the visual guiding study on positioning precision in recognition technology. To best facilitate the handling of complicated components, an approach for the visual recognition of parts utilizing machine learning algorithms is proposed. This study will identify the position of target components by detecting the information at the boundary and corner of a dense point cloud and determining the aspect ratio in accordance with the guidelines for the modularization of building components. To collect and use components, operational processing systems assign them to the same coordinate system based on their locations and postures. The RGB image's inclination detection and the depth image's verification will be used to determine the component's present posture. Finally, a virtual environment model for the robot's obstacle-avoidance route will be constructed using the point cloud information.

Keywords: robotic construction, robotic assembly, visual guidance, machine learning

Procedia PDF Downloads 86
21280 Multimedia Design in Tactical Play Learning and Acquisition for Elite Gaelic Football Practitioners

Authors: Michael McMahon

Abstract:

The use of media (video/animation/graphics) has long been used by athletes, coaches, and sports scientists to analyse and improve performance in technical skills and team tactics. Sports educators are increasingly open to the use of technology to support coach and learner development. However, an overreliance is a concern., This paper is part of a larger Ph.D. study looking into these new challenges for Sports Educators. Most notably, how to exploit the deep-learning potential of Digital Media among expert learners, how to instruct sports educators to create effective media content that fosters deep learning, and finally, how to make the process manageable and cost-effective. Central to the study is Richard Mayers Cognitive Theory of Multimedia Learning. Mayers Multimedia Learning Theory proposes twelve principles that shape the design and organization of multimedia presentations to improve learning and reduce cognitive load. For example, the Prior Knowledge principle suggests and highlights different learning outcomes for Novice and Non-Novice learners, respectively. Little research, however, is available to support this principle in modified domains (e.g., sports tactics and strategy). As a foundation for further research, this paper compares and contrasts a range of contemporary multimedia sports coaching content and assesses how they perform as learning tools for Strategic and Tactical Play Acquisition among elite sports practitioners. The stress tests applied are guided by Mayers's twelve Multimedia Learning Principles. The focus is on the elite athletes and whether current coaching digital media content does foster improved sports learning among this cohort. The sport of Gaelic Football was selected as it has high strategic and tactical play content, a wide range of Practitioner skill levels (Novice to Elite), and also a significant volume of Multimedia Coaching Content available for analysis. It is hoped the resulting data will help identify and inform the future instructional content design and delivery for Sports Practitioners and help promote best design practices optimal for different levels of expertise.

Keywords: multimedia learning, e-learning, design for learning, ICT

Procedia PDF Downloads 103
21279 An Analysis of a Canadian Personalized Learning Curriculum

Authors: Ruthanne Tobin

Abstract:

The shift to a personalized learning (PL) curriculum in Canada represents an innovative approach to teaching and learning that is also evident in various initiatives across the 32-nation OECD. The premise behind PL is that empowering individual learners to have more input into how they access and construct knowledge, and express their understanding of it, will result in more meaningful school experiences and academic success. In this paper presentation, the author reports on a document analysis of the new curriculum in the province of British Columbia. Three theoretical frameworks are used to analyze the new curriculum. Framework 1 focuses on five dominant aspects (FDA) of PL at the classroom level. Framework 2 focuses on conceptualizing and enacting personalized learning (CEPL) within three spheres of influence. Framework 3 focuses on the integration of three types of knowledge (content, technological, and pedagogical). Analysis is ongoing, but preliminary findings suggest that the new curriculum addresses framework 1 quite well, which identifies five areas of personalized learning: 1) assessment for learning; 2) effective teaching and learning; 3) curriculum entitlement (choice); 4) school organization; and 5) “beyond the classroom walls” (learning in the community). Framework 2 appears to be less well developed in the new curriculum. This framework speaks to the dynamics of PL within three spheres of interaction: 1) nested agency, comprised of overarching constraints [and enablers] from policy makers, school administrators and community; 2) relational agency, which refers to a capacity for professionals to develop a network of expertise to serve shared goals; and 3) students’ personalized learning experience, which integrates differentiation with self-regulation strategies. Framework 3 appears to be well executed in the new PL curriculum, as it employs the theoretical model of technological, pedagogical content knowledge (TPACK) in which there are three interdependent bodies of knowledge. Notable within this framework is the emphasis on the pairing of technologies with excellent pedagogies to significantly assist students and teachers. This work will be of high relevance to educators interested in innovative school reform.

Keywords: curriculum reform, K-12 school change, innovations in education, personalized learning

Procedia PDF Downloads 282
21278 Machine Learning Approach for Yield Prediction in Semiconductor Production

Authors: Heramb Somthankar, Anujoy Chakraborty

Abstract:

This paper presents a classification study on yield prediction in semiconductor production using machine learning approaches. A complicated semiconductor production process is generally monitored continuously by signals acquired from sensors and measurement sites. A monitoring system contains a variety of signals, all of which contain useful information, irrelevant information, and noise. In the case of each signal being considered a feature, "Feature Selection" is used to find the most relevant signals. The open-source UCI SECOM Dataset provides 1567 such samples, out of which 104 fail in quality assurance. Feature extraction and selection are performed on the dataset, and useful signals were considered for further study. Afterward, common machine learning algorithms were employed to predict whether the signal yields pass or fail. The most relevant algorithm is selected for prediction based on the accuracy and loss of the ML model.

Keywords: deep learning, feature extraction, feature selection, machine learning classification algorithms, semiconductor production monitoring, signal processing, time-series analysis

Procedia PDF Downloads 109
21277 Impact of Overall Teaching Program of Anatomy in Learning: A Students Perspective

Authors: Mamatha Hosapatna, Anne D. Souza, Antony Sylvan Dsouza, Vrinda Hari Ankolekar

Abstract:

Our study intends to know the effect of the overall teaching program of Anatomy on a students learning. The advancement of various teaching methodologies in the present era has led to progressive changes in education. A student should be able to correlate well between the theory and practical knowledge attained even in the early years of their education in medicine and should be able to implement the same in patient care. The present study therefore aims to assess the impact the current anatomy teaching program has on a students learning and to what extent is it successful in making the learning program effective. Specific objectives of our study to assess the impact of overall teaching program of Anatomy in a students’ learning. Description of process proposed: A questionnaire will be constructed and the students will be asked to put forth their views regarding the Anatomy teaching program and its method of assessment. Suggestions, if any will also be encouraged to be put forth. Type of study is cross sectional observations. Target population is the first year MBBS students and sample size is 250. Assessment plan is to obtaining students responses using questionnaire. Calculating percentages of the responses obtained. Tabulation of the results will be done.

Keywords: anatomy, observational study questionnaire, observational study, M.B.B.S students

Procedia PDF Downloads 499
21276 Using Deep Learning Real-Time Object Detection Convolution Neural Networks for Fast Fruit Recognition in the Tree

Authors: K. Bresilla, L. Manfrini, B. Morandi, A. Boini, G. Perulli, L. C. Grappadelli

Abstract:

Image/video processing for fruit in the tree using hard-coded feature extraction algorithms have shown high accuracy during recent years. While accurate, these approaches even with high-end hardware are computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks (CNNs), specifically an algorithm (YOLO - You Only Look Once) with 24+2 convolution layers. Using deep-learning techniques eliminated the need for hard-code specific features for specific fruit shapes, color and/or other attributes. This CNN is trained on more than 5000 images of apple and pear fruits on 960 cores GPU (Graphical Processing Unit). Testing set showed an accuracy of 90%. After this, trained data were transferred to an embedded device (Raspberry Pi gen.3) with camera for more portability. Based on correlation between number of visible fruits or detected fruits on one frame and the real number of fruits on one tree, a model was created to accommodate this error rate. Speed of processing and detection of the whole platform was higher than 40 frames per second. This speed is fast enough for any grasping/harvesting robotic arm or other real-time applications.

Keywords: artificial intelligence, computer vision, deep learning, fruit recognition, harvesting robot, precision agriculture

Procedia PDF Downloads 420
21275 Fostering Creativity in Education Exploring Leadership Perspectives on Systemic Barriers to Innovative Pedagogy

Authors: David Crighton, Kelly Smith

Abstract:

The ability to adopt creative pedagogical approaches is increasingly vital in today’s educational landscape. This study examines the institutional barriers that hinder educators, in the UK, from embracing such innovation, focusing specifically on the experiences and perspectives of educational leaders. Current literature primarily focuses on the challenges that academics and teachers encounter, particularly highlighting how management culture and audit processes negatively affect their ability to be creative in classrooms and lecture theatres. However, this focus leaves a gap in understanding management perspectives, which is crucial for providing a more holistic insight into the challenges encountered in educational settings. To explore this gap, we are conducting semi-structured interviews with senior leaders across various educational contexts, including universities, schools, and further education colleges. This qualitative methodology, combined with thematic analysis, aims to uncover the managerial, financial, and administrative pressures these leaders face in fostering creativity in teaching and supporting professional learning opportunities. Preliminary insights indicate that educational leaders face significant barriers, such as institutional policies, resource limitations, and external performance indicators. These challenges create a restrictive environment that stifles educators' creativity and innovation. Addressing these barriers is essential for empowering staff to adopt more creative pedagogical approaches, ultimately enhancing student engagement and learning outcomes. By alleviating these constraints, educational leaders can cultivate a culture that fosters creativity and flexibility in the classroom. These insights will inform practical recommendations to support institutional change and enhance professional learning opportunities, contributing to a more dynamic educational environment. In conclusion, this study offers a timely exploration of how leadership can influence the pedagogical landscape in a rapidly evolving educational context. The research seeks to highlight the crucial role that educational leaders play in shaping a culture of creativity and adaptability, ensuring that institutions are better equipped to respond to the challenges of contemporary education.

Keywords: educational leadership, professional learning, creative pedagogy, marketisation

Procedia PDF Downloads 14
21274 A Case Study on the Guidelines for Application of Project Management Methods in Infrastructure Projects

Authors: Fernanda Varella Borges, Silvio Burrattino Melhado

Abstract:

Motivated by the importance of public infrastructure projects in the civil construction chain, this research shows the study of project management methods and the infrastructure projects’ characteristics. The research aims at the objective of improving management efficiency by proposing guidelines for the application of project management methods in infrastructure projects. Through literature review and case studies, the research analyses two major infrastructure projects underway in Brazil, identifying the critical points for achieving its success. As a result, the proposed guidelines indicate that special attention should be given to the management of stakeholders, focusing on their knowledge and experience, their different interests, the efficient management of their communication, and their behavior in the day-by-day project management process.

Keywords: construction, infrastructure, project management, public projects

Procedia PDF Downloads 494
21273 The Factors Affecting the Use of Massive Open Online Courses in Blended Learning by Lecturers in Universities

Authors: Taghreed Alghamdi, Wendy Hall, David Millard

Abstract:

Massive Open Online Courses (MOOCs) have recently gained widespread interest in the academic world, starting a wide range of discussion of a number of issues. One of these issues, using MOOCs in teaching and learning in the higher education by integrating MOOCs’ contents with traditional face-to-face activities in blended learning format, is called blended MOOCs (bMOOCs) and is intended not to replace traditional learning but to enhance students learning. Most research on MOOCs has focused on students’ perception and institutional threats whereas there is a lack of published research on academics’ experiences and practices. Thus, the first aim of the study is to develop a classification of blended MOOCs models by conducting a systematic literature review, classifying 19 different case studies, and identifying the broad types of bMOOCs models namely: Supplementary Model and Integrated Model. Thus, the analyses phase will emphasize on these different types of bMOOCs models in terms of adopting MOOCs by lecturers. The second aim of the study is to improve the understanding of lecturers’ acceptance of bMOOCs by investigate the factors that influence academics’ acceptance of using MOOCs in traditional learning by distributing an online survey to lecturers who participate in MOOCs platforms. These factors can help institutions to encourage their lecturers to integrate MOOCs with their traditional courses in universities.

Keywords: acceptance, blended learning, blended MOOCs, higher education, lecturers, MOOCs, professors

Procedia PDF Downloads 131
21272 Optimized Preprocessing for Accurate and Efficient Bioassay Prediction with Machine Learning Algorithms

Authors: Jeff Clarine, Chang-Shyh Peng, Daisy Sang

Abstract:

Bioassay is the measurement of the potency of a chemical substance by its effect on a living animal or plant tissue. Bioassay data and chemical structures from pharmacokinetic and drug metabolism screening are mined from and housed in multiple databases. Bioassay prediction is calculated accordingly to determine further advancement. This paper proposes a four-step preprocessing of datasets for improving the bioassay predictions. The first step is instance selection in which dataset is categorized into training, testing, and validation sets. The second step is discretization that partitions the data in consideration of accuracy vs. precision. The third step is normalization where data are normalized between 0 and 1 for subsequent machine learning processing. The fourth step is feature selection where key chemical properties and attributes are generated. The streamlined results are then analyzed for the prediction of effectiveness by various machine learning algorithms including Pipeline Pilot, R, Weka, and Excel. Experiments and evaluations reveal the effectiveness of various combination of preprocessing steps and machine learning algorithms in more consistent and accurate prediction.

Keywords: bioassay, machine learning, preprocessing, virtual screen

Procedia PDF Downloads 274
21271 Reducing Change-Related Costs in Assembly of Lithium-Ion Batteries for Electric Cars by Mechanical Decoupling

Authors: Achim Kampker, Heiner Hans Heimes, Mathias Ordung, Nemanja Sarovic

Abstract:

A key component of the drive train of electric vehicles is the lithium-ion battery system. Among various other components, such as the battery management system or the thermal management system, the battery system mostly consists of several cells which are integrated mechanically as well as electrically. Due to different vehicle concepts with regards to space, energy and power specifications, there is a variety of different battery systems. The corresponding assembly lines are specially designed for each battery concept. Minor changes to certain characteristics of the battery have a disproportionally high effect on the set-up effort in the form of high change-related costs. This paper will focus on battery systems which are made out of battery cells with a prismatic format. The product architecture and the assembly process will be analyzed in detail based on battery concepts of existing electric cars and key variety-causing drivers will be identified. On this basis, several measures will be presented and discussed on how to change the product architecture and the assembly process in order to reduce change-related costs.

Keywords: assembly, automotive industry, battery system, battery concept

Procedia PDF Downloads 306
21270 A Soft System Methodology Approach to Stakeholder Engagement in Water Sensitive Urban Design

Authors: Lina Lukusa, Ulrike Rivett

Abstract:

Poor water management can increase the extreme pressure already faced by water scarcity. Unless water management is addressed holistically, water quality and quantity will continue to degrade. A holistic approach to water management named Water Sensitive Urban Design (WSUD) has thus been created to facilitate the effective management of water. Traditionally, water management has employed a linear design approach, while WSUD requires a systematic, cyclical approach. In simple terms, WSUD assumes that everything is connected. Hence, it is critical for different stakeholders involved in WSUD to engage and reach a consensus on a solution. However, many stakeholders in WSUD have conflicting interests. Using the soft system methodology (SSM), developed by Peter Checkland, as a problem-solving method, decision-makers can understand this problematic situation from different world views. The SSM addresses ill and complex challenging situations involving human activities in a complex structured scenario. This paper demonstrates how SSM can be applied to understand the complexity of stakeholder engagement in WSUD. The paper concludes that SSM is an adequate solution to understand a complex problem better and then propose efficient solutions.

Keywords: co-design, ICT platform, soft systems methodology, water sensitive urban design

Procedia PDF Downloads 121
21269 AutoML: Comprehensive Review and Application to Engineering Datasets

Authors: Parsa Mahdavi, M. Amin Hariri-Ardebili

Abstract:

The development of accurate machine learning and deep learning models traditionally demands hands-on expertise and a solid background to fine-tune hyperparameters. With the continuous expansion of datasets in various scientific and engineering domains, researchers increasingly turn to machine learning methods to unveil hidden insights that may elude classic regression techniques. This surge in adoption raises concerns about the adequacy of the resultant meta-models and, consequently, the interpretation of the findings. In response to these challenges, automated machine learning (AutoML) emerges as a promising solution, aiming to construct machine learning models with minimal intervention or guidance from human experts. AutoML encompasses crucial stages such as data preparation, feature engineering, hyperparameter optimization, and neural architecture search. This paper provides a comprehensive overview of the principles underpinning AutoML, surveying several widely-used AutoML platforms. Additionally, the paper offers a glimpse into the application of AutoML on various engineering datasets. By comparing these results with those obtained through classical machine learning methods, the paper quantifies the uncertainties inherent in the application of a single ML model versus the holistic approach provided by AutoML. These examples showcase the efficacy of AutoML in extracting meaningful patterns and insights, emphasizing its potential to revolutionize the way we approach and analyze complex datasets.

Keywords: automated machine learning, uncertainty, engineering dataset, regression

Procedia PDF Downloads 61
21268 Predictive Analytics Algorithms: Mitigating Elementary School Drop Out Rates

Authors: Bongs Lainjo

Abstract:

Educational institutions and authorities that are mandated to run education systems in various countries need to implement a curriculum that considers the possibility and existence of elementary school dropouts. This research focuses on elementary school dropout rates and the ability to replicate various predictive models carried out globally on selected Elementary Schools. The study was carried out by comparing the classical case studies in Africa, North America, South America, Asia and Europe. Some of the reasons put forward for children dropping out include the notion of being successful in life without necessarily going through the education process. Such mentality is coupled with a tough curriculum that does not take care of all students. The system has completely led to poor school attendance - truancy which continuously leads to dropouts. In this study, the focus is on developing a model that can systematically be implemented by school administrations to prevent possible dropout scenarios. At the elementary level, especially the lower grades, a child's perception of education can be easily changed so that they focus on the better future that their parents desire. To deal effectively with the elementary school dropout problem, strategies that are put in place need to be studied and predictive models are installed in every educational system with a view to helping prevent an imminent school dropout just before it happens. In a competency-based curriculum that most advanced nations are trying to implement, the education systems have wholesome ideas of learning that reduce the rate of dropout.

Keywords: elementary school, predictive models, machine learning, risk factors, data mining, classifiers, dropout rates, education system, competency-based curriculum

Procedia PDF Downloads 175
21267 Psychological Dominance During and Afterward of COVID-19 Impact of Online-Offline Educational Learning on Students

Authors: Afrin Jaman Bonny, Mehrin Jahan, Zannatul Ferdhoush, Mumenunnessa Keya, Md. Shihab Mahmud, Sharun Akter Khushbu, Sheak Rashed Haider Noori, Sheikh Abujar

Abstract:

In 2020, the SARS-CoV-2 pandemic had led all the educational institutions to move to online learning platforms to ensure safety as well as the continuation of learning without any disruption to students’ academic life. But after the reopening of those educational institutions suddenly in Bangladesh, it became a vital demand to observe students take on this decision and how much they are comfortable with the new habits. When all educational institutions were ordered to re-open after more than a year, data was collected from students of all educational levels. A Google Form was used to conduct this online survey, and a total of 565 students participated without being pressured. The survey reveals the students' preferences for online and offline education systems, as well as their mental health at the time including their behavior to get back to offline classes depending on getting vaccinated or not. After evaluating the findings, it is clear that respondents' choices vary depending on gender and educational level, with female and male participants experiencing various mental health difficulties and attitudes toward returning to offline classes. As a result of this study, the student’s overall perspective on the sudden reopening of their educational institutions has been analyzed.

Keywords: covid-19 epidemic, educational proceeding, university students, school/college students, physical activity, online platforms, mental health, psychological distress

Procedia PDF Downloads 211
21266 Learning to Recommend with Negative Ratings Based on Factorization Machine

Authors: Caihong Sun, Xizi Zhang

Abstract:

Rating prediction is an important problem for recommender systems. The task is to predict the rating for an item that a user would give. Most of the existing algorithms for the task ignore the effect of negative ratings rated by users on items, but the negative ratings have a significant impact on users’ purchasing decisions in practice. In this paper, we present a rating prediction algorithm based on factorization machines that consider the effect of negative ratings inspired by Loss Aversion theory. The aim of this paper is to develop a concave and a convex negative disgust function to evaluate the negative ratings respectively. Experiments are conducted on MovieLens dataset. The experimental results demonstrate the effectiveness of the proposed methods by comparing with other four the state-of-the-art approaches. The negative ratings showed much importance in the accuracy of ratings predictions.

Keywords: factorization machines, feature engineering, negative ratings, recommendation systems

Procedia PDF Downloads 242
21265 The Importance of Visual Communication in Artificial Intelligence

Authors: Manjitsingh Rajput

Abstract:

Visual communication plays an important role in artificial intelligence (AI) because it enables machines to understand and interpret visual information, similar to how humans do. This abstract explores the importance of visual communication in AI and emphasizes the importance of various applications such as computer vision, object emphasis recognition, image classification and autonomous systems. In going deeper, with deep learning techniques and neural networks that modify visual understanding, In addition to AI programming, the abstract discusses challenges facing visual interfaces for AI, such as data scarcity, domain optimization, and interpretability. Visual communication and other approaches, such as natural language processing and speech recognition, have also been explored. Overall, this abstract highlights the critical role that visual communication plays in advancing AI capabilities and enabling machines to perceive and understand the world around them. The abstract also explores the integration of visual communication with other modalities like natural language processing and speech recognition, emphasizing the critical role of visual communication in AI capabilities. This methodology explores the importance of visual communication in AI development and implementation, highlighting its potential to enhance the effectiveness and accessibility of AI systems. It provides a comprehensive approach to integrating visual elements into AI systems, making them more user-friendly and efficient. In conclusion, Visual communication is crucial in AI systems for object recognition, facial analysis, and augmented reality, but challenges like data quality, interpretability, and ethics must be addressed. Visual communication enhances user experience, decision-making, accessibility, and collaboration. Developers can integrate visual elements for efficient and accessible AI systems.

Keywords: visual communication AI, computer vision, visual aid in communication, essence of visual communication.

Procedia PDF Downloads 95
21264 The Effect of Visual Access to Greenspace and Urban Space on a False Memory Learning Task

Authors: Bryony Pound

Abstract:

This study investigated how views of green or urban space affect learning performance. It provides evidence of the value of visual access to greenspace in work and learning environments, and builds on the extensive research into the cognitive and learning-related benefits of access to green and natural spaces, particularly in learning environments. It demonstrates that benefits of visual access to natural spaces whilst learning can produce statistically significant faster responses than those facing urban views after only 5 minutes. The primary hypothesis of this research was that a greenspace view would improve short-term learning. Participants were randomly assigned to either a view of parkland or of urban buildings from the same room. They completed a psychological test of two stages. The first stage consisted of a presentation of words from eight different categories (four manmade and four natural). Following this a 2.5 minute break was given; participants were not prompted to look out of the window, but all were observed doing so. The second stage of the test involved a word recognition/false memory test of three types. Type 1 was presented words from each category; Type 2 was non-presented words from those same categories; and Type 3 was non-presented words from different categories. Participants were asked to respond with whether they thought they had seen the words before or not. Accuracy of responses and reaction times were recorded. The key finding was that reaction times for Type 2 words (highest difficulty) were significantly different between urban and green view conditions. Those with an urban view had slower reaction times for these words, so a view of greenspace resulted in better information retrieval for word and false memory recognition. Importantly, this difference was found after only 5 minutes of exposure to either view, during winter, and with a sample size of only 26. Greenspace views improve performance in a learning task. This provides a case for better visual access to greenspace in work and learning environments.

Keywords: benefits, greenspace, learning, restoration

Procedia PDF Downloads 127
21263 Analysis of Learning Difficulties among Preservice Students towards Science Education

Authors: Nahla Khatib

Abstract:

This study investigated several learning difficulties that affected the classroom learning experience of preservice students who are studying general science and methods of teaching science students at Faculty of Educational Studies at the Arab Open University (AOU) in Amman, Jordan. The focus questions for this study were to find answers for the following: 1. What are the main areas of learning difficulty among preservice students towards science education? 2. What are the main aspects of reducing obstacles towards success in science education? To achieve this goal, the researcher prepared a questionnaire which included 30 items to point out the learning difficulties among preservice students towards science education. The questionnaire was distributed among students enrolled in the general science courses 1&2 and methods of teaching science courses at the beginning of the spring semester of year (2013-2014). After collecting the filled questionnaire a descriptive statistical analysis was carried out (means and standard deviation) for the items of the questionnaire. After analyzing the data statistically our findings showed that student control–factors as well as course controlled factor, factors related to the nature of science, and factors related to the role of instructor affected student success toward science education. The study was concluded with a number of recommendations.

Keywords: nature of science, preservice teachers, science education, learning difficulties

Procedia PDF Downloads 352
21262 Discussing Embedded versus Central Machine Learning in Wireless Sensor Networks

Authors: Anne-Lena Kampen, Øivind Kure

Abstract:

Machine learning (ML) can be implemented in Wireless Sensor Networks (WSNs) as a central solution or distributed solution where the ML is embedded in the nodes. Embedding improves privacy and may reduce prediction delay. In addition, the number of transmissions is reduced. However, quality factors such as prediction accuracy, fault detection efficiency and coordinated control of the overall system suffer. Here, we discuss and highlight the trade-offs that should be considered when choosing between embedding and centralized ML, especially for multihop networks. In addition, we present estimations that demonstrate the energy trade-offs between embedded and centralized ML. Although the total network energy consumption is lower with central prediction, it makes the network more prone for partitioning due to the high forwarding load on the one-hop nodes. Moreover, the continuous improvements in the number of operations per joule for embedded devices will move the energy balance toward embedded prediction.

Keywords: central machine learning, embedded machine learning, energy consumption, local machine learning, wireless sensor networks, WSN

Procedia PDF Downloads 153
21261 Wireless Information Transfer Management and Case Study of a Fire Alarm System in a Residential Building

Authors: Mohsen Azarmjoo, Mehdi Mehdizadeh Koupaei, Maryam Mehdizadeh Koupaei, Asghar Mahdlouei Azar

Abstract:

The increasing prevalence of wireless networks in our daily lives has made them indispensable. The aim of this research is to investigate the management of information transfer in wireless networks and the integration of renewable solar energy resources in a residential building. The focus is on the transmission of electricity and information through wireless networks, as well as the utilization of sensors and wireless fire alarm systems. The research employs a descriptive approach to examine the transmission of electricity and information on a wireless network with electric and optical telephone lines. It also investigates the transmission of signals from sensors and wireless fire alarm systems via radio waves. The methodology includes a detailed analysis of security, comfort conditions, and costs related to the utilization of wireless networks and renewable solar energy resources. The study reveals that it is feasible to transmit electricity on a network cable using two pairs of network cables without the need for separate power cabling. Additionally, the integration of renewable solar energy systems in residential buildings can reduce dependence on traditional energy carriers. The use of sensors and wireless remote information processing can enhance the safety and efficiency of energy usage in buildings and the surrounding spaces.

Keywords: renewable energy, intelligentization, wireless sensors, fire alarm system

Procedia PDF Downloads 54
21260 The Affordances and Challenges of Online Learning and Teaching for Secondary School Students

Authors: Hahido Samaras

Abstract:

In many cases, especially with the pandemic playing a major role in fast-tracking the growth of the digital industry, online learning has become a necessity or even a standard educational model nowadays, reliably overcoming barriers such as location, time and cost and frequently combined with a face-to-face format (e.g., in blended learning). This being the case, it is evident that students in many parts of the world, as well as their parents, will increasingly need to become aware of the pros and cons of online versus traditional courses. This fast-growing mode of learning, accelerated during the years of the pandemic, presents an abundance of exciting options especially matched for a large number of secondary school students in remote places of the world where access to stimulating educational settings and opportunities for a variety of learning alternatives are scarce, adding advantages such as flexibility, affordability, engagement, flow and personalization of the learning experience. However, online learning can also present several challenges, such as a lack of student motivation and social interactions in natural settings, digital literacy, and technical issues, to name a few. Therefore, educational researchers will need to conduct further studies focusing on the benefits and weaknesses of online learning vs. traditional learning, while instructional designers propose ways of enhancing student motivation and engagement in virtual environments. Similarly, teachers will be required to become more and more technology-capable, at the same time developing their knowledge about their students’ particular characteristics and needs so as to match them with the affordances the technology offers. And, of course, schools, education programs, and policymakers will have to invest in powerful tools and advanced courses for online instruction. By developing digital courses that incorporate intentional opportunities for community-building and interaction in the learning environment, as well as taking care to include built-in design principles and strategies that align learning outcomes with learning assignments, activities, and assessment practices, rewarding academic experiences can derive for all students. This paper raises various issues regarding the effectiveness of online learning on students by reviewing a large number of research studies related to the usefulness and impact of online learning following the COVID-19-induced digital education shift. It also discusses what students, teachers, decision-makers, and parents have reported about this mode of learning to date. Best practices are proposed for parties involved in the development of online learning materials, particularly for secondary school students, as there is a need for educators and developers to be increasingly concerned about the impact of virtual learning environments on student learning and wellbeing.

Keywords: blended learning, online learning, secondary schools, virtual environments

Procedia PDF Downloads 100
21259 Immersive Block Scheduling in Higher Education: A Case Study in Curriculum Reform and Increased Student Success

Authors: Thomas Roche, Erica Wilson, Elizabeth Goode

Abstract:

Universities across the globe are considering how to effect meaningful change in their higher education (HE) delivery in the face of increasingly diverse student cohorts and shifting student learning preferences. This paper reports on a descriptive case study of whole-of-institution curriculum reform at one regional Australian university, where more traditional 13-week semesters were replaced with a 6-week immersive block model drawing on active learning pedagogy. Based on a synthesis of literature in best practice HE pedagogy and principles, the case study draws on student performance data and senior management staff interviews (N = 5) to outline the key changes necessary for successful HE transformation to deliver increased student pass rates and retention. The findings from this case study indicate that an institutional transformation to an immersive block model requires both a considered change in institutional policy and process as well as the appropriate resourcing of roles, governance committees, technical solutions, and, importantly, communities of practice. Implications for practice at higher education institutions considering reforming their curriculum model are also discussed.

Keywords: student retention, immersive scheduling, block model, curriculum reform, active learning, higher education pedagogy, higher education policy

Procedia PDF Downloads 76
21258 Relationship between ISO 14001 and Market Performance of Firms in China: An Institutional and Market Learning Perspective

Authors: Hammad Riaz, Abubakr Saeed

Abstract:

Environmental Management System (EMS), i.e., ISO 14001 helps to build corporate reputation, legitimacy and can also be considered as firms’ strategic response to institutional pressure to reduce the impact of business activity on natural environment. The financial outcomes of certifying with ISO 14001 are still unclear and equivocal. Drawing on institutional and market learning theories, the impact of ISO 14001 on firms’ market performance is examined for Chinese firms. By employing rigorous event study approach, this paper compared ISO 14001 certified firms with non-certified counterpart firms based on different matching criteria that include size, return on assets and industry. The results indicate that the ISO 14001 has been negatively signed by the investors both in the short and long-run. This paper suggested implications for policy makers, managers, and other nonprofit organizations.

Keywords: ISO 14001, legitimacy, institutional forces, event study approach, emerging markets

Procedia PDF Downloads 161
21257 An Evaluation Framework for Virtual Reality Learning Environments in Sports Education

Authors: Jonathan J. Foo, Keng Hao Chew

Abstract:

Interest in virtual reality (VR) technologies as virtual learning environments have been on the rise in recent years. With thanks to the aggressively competitive consumer electronics environment, VR technology has been made affordable and accessible to the average person with developments like Google Cardboard and Oculus Go. While the promise of virtual access to unique virtual learning environments with the benefits of experiential learning sounds extremely attractive, there are still concerns over user comfort in the psychomotor, cognitive, and affective domains. Reports of motion sickness and short durations create doubt and have stunted its growth. In this paper, a multidimensional framework is proposed for the evaluation of VR learning environments within the three dimensions: tactual quality, didactic quality, and autodidactic quality. This paper further proposes a mixed-methods experimental research plan that sets out to evaluate a virtual reality training simulator in the context of amateur sports fencing. The study will investigate if an immersive VR learning environment can effectively simulate an authentic learning environment suitable for instruction, practice, and assessment while providing the user comfort in the tactual, didactic, and autodidactic dimensions. The models and recommendations developed for this study are designed in the context of fencing, but the potential impact is a guide for the future design and evaluation of all VR developments across sports and technical classroom education.

Keywords: autodidactic quality, didactic quality, tactual quality, virtual reality

Procedia PDF Downloads 135
21256 Technology for Enhancing the Learning and Teaching Experience in Higher Education

Authors: Sara M. Ismael, Ali H. Al-Badi

Abstract:

The rapid development and growth of technology has changed the method of obtaining information for educators and learners. Technology has created a new world of collaboration and communication among people. Incorporating new technology into the teaching process can enhance learning outcomes. Billions of individuals across the world are now connected together, and are cooperating and contributing their knowledge and intelligence. Time is no longer wasted in waiting until the teacher is ready to share information as learners can go online and get it immediately. The objectives of this paper are to understand the reasons why changes in teaching and learning methods are necessary, to find ways of improving them, and to investigate the challenges that present themselves in the adoption of new ICT tools in higher education institutes. To achieve these objectives two primary research methods were used: questionnaires, which were distributed among students at higher educational institutes and multiple interviews with faculty members (teachers) from different colleges and universities, which were conducted to find out why teaching and learning methodology should change. The findings show that both learners and educators agree that educational technology plays a significant role in enhancing instructors’ teaching style and students’ overall learning experience; however, time constraints, privacy issues, and not being provided with enough up-to-date technology do create some challenges.

Keywords: e-books, educational technology, educators, e-learning, learners, social media, Web 2.0, LMS

Procedia PDF Downloads 276
21255 Language Learning, Drives and Context: A Grounded Theory of Learning Behavior

Authors: Julian Pigott

Abstract:

This paper introduces the Language Learning as a Means of Drive Engagement (LLMDE) theory, derived from a grounded theory analysis of interviews with Japanese university students. According to LLMDE theory, language learning can be understood as a means of engaging one or more of four self-fulfillment drives: the drive to expand one’s horizons (perspective drive); the drive to make a success of oneself (status drive); the drive to engage in interaction with others (communication drive); and the drive to obtain intellectual and affective stimulation (entertainment drive). While many theories of learner psychology focus on conscious agency, LLMDE theory addresses the role of the unconscious. In addition, supplementary thematic analysis of the data revealed the role of context in mediating drive engagement. Unexpected memorable events, for example, play a key role in instigating and, indirectly, in regulating learning, as do institutional and cultural contexts. Given the apparent importance of such factors beyond the immediate control of the learner, and given the pervasive role of habit and drives, it is argued that the concept of motivation merits theoretical reappraisal. Rather than an underlying force determining language learning success or failure, it can be understood to emerge sporadically in consciousness to promote behavioral change, or to protect habitual behavior from disruption.

Keywords: drives, grounded theory, motivation, significant events

Procedia PDF Downloads 149
21254 The Influence of Guided and Independent Training Toward Teachers’ Competence to Plan Early Childhood Education Learning Program

Authors: Sofia Hartati

Abstract:

This research is aimed at describing training in early childhood education program empirically, describing teachers ability to plan lessons empirically, and acquiring empirical data as well as analyzing the influence of guided and independent training toward teachers competence in planning early childhood learning program. The method used is an experiment. It collected data with a population of 76 early childhood educators in Tunjung Teja Sub District area through random sampling technique and grouped into two namely 38 people in an experiment class and 38 people in a controlled class. The technique used for data collections is a test. The result of the research shows that there is a significant influence between training for guided educators toward Teachers Ability toward Planning Early Childhood Learning Program. Guided training has been proven to improve the ability to comprehend planning a learning program. The ability to comprehend planning a learning program owned by teachers of early childhood program comprises of 1) determining the characteristics and competence of students prior to learning; 2) formulating the objective of the learning; 3) selecting materials and its sequences; 4) selecting teaching methods; 5) determining the means or learning media; 6) selecting evaluation strategy as a part of teachers pedagogic competence. The result of this research describes a difference in the competence level of teachers who have joined guided training which is relatively higher than the teachers who joined the independent training. Guided training is one of an effective way to improve the knowledge and competence of early childhood educators.

Keywords: competence, planning, teachers, training

Procedia PDF Downloads 264
21253 Efficient Neural and Fuzzy Models for the Identification of Dynamical Systems

Authors: Aouiche Abdelaziz, Soudani Mouhamed Salah, Aouiche El Moundhe

Abstract:

The present paper addresses the utilization of Artificial Neural Networks (ANNs) and Fuzzy Inference Systems (FISs) for the identification and control of dynamical systems with some degree of uncertainty. Because ANNs and FISs have an inherent ability to approximate functions and to adapt to changes in input and parameters, they can be used to control systems too complex for linear controllers. In this work, we show how ANNs and FISs can be put in order to form nets that can learn from external data. In sequence, it is presented structures of inputs that can be used along with ANNs and FISs to model non-linear systems. Four systems were used to test the identification and control of the structures proposed. The results show the ANNs and FISs (Back Propagation Algorithm) used were efficient in modeling and controlling the non-linear plants.

Keywords: non-linear systems, fuzzy set Models, neural network, control law

Procedia PDF Downloads 212
21252 Water Repellent Finishing of Cotton: Teaching and Learning Materials

Authors: C. W. Kan

Abstract:

Fabrics can be treated to equip them with certain functional properties in which water repellency is one of the important functional effects. In this study, commercial water repellent agent was used under different application conditions to cotton fabric. Finally, the water repellent effect was evaluated by standard testing method. Thus, the aim of this study is to illustrate the proper application of water repellent finishing to cotton fabric and the results could provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.

Keywords: learning materials, water repellent, textiles, cotton

Procedia PDF Downloads 239