Search results for: in vitro growth
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7474

Search results for: in vitro growth

5764 Small Micro and Medium Enterprises Perception-Based Framework to Access Financial Support

Authors: Melvin Mothoa

Abstract:

Small Micro and Medium Enterprises are very significant for the development of their market economies. They are the main creators of the new working places, and they present a vital core of the market economy in countries across the globe. Access to finance is identified as crucial for small, micro, and medium-sized enterprises for their growth and innovation. This paper is conceived to propose a perception-based SMME framework to aid in access to financial support. Furthermore, the study will address issues that impede SMMEs in South Africa from obtaining finance from financial institutions. The framework will be tested against data collected from 200 Small Micro & Medium Enterprises in the Gauteng province of South Africa. The study adopts a quantitative method, and the delivery of self-administered questionnaires to SMMEs will be the primary data collection tool. Structural equation modeling will be used to further analyse the data collected.

Keywords: finance, small business, growth, development

Procedia PDF Downloads 108
5763 Investigating the Influence of Solidification Rate on the Microstructural, Mechanical and Physical Properties of Directionally Solidified Al-Mg Based Multicomponent Eutectic Alloys Containing High Mg Alloys

Authors: Fatih Kılıç, Burak Birol, Necmettin Maraşlı

Abstract:

The directional solidification process is generally used for homogeneous compound production, single crystal growth, and refining (zone refining), etc. processes. The most important two parameters that control eutectic structures are temperature gradient and grain growth rate which are called as solidification parameters The solidification behavior and microstructure characteristics is an interesting topic due to their effects on the properties and performance of the alloys containing eutectic compositions. The solidification behavior of multicomponent and multiphase systems is an important parameter for determining various properties of these materials. The researches have been conducted mostly on the solidification of pure materials or alloys containing two phases. However, there are very few studies on the literature about multiphase reactions and microstructure formation of multicomponent alloys during solidification. Because of this situation, it is important to study the microstructure formation and the thermodynamical, thermophysical and microstructural properties of these alloys. The production process is difficult due to easy oxidation of magnesium and therefore, there is not a comprehensive study concerning alloys containing high Mg (> 30 wt.% Mg). With the increasing amount of Mg inside Al alloys, the specific weight decreases, and the strength shows a slight increase, while due to formation of β-Al8Mg5 phase, ductility lowers. For this reason, production, examination and development of high Mg containing alloys will initiate the production of new advanced engineering materials. The original value of this research can be described as obtaining high Mg containing (> 30% Mg) Al based multicomponent alloys by melting under vacuum; controlled directional solidification with various growth rates at a constant temperature gradient; and establishing relationship between solidification rate and microstructural, mechanical, electrical and thermal properties. Therefore, within the scope of this research, some > 30% Mg containing ternary or quaternary Al alloy compositions were determined, and it was planned to investigate the effects of directional solidification rate on the mechanical, electrical and thermal properties of these alloys. Within the scope of the research, the influence of the growth rate on microstructure parameters, microhardness, tensile strength, electrical conductivity and thermal conductivity of directionally solidified high Mg containing Al-32,2Mg-0,37Si; Al-30Mg-12Zn; Al-32Mg-1,7Ni; Al-32,2Mg-0,37Fe; Al-32Mg-1,7Ni-0,4Si; Al-33,3Mg-0,35Si-0,11Fe (wt.%) alloys with wide range of growth rate (50-2500 µm/s) and fixed temperature gradient, will be investigated. The work can be planned as; (a) directional solidification of Al-Mg based Al-Mg-Si, Al-Mg-Zn, Al-Mg-Ni, Al-Mg-Fe, Al-Mg-Ni-Si, Al-Mg-Si-Fe within wide range of growth rates (50-2500 µm/s) at a constant temperature gradient by Bridgman type solidification system, (b) analysis of microstructure parameters of directionally solidified alloys by using an optical light microscopy and Scanning Electron Microscopy (SEM), (c) measurement of microhardness and tensile strength of directionally solidified alloys, (d) measurement of electrical conductivity by four point probe technique at room temperature (e) measurement of thermal conductivity by linear heat flow method at room temperature.

Keywords: directional solidification, electrical conductivity, high Mg containing multicomponent Al alloys, microhardness, microstructure, tensile strength, thermal conductivity

Procedia PDF Downloads 256
5762 Impact of Heavy Metal Toxicity on Metabolic Changes in the Diazotrophic Cyanobacterium Anabaena PCC 7120

Authors: Rishi Saxena

Abstract:

Cyanobacteria is a photosynthetic prokaryote, and these obtain their energy through photosynthesis. In this paper, we studied the effect of iron on metabolic changes in the diazotrophic cyanobacterium Anabaena PCC 7120. Nowadays, metal contamination due to natural and anthropogenic sources is a global environment concern. Iron induced changes in growth, N2-fixation, CO2 fixation and photosynthetic activity were studied in a diazotrophic cyanobacterium Anabaena PCC 7120. Iron at 50 uM concentration supported the maximum growth, heterocyst frequency, CO2 fixation, photosystem I (PS I), photosystem II (PS II) and nitrogenase activities in the organism. Higher concentration of iron inhibited these processes. Chl a and PS II activities were more sensitive to iron than the protein and PS I activity. Here, it is also mentioned that heavy metal induced altered macromolecules metabolism and changes in the central dogma of life (DNA→ mRNA → Protein). And also recent advances have been made in understanding heavy metal-cyanobacteria interaction and their application for metal detoxification.

Keywords: cyanobacterium anabaena 7120, nitrogen fixation, photosystem I (PS I), photosystem II (PS II)

Procedia PDF Downloads 131
5761 Generation of Charged Nanoparticles and Their Contribution to the Thin Film and Nanowire Growth during Chemical Vapour Deposition

Authors: Seung-Min Yang, Seong-Han Park, Sang-Hoon Lee, Seung-Wan Yoo, Chan-Soo Kim, Nong-Moon Hwang

Abstract:

The theory of charged nanoparticles suggested that in many Chemical Vapour Depositions (CVD) processes, Charged Nanoparticles (CNPs) are generated in the gas-phase and become a building block of thin films and nanowires. Recently, the nanoparticle-based crystallization has become a big issue since the growth of nanorods or crystals by the building block of nanoparticles was directly observed by transmission electron microscopy observations in the liquid cell. In an effort to confirm charged gas-phase nuclei, that might be generated under conventional processing conditions of thin films and nanowires during CVD, we performed an in-situ measurement using differential mobility analyser and particle beam mass spectrometer. The size distribution and number density of CNPs were affected by process parameters such as precursor flow rate and working temperature. It was shown that many films and nanostructures, which have been believed to grow by individual atoms or molecules, actually grow by the building blocks of such charged nuclei. The electrostatic interaction between CNPs and the growing surface induces the self-assembly into films and nanowires. In addition, the charge-enhanced atomic diffusion makes CNPs liquid-like quasi solid. As a result, CNPs tend to land epitaxial on the growing surface, which results in the growth of single crystalline nanowires with a smooth surface.

Keywords: chemical vapour deposition, charged nanoparticle, electrostatic force, nanostructure evolution, differential mobility analyser, particle beam mass spectrometer

Procedia PDF Downloads 447
5760 Utilizing Mahogany (Swietenia Macrophylla) Fruits, Leaves, and Branches as Biochar for Soil Amendment in Okra (Abelmoschus Esculentus) Plant

Authors: Ayaka A. Matsuo, Gweyneth Victoria I. Maranan, Shawn Mikel Hobayan

Abstract:

In this study, we delve into the application of mahogany fruits as biochar for soil amendment, aiming to evaluate their effectiveness in improving soil quality and influencing the growth parameters of okra plants through a comprehensive analysis employing various multivariate tests. In a more straightforward approach, our results show that biochar derived from isn't just a minor player but emerges as a key contributor to our study. This finding holds profound implications, as it highlights the material significance of biochar derived from Mahogany (Swietenia macrophylla) fruits, leaves, and branches in shaping the outcomes. The importance of this discovery lies in its contribution to an enhanced comprehension of the overall effects of biochar on the variables explored in our investigation. Notably, the positive changes observed in height, number of leaves, and width of leaves in okra plants further support the premise that the incorporation of biochar improves soil quality. These findings provide valuable insights for agricultural practices, suggesting that biochar derived from Mahogany (Swietenia macrophylla) fruits, leaves, and branches holds promise as a sustainable soil amendment with positive implications for plant growth. The statistical results from multivariate tests serve to solidify the conclusion that biochar plays a pivotal role in driving the observed outcomes in our study. In essence, this research not only sheds light on the potential of mahogany fruit-derived biochar but also emphasizes its significance in fostering healthier soil conditions and, consequently, enhanced plant growth.

Keywords: soil amendment, biochar, mahogany, soil health

Procedia PDF Downloads 66
5759 MCD-017: Potential Candidate from the Class of Nitroimidazoles to Treat Tuberculosis

Authors: Gurleen Kour, Mowkshi Khullar, B. K. Chandan, Parvinder Pal Singh, Kushalava Reddy Yumpalla, Gurunadham Munagala, Ram A. Vishwakarma, Zabeer Ahmed

Abstract:

New chemotherapeutic compounds against multidrug-resistant Mycobacterium tuberculosis (Mtb) are urgently needed to combat drug resistance in tuberculosis (TB). Apart from in-vitro potency against the target, physiochemical properties and pharmacokinetic properties play an imperative role in the process of drug discovery. We have identified novel nitroimidazole derivatives with potential activity against mycobacterium tuberculosis. One lead candidates, MCD-017, which showed potent activity against H37Rv strain (MIC=0.5µg/ml) and was further evaluated in the process of drug development. Methods: Basic physicochemical parameters like solubility and lipophilicity (LogP) were evaluated. Thermodynamic solubility was determined in PBS buffer (pH 7.4) using LC/MS-MS. The partition coefficient (Log P) of the compound was determined between octanol and phosphate buffered saline (PBS at pH 7.4) at 25°C by the microscale shake flask method. The compound followed Lipinski’s rule of five, which is predictive of good oral bioavailability and was further evaluated for metabolic stability. In-vitro metabolic stability was determined in rat liver microsomes. The hepatotoxicity of the compound was also determined in HepG2 cell line. In vivo pharmacokinetic profile of the compound after oral dosing was also obtained using balb/c mice. Results: The compound exhibited favorable solubility and lipophilicity. The physical and chemical properties of the compound were made use of as the first determination of drug-like properties. The compound obeyed Lipinski’s rule of five, with molecular weight < 500, number of hydrogen bond donors (HBD) < 5 and number of hydrogen bond acceptors(HBA) not more then 10. The log P of the compound was less than 5 and therefore the compound is predictive of exhibiting good absorption and permeation. Pooled rat liver microsomes were prepared from rat liver homogenate for measuring the metabolic stability. 99% of the compound was not metabolized and remained intact. The compound did not exhibit cytoxicity in hepG2 cells upto 40 µg/ml. The compound revealed good pharmacokinetic profile at a dose of 5mg/kg administered orally with a half life (t1/2) of 1.15 hours, Cmax of 642ng/ml, clearance of 4.84 ml/min/kg and a volume of distribution of 8.05 l/kg. Conclusion : The emergence of multi drug resistance (MDR) and extensively drug resistant (XDR) Tuberculosis emphasize the requirement of novel drugs active against tuberculosis. Thus, the need to evaluate physicochemical and pharmacokinetic properties in the early stages of drug discovery is required to reduce the attrition associated with poor drug exposure. In summary, it can be concluded that MCD-017 may be considered a good candidate for further preclinical and clinical evaluations.

Keywords: mycobacterium tuberculosis, pharmacokinetics, physicochemical properties, hepatotoxicity

Procedia PDF Downloads 452
5758 Effects of Temperature and the Use of Bacteriocins on Cross-Contamination from Animal Source Food Processing: A Mathematical Model

Authors: Benjamin Castillo, Luis Pastenes, Fernando Cerdova

Abstract:

The contamination of food by microbial agents is a common problem in the industry, especially regarding the elaboration of animal source products. Incorrect manipulation of the machinery or on the raw materials can cause a decrease in production or an epidemiological outbreak due to intoxication. In order to improve food product quality, different methods have been used to reduce or, at least, to slow down the growth of the pathogens, especially deteriorated, infectious or toxigenic bacteria. These methods are usually carried out under low temperatures and short processing time (abiotic agents), along with the application of antibacterial substances, such as bacteriocins (biotic agents). This, in a controlled and efficient way that fulfills the purpose of bacterial control without damaging the final product. Therefore, the objective of the present study is to design a secondary mathematical model that allows the prediction of both the biotic and abiotic factor impact associated with animal source food processing. In order to accomplish this objective, the authors propose a three-dimensional differential equation model, whose components are: bacterial growth, release, production and artificial incorporation of bacteriocins and changes in pH levels of the medium. These three dimensions are constantly being influenced by the temperature of the medium. Secondly, this model adapts to an idealized situation of cross-contamination animal source food processing, with the study agents being both the animal product and the contact surface. Thirdly, the stochastic simulations and the parametric sensibility analysis are compared with referential data. The main results obtained from the analysis and simulations of the mathematical model were to discover that, although bacterial growth can be stopped in lower temperatures, even lower ones are needed to eradicate it. However, this can be not only expensive, but counterproductive as well in terms of the quality of the raw materials and, on the other hand, higher temperatures accelerate bacterial growth. In other aspects, the use and efficiency of bacteriocins are an effective alternative in the short and medium terms. Moreover, an indicator of bacterial growth is a low-level pH, since lots of deteriorating bacteria are lactic acids. Lastly, the processing times are a secondary agent of concern when the rest of the aforementioned agents are under control. Our main conclusion is that when acclimating a mathematical model within the context of the industrial process, it can generate new tools that predict bacterial contamination, the impact of bacterial inhibition, and processing method times. In addition, the mathematical modeling proposed logistic input of broad application, which can be replicated on non-meat food products, other pathogens or even on contamination by crossed contact of allergen foods.

Keywords: bacteriocins, cross-contamination, mathematical model, temperature

Procedia PDF Downloads 141
5757 Comparison of Transforming Growth Factor-β1 Levels in the Human Gingival Sulcus during Canine Retraction Using Elastic Chain and Closed Coil Spring

Authors: Sri Suparwitri

Abstract:

When an orthodontic force is applied to a tooth, an inflammatory response is initiated then lead to bone remodeling process, and the process accommodates tooth movement. One of cytokine that plays a prominent role in bone remodeling process was transforming growth factor-beta 1 (TGF-β1). The purpose of this study was to identify and compare changes of TGF-β1 in human gingival crevicular fluid during canine retraction using elastic chain and closed coil spring. Ten patients (mean age 20.7 ± 2.9 years) participated. The patients were entering the space closure phase of fixed orthodontic treatment. An upper canine of each patient was retracted using elastic chain, and the contralateral canine was retracted using closed coil spring. Gingival crevicular fluid samples were collected from the canine teeth before and 7 days after the force was applied. Transforming growth factor-beta 1 was determined by enzyme-linked immunosorbent assay (ELISA). The concentrations of TGF-β1 at 7 days were significantly higher compared to before canine retraction in both groups. In the evaluation of between-group difference, before retraction, the difference was insignificant, whereas at 7 days significantly higher values were determined in the closed coil spring group compared to elastic chain group. The result suggests that TGF-β1 is associated with the bone remodeling that occurs during canine distalization movement. Closed coil spring gave higher TGF-β1 concentrations thus more bone remodeling occurred and may be considered the treatment of choice.

Keywords: closed coil spring, elastic chain, gingival crevicular fluid, TGF-β1

Procedia PDF Downloads 168
5756 Folding of β-Structures via the Polarized Structure-Specific Backbone Charge (PSBC) Model

Authors: Yew Mun Yip, Dawei Zhang

Abstract:

Proteins are the biological machinery that executes specific vital functions in every cell of the human body by folding into their 3D structures. When a protein misfolds from its native structure, the machinery will malfunction and lead to misfolding diseases. Although in vitro experiments are able to conclude that the mutations of the amino acid sequence lead to incorrectly folded protein structures, these experiments are unable to decipher the folding process. Therefore, molecular dynamic (MD) simulations are employed to simulate the folding process so that our improved understanding of the folding process will enable us to contemplate better treatments for misfolding diseases. MD simulations make use of force fields to simulate the folding process of peptides. Secondary structures are formed via the hydrogen bonds formed between the backbone atoms (C, O, N, H). It is important that the hydrogen bond energy computed during the MD simulation is accurate in order to direct the folding process to the native structure. Since the atoms involved in a hydrogen bond possess very dissimilar electronegativities, the more electronegative atom will attract greater electron density from the less electronegative atom towards itself. This is known as the polarization effect. Since the polarization effect changes the electron density of the two atoms in close proximity, the atomic charges of the two atoms should also vary based on the strength of the polarization effect. However, the fixed atomic charge scheme in force fields does not account for the polarization effect. In this study, we introduce the polarized structure-specific backbone charge (PSBC) model. The PSBC model accounts for the polarization effect in MD simulation by updating the atomic charges of the backbone hydrogen bond atoms according to equations derived between the amount of charge transferred to the atom and the length of the hydrogen bond, which are calculated from quantum-mechanical calculations. Compared to other polarizable models, the PSBC model does not require quantum-mechanical calculations of the peptide simulated at every time-step of the simulation and maintains the dynamic update of atomic charges, thereby reducing the computational cost and time while accounting for the polarization effect dynamically at the same time. The PSBC model is applied to two different β-peptides, namely the Beta3s/GS peptide, a de novo designed three-stranded β-sheet whose structure is folded in vitro and studied by NMR, and the trpzip peptides, a double-stranded β-sheet where a correlation is found between the type of amino acids that constitute the β-turn and the β-propensity.

Keywords: hydrogen bond, polarization effect, protein folding, PSBC

Procedia PDF Downloads 265
5755 Management of Municipal Solid Waste in Baghdad, Iraq

Authors: Ayad Sleibi Mustafa, Ahmed Abdulkadhim Mohsin, Layth Noori Ali

Abstract:

The deterioration of solid waste management in Baghdad city is considered as a great challenge in terms of human health and environment. Baghdad city is divided into thirteen districts which are distributed on both Tigris River banks. The west bank is Al-Karkh and the east bank is Al-Rusafa. Municipal Solid Waste Management is one of the most complicated problems facing the environment in Iraq. Population growth led to increase waste production and more load of the waste to the limited capacity infrastructure. The problems of municipal solid waste become more serious after the war in 2003. More waste is disposed in underground landfills in Baghdad with little or no concern for both human health and environment. The results showed that the total annually predicted solid waste is increasing for the period 2015-2030. Municipal solid waste in 2030 will be 6,427,773 tons in Baghdad city according to the population growth rate of 2.4%. This increase is estimated to be approximately 30%.

Keywords: municipal solid waste, solid waste composition and characteristics, Baghdad city, environment, human health

Procedia PDF Downloads 290
5754 Microfabrication and Non-Invasive Imaging of Porous Osteogenic Structures Using Laser-Assisted Technologies

Authors: Irina Alexandra Paun, Mona Mihailescu, Marian Zamfirescu, Catalin Romeo Luculescu, Adriana Maria Acasandrei, Cosmin Catalin Mustaciosu, Roxana Cristina Popescu, Maria Dinescu

Abstract:

A major concern in bone tissue engineering is to develop complex 3D architectures that mimic the natural cells environment, facilitate the cells growth in a defined manner and allow the flow transport of nutrients and metabolic waste. In particular, porous structures of controlled pore size and positioning are indispensable for growing human-like bone structures. Another concern is to monitor both the structures and the seeded cells with high spatial resolution and without interfering with the cells natural environment. The present approach relies on laser-based technologies employed for fabricating porous biomimetic structures that support the growth of osteoblast-like cells and for their non-invasive 3D imaging. Specifically, the porous structures were built by two photon polymerization –direct writing (2PP_DW) of the commercially available photoresists IL-L780, using the Photonic Professional 3D lithography system. The structures consist of vertical tubes with micrometer-sized heights and diameters, in a honeycomb-like spatial arrangement. These were fabricated by irradiating the IP-L780 photoresist with focused laser pulses with wavelength centered at 780 nm, 120 fs pulse duration and 80 MHz repetition rate. The samples were precisely scanned in 3D by piezo stages. The coarse positioning was done by XY motorized stages. The scanning path was programmed through a writing language (GWL) script developed by Nanoscribe. Following laser irradiation, the unexposed regions of the photoresist were washed out by immersing the samples in the Propylene Glycol Monomethyl Ether Acetate (PGMEA). The porous structures were seeded with osteoblast like MG-63 cells and their osteogenic potential was tested in vitro. The cell-seeded structures were analyzed in 3D using the digital holographic microscopy technique (DHM). DHM is a marker free and high spatial resolution imaging tool, where the hologram acquisition is performed non-invasively i.e. without interfering with the cells natural environment. Following hologram recording, a digital algorithm provided a 3D image of the sample, as well as information about its refractive index, which is correlated with the intracellular content. The axial resolution of the images went down to the nanoscale, while the temporal scales ranged from milliseconds up to hours. The hologram did not involve sample scanning and the whole image was available in one frame recorded going over 200μm field of view. The digital holograms processing provided 3D quantitative information on the porous structures and allowed a quantitative analysis of the cellular response in respect to the porous architectures. The cellular shape and dimensions were found to be influenced by the underlying micro relief. Furthermore, the intracellular content gave evidence on the beneficial role of the porous structures in promoting osteoblast differentiation. In all, the proposed laser-based protocol emerges as a promising tool for the fabrication and non-invasive imaging of porous constructs for bone tissue engineering. Acknowledgments: This work was supported by a grant of the Romanian Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project PN-II-RU-TE-2014-4-2534 (contract 97 from 01/10/2015) and by UEFISCDI PN-II-PT-PCCA no. 6/2012. A part of this work was performed in the CETAL laser facility, supported by the National Program PN 16 47 - LAPLAS IV.

Keywords: biomimetic, holography, laser, osteoblast, two photon polymerization

Procedia PDF Downloads 268
5753 Study of the Antimicrobial Activity of Aminoreductone against Pathogenic Bacteria in Comparison with Other Antibiotics

Authors: Vu Thu Trang, Lam Xuan Thanh, Samira Sarter, Tomoko Shimamura, Hiroaki Takeuchi  

Abstract:

Antimicrobial activities of aminoreductone (AR), a product formed in the initial stage of Maillard reaction, were screened against pathogenic bacteria. A significant growth inhibition of AR against all 7 isolates (Staphylococcus aureus ATCC® 25923™, Salmonella Typhimurium ATCC® 14028™, Bacillus cereus ATCC® 13061™, Bacillus subtilis ATCC® 11774™, Escherichia coli ATCC® 25922™, Enterococcus faecalis ATCC® 29212™, Listeria innocua ATCC® 33090™) were observed by the standard disc diffusion methods. The inhibition zone for each isolate by AR (2.5 mg) ranged from 15±0 mm to 28.3±0.4 mm in diameter. The minimum inhibitory concentration (MIC) of AR ranging from 20 mM to 26 mM was proven in the seven isolates tested. AR also showed the similar effect of growth inhibition in comparison with antibiotics frequently used for the treatment of infections bacteria, such as amikacin, ciprofloxacin, meropennem, and levofloxacin. The results indicated that foods containing AR are valuable sources of bioactive compounds towards pathogenic bacteria.

Keywords: pathogenic bacteria, aminoreductone, Maillard reaction, antimicrobial activity

Procedia PDF Downloads 375
5752 Biosynthesis of Titanium Dioxide Nanoparticles and Their Antibacterial Property

Authors: Prachi Singh

Abstract:

This paper presents a low-cost, eco-friendly and reproducible microbe mediated biosynthesis of TiO2 nanoparticles. TiO2 nanoparticles synthesized using the bacterium, Bacillus subtilis, from titanium as a precursor, were confirmed by TEM analysis. The morphological characteristics state spherical shape, with the size of individual or aggregate nanoparticles, around 30-40 nm. Microbial resistance represents a challenge for the scientific community to develop new bioactive compounds. Here, the antibacterial effect of TiO2 nanoparticles on Escherichia coli was investigated, which was confirmed by CFU (Colony-forming unit). Further, growth curve study of E. coli Hb101 in the presence and absence of TiO2 nanoparticles was done. Optical density decrease was observed with the increase in the concentration of TiO2. It could be attributed to the inactivation of cellular enzymes and DNA by binding to electron-donating groups such as carboxylates, amides, indoles, hydroxyls, thiols, etc. which cause little pores in bacterial cell walls, leading to increased permeability and cell death. This justifies that TiO2 nanoparticles have efficient antibacterial effect and have potential to be used as an antibacterial agent for different purposes.

Keywords: antibacterial effect, CFU, Escherichia coli Hb101, growth curve, TEM, TiO2 nanoparticle, Toxicity, UV-Vis

Procedia PDF Downloads 291
5751 Calibration and Validation of the Aquacrop Model for Simulating Growth and Yield of Rain-fed Sesame (Sesamum indicum L.) Under Different Soil Fertility Levels in the Semi-arid Areas of Tigray

Authors: Abadi Berhane, Walelign Worku, Berhanu Abrha, Gebre Hadgu, Tigray

Abstract:

Sesame is an important oilseed crop in Ethiopia; which is the second most exported agricultural commodity next to coffee. However, there is poor soil fertility management and a research-led farming system for the crop. The AquaCrop model was applied as a decision-support tool; which performs a semi-quantitative approach to simulate the yield of crops under different soil fertility levels. The objective of this experiment was to calibrate and validated the AquaCrop model for simulating the growth and yield of sesame under different nitrogen fertilizer levels and to test the performance of the model as a decision-support tool for improved sesame cultivation in the study area. The experiment was laid out as a randomized complete block design (RCBD) in a factorial arrangement in the 2016, 2017, and 2018 main cropping seasons. In this experiment, four nitrogen fertilizer rates; 0, 23, 46, and 69 Kg/ha nitrogen, and three improved varieties (Setit-1, Setit-2, and Humera-1). In the meantime, growth, yield, and yield components of sesame were collected from each treatment. Coefficient of determination (R2), Root mean square error (RMSE), Normalized root mean square error (N-RMSE), Model efficiency (E), and Degree of agreement (D) were used to test the performance of the model. The results indicated that the AquaCrop model successfully simulated soil water content with R2 varying from 0.92 to 0.98, RMSE 6.5 to 13.9 mm, E 0.78 to 0.94, and D 0.95 to 0.99; and the corresponding values for AB also varied from 0.92 to 0.98, 0.33 to 0.54 tons/ha, 0.74 to 0.93, and 0.9 to 0.98, respectively. The results on the canopy cover of sesame also showed that the model acceptably simulated canopy cover with R2 varying from 0.95 to 0.99, and a RMSE of 5.3 to 8.6%. The AquaCrop model was appropriately calibrated to simulate soil water content, canopy cover, aboveground biomass, and sesame yield; the results indicated that the model adequately simulated the growth and yield of sesame under the different nitrogen fertilizer levels. The AquaCrop model might be an important tool for improved soil fertility management and yield enhancement strategies of sesame. Hence, the model might be applied as a decision-support tool in soil fertility management in sesame production.

Keywords: aquacrop model, sesame, normalized water productivity, nitrogen fertilizer

Procedia PDF Downloads 71
5750 Effects of Ascophyllum nodosum in Tomato in the Tropical Caribbean Climate: Effects and Molecular Insights into Mechanisms

Authors: Omar Ali, Adesh Ramsubhag, Jayaraj Jayaraman

Abstract:

Seaweed extracts have been reported as plant biostimulants which could be a safer, organic alternative to harsh pesticides. The incentive to use seaweed-based biostimulants is becoming paramount in sustainable agriculture. The current study, therefore, screened a commercial extract of A. nodosum in tomatoes, cultivated in Trinidad to showcase the multiple beneficial effects. Foliar treatment with an A. nodosum commercial extract led to significant increases in fruit yield and a significant reduction of incidence of bacterial spots and early blight diseases under both greenhouse and field conditions. Investigations were carried out to reveal the possible mechanisms of action of this biostimulant through defense enzyme assays and transcriptome profiling via RNA sequencing of tomato. Studies into disease control mechanisms by A. nodosum showed that the extract stimulated the activity of enzymes such as peroxidase, phenylalanine ammonia-lyase, chitinase, polyphenol oxidase, and β-1,3-glucanase. Additionally, the transcriptome survey revealed the upregulation and enrichment of genes responsible for the biosynthesis of growth hormones, defense enzymes, PR proteins and defense-related secondary metabolites, as well as genes involved in the nutrient mobilization, photosynthesis and primary and secondary metabolic pathways. The results of the transcriptome study also demonstrated the cross-talks between growth and defense responses, confirming the bioelicitor and biostimulant value of seaweed extracts in plants. These effects could potentially implicate the benefits of seaweed extract and validate its usage in sustainable crop production.

Keywords: A. nodosum, biostimulants, elicitor, enzymes, growth responses, seaweeds, tomato, transcriptome analysis

Procedia PDF Downloads 159
5749 A Phylogenetic Analysis and Effect of NO₃ Regime on the Level of N-3 Polyunsaturated Fatty Acids in Thalassiosira weissflogii Isolated from Caspian Sea

Authors: Ehsan Etesami, Mostafa Noroozi

Abstract:

Thalassiosira weissflogii with proper size and nutrition value specially PUFA n-3 has been widely used in bivalve shellfish larviculture and shrimp industries. This diatom was isolated from Caspian Sea and identified with morphology and molecular characters. T. weissflogii was cultivated in normal and nitrogen deficiency F2 medium during 18 to 30 days, in addition, the growth indices, total lipid, and EPA-DHA content were elucidated. The growth indices of the cells decreased during the stress experiments while the total lipid levels increased during prolonged culturing (30 days). The maximum level of C20:5 was calculated as 8.8 (%TFA) in normal condition during 30 days; however, the combination of N- deficiency condition with prolonged culturing led to the increase of the level of C22:6 from 3.5 to 12.63 (%TFA). The concept of N-deficiency along with prolonged culturing of Thalassiosira weissflogii can improve PUFA n-3 content in order to use in shellfish and shrimp industries.

Keywords: DHA, Thalassiosira weissflogii, nitrogen deficiency, EPA, fatty acids, aquafeed

Procedia PDF Downloads 139
5748 Transformation of the Relationship Between Tourism Activities and Residential Environment in the Center of a Historical Suburban City of a Tourism Metropolis: A Case Study of Naka-Uji Area, Uji City, Kyoto Prefecture

Authors: Shuailing Cui, Nakajiam Naoto

Abstract:

The tourism industry has experienced significant growth worldwide since the end of World War II. Tourists are drawn to suburban areas during weekends and holidays to explore historical and cultural heritage sites. Since the 1970s, there has been a resurgence in population growth in metropolitan areas, which has fueled the demand for suburban tourism and facilitated its development. The construction of infrastructure, such as railway lines and arterial roads, has also supported the growth of tourism. Tourists engaging in various activities can have a significant impact on the destinations they visit. Tourism has not only affected the local economy but has also begun to alter the social structures, culture, and lifestyle of the destinations visited. In addition, the growing number of tourists has affected the local commercial structure and daily life of suburban residents. Therefore, there is a need to figure out how tourism activities influence the residential environment of the tourist destination and how this influence changes over time. This study aims to analyze the transformation of the relationship between tourism activities and the residential environment in the Naka-Uji area of Uji City, Kyoto Prefecture. Specifically, it investigates how the growth of the tourism industry has influenced the local residential environment and how this influence has changed over time. The findings of the study indicate that the growth of tourism in the Naka-Uji area has had both positive and negative effects on the local residential environment. On the one hand, the tourism industry has created job opportunities and improved local economic conditions. On the other hand, it has also caused environmental degradation, particularly in terms of increased traffic and the construction of parking lots. The study also found that the development of the tourism industry has influenced the social structures, culture, and lifestyle of residents. For instance, the increase in the number of tourists has led to changes in the commercial structure and daily life of suburban residents. The study highlights the importance of collaboration and shared benefits among stakeholders in tourism development, particularly in terms of preserving the cultural and natural heritage of tourist destinations while promoting sustainable development. Overall, this study contributes to the growing body of research on the impact of tourism on suburban areas. It provides insights into the complex relationships between tourism, the natural environment, the local economy, and residential life and emphasizes the need for sustainable tourism development in suburban areas. The findings of this study have important implications for policymakers, urban planners, and other stakeholders involved in promoting regional revitalization and sustainable tourism development.

Keywords: tourism, residential environment, suburban area, metropolis

Procedia PDF Downloads 83
5747 Transformation of the Relationship between Tourism Activities and Residential Environment in the Center of a Historical Suburban City of a Tourism Metropolis: A Case Study of Naka-Uji Area, Uji City, Kyoto Prefecture

Authors: Shuailing CUI, Nakajima Naoto

Abstract:

The tourism industry has experienced significant growth worldwide since the end of World War II. Tourists are drawn to suburban areas during weekends and holidays to explore historical and cultural heritage sites. Since the 1970s, there has been a resurgence in population growth in metropolitan areas, which has fueled the demand for suburban tourism and facilitated its development. The construction of infrastructure, such as railway lines and arterial roads, has also supported the growth of tourism. Tourists engaging in various activities can have a significant impact on the destinations they visit. Tourism has not only affected the local economy but has also begun to alter the social structures, culture, and lifestyle of the destinations visited. In addition, the growing number of tourists has affected the local commercial structure and daily life of suburban residents. Therefore, there is a need to figure out how tourism activities influence the residential environment of the tourist destination and how this influence changes over time. This study aims to analyze the transformation of the relationship between tourism activities and the residential environment in the Naka-Uji area of Uji City, Kyoto Prefecture. Specifically, it investigates how the growth of the tourism industry has influenced the local residential environment and how this influence has changed over time. The findings of the study indicate that the growth of tourism in the Naka-Uji area has had both positive and negative effects on the local residential environment. On the one hand, the tourism industry has created job opportunities and improved local economic conditions. On the other hand, it has also caused environmental degradation, particularly in terms of increased traffic and the construction of parking lots. The study also found that the development of the tourism industry has influenced the social structures, culture, and lifestyle of residents. For instance, the increase in the number of tourists has led to changes in the commercial structure and daily life of suburban residents. The study highlights the importance of collaboration and shared benefits among stakeholders in tourism development, particularly in terms of preserving the cultural and natural heritage of tourist destinations while promoting sustainable development. Overall, this study contributes to the growing body of research on the impact of tourism on suburban areas. It provides insights into the complex relationships between tourism, the natural environment, the local economy, and residential life, and emphasizes the need for sustainable tourism development in suburban areas. The findings of this study have important implications for policymakers, urban planners, and other stakeholders involved in promoting regional revitalization and sustainable tourism development.

Keywords: tourism, residential environment, suburban area, metropolis

Procedia PDF Downloads 66
5746 Combined Effect of Vesicular System and Iontophoresis on Skin Permeation Enhancement of an Analgesic Drug

Authors: Jigar N. Shah, Hiral J. Shah, Praful D. Bharadia

Abstract:

The major challenge faced by formulation scientists in transdermal drug delivery system is to overcome the inherent barriers related to skin permeation. The stratum corneum layer of the skin is working as the rate limiting step in transdermal transport and reduce drug permeation through skin. Many approaches have been used to enhance the penetration of drugs through this layer of the skin. The purpose of this study is to investigate the development and evaluation of a combined approach of drug carriers and iontophoresis as a vehicle to improve skin permeation of an analgesic drug. Iontophoresis is a non-invasive technique for transporting charged molecules into and through tissues by a mild electric field. It has been shown to effectively deliver a variety of drugs across the skin to the underlying tissue. In addition to the enhanced continuous transport, iontophoresis allows dose titration by adjusting the electric field, which makes personalized dosing feasible. Drug carrier could modify the physicochemical properties of the encapsulated molecule and offer a means to facilitate the percutaneous delivery of difficult-to-uptake substances. Recently, there are some reports about using liposomes, microemulsions and polymeric nanoparticles as vehicles for iontophoretic drug delivery. Niosomes, the nonionic surfactant-based vesicles that are essentially similar in properties to liposomes have been proposed as an alternative to liposomes. Niosomes are more stable and free from other shortcoming of liposomes. Recently, the transdermal delivery of certain drugs using niosomes has been envisaged and niosomes have proved to be superior transdermal nanocarriers. Proniosomes overcome some of the physical stability related problems of niosomes. The proniosomal structure was liquid crystalline-compact niosomes hybrid which could be converted into niosomes upon hydration. The combined use of drug carriers and iontophoresis could offer many additional benefits. The system was evaluated for Encapsulation Efficiency, vesicle size, zeta potential, Transmission Electron Microscopy (TEM), DSC, in-vitro release, ex-vivo permeation across skin and rate of hydration. The use of proniosomal gel as a vehicle for the transdermal iontophoretic delivery was evaluated in-vitro. The characteristics of the applied electric current, such as density, type, frequency, and on/off interval ratio were observed. The study confirms the synergistic effect of proniosomes and iontophoresis in improving the transdermal permeation profile of selected analgesic drug. It is concluded that proniosomal gel can be used as a vehicle for transdermal iontophoretic drug delivery under suitable electric conditions.

Keywords: iontophoresis, niosomes, permeation enhancement, transdermal delivery

Procedia PDF Downloads 375
5745 Identification of Potent and Selective SIRT7 Anti-Cancer Inhibitor via Structure-Based Virtual Screening and Molecular Dynamics Simulation

Authors: Md. Fazlul Karim, Ashik Sharfaraz, Aysha Ferdoushi

Abstract:

Background: Computational medicinal chemistry approaches are used for designing and identifying new drug-like molecules, predicting properties and pharmacological activities, and optimizing lead compounds in drug development. SIRT7, a nicotinamide adenine dinucleotide (NAD+)-dependent deacylase which regulates aging, is an emerging target for cancer therapy with mounting evidence that SIRT7 downregulation plays important roles in reversing cancer phenotypes and suppressing tumor growth. Activation or altered expression of SIRT7 is associated with the progression and invasion of various cancers, including liver, breast, gastric, prostate, and non-small cell lung cancer. Objectives: The goal of this work was to identify potent and selective bioactive candidate inhibitors of SIRT7 by in silico screening of small molecule compounds obtained from Nigella sativa (N. sativa). Methods: SIRT7 structure was retrieved from The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), and its active site was identified using CASTp and metaPocket. Molecular docking simulation was performed with PyRx 0.8 virtual screening software. Drug-likeness properties were tested using SwissADME and pkCSM. In silico toxicity was evaluated by Osiris Property Explorer. Bioactivity was predicted by Molinspiration software. Antitumor activity was screened for Prediction of Activity Spectra for Substances (PASS) using Way2Drug web server. Molecular dynamics (MD) simulation was carried out by Desmond v3.6 package. Results: A total of 159 bioactive compounds from the N. Sativa were screened against the SIRT7 enzyme. Five bioactive compounds: chrysin (CID:5281607), pinocembrin (CID:68071), nigellidine (CID:136828302), nigellicine (CID:11402337), and epicatechin (CID:72276) were identified as potent SIRT7 anti-cancer candidates after docking score evaluation and applying Lipinski's Rule of Five. Finally, MD simulation identified Chrysin as the top SIRT7 anti-cancer candidate molecule. Conclusion: Chrysin, which shows a potential inhibitory effect against SIRT7, can act as a possible anti-cancer drug candidate. This inhibitor warrants further evaluation to check its pharmacokinetics and pharmacodynamics properties both in vitro and in vivo.

Keywords: SIRT7, antitumor, molecular docking, molecular dynamics simulation

Procedia PDF Downloads 70
5744 Inoculation of Cyanobacteria Improves the Lignin Content of Thymus vulgaris L.

Authors: Nasim Rasuli, Akram Ahmadi, Hossein Riahi, Zeinab Shariatmadari, Majid Ghorbani Nohooji, Pooyan Mehraban Joubani

Abstract:

Cyanobacteria are one of the most promising sources of new biostimulants and have received much attention due to their diverse applications in biotechnology. These microorganisms enhance the growth and productivity of plants by producing plant growth stimulants and fixing atmospheric nitrogen. Thymus vulgaris L., a valuable medicinal plant from the Lamiaceae family, is widely distributed across the globe. essential oil of T. vulgaris is best characterized by the prominence of phenols, making them the key compounds in its composition. Lignin biosynthesis as a natural plant polyphenol plays a crucial role in promoting plant growth, strengthening cell walls, and increasing resistance to pathogens. In this study, the bioelicitor activity of five cyanobacterial suspensions including Anabaena torulosa ISB213, Nostoc calcicola ISB215, Nostoc ellipsosporum ISB217, Trichormus doliolum ISB214, and Oscillatoria sp. ISB2116 on the lignin content of the T. vulgaris L. was investigated. Pot experiments were performed by inoculation of a %2 algal extract to the soil of treated plants one week before planting and then every 20 days. After four months, the lignin content in the leaves of both treated and control plants was evaluated. The results demonstrated that the application of cyanobacteria significantly increased the lignin content in the leaves of treated plants compared to the control. The treatment with Oscillatoria sp. ISB216 and N. ellipsosporum ISB217 resulted in the highest lignin content, with an increase of 93.33% and 86.67%, respectively. These findings highlight the potential of cyanobacteria as bioelicitors, offering a viable alternative for enhancing the production of secondary metabolites in T. vulgaris. Consequently, this could contribute to the economic value of this medicinal plant.

Keywords: cyanobacteria, bioelicitor, thymus vulgaris, lignin

Procedia PDF Downloads 79
5743 Application of Arbuscular Mycorrhizal Fungi as Biologically Based Strategy for Mitigation of Adverse Impact of Salt Stress on Wheat

Authors: Abeer Hashem, Khalid F. Almutairi, Ulkar Ibrahimova, Elsayed Fathi Abdallah

Abstract:

Salinity poses a significant challenge to wheat production, necessitating the exploration of strategies to mitigate its adverse effects. The present investigation aims to study the impact of arbuscular mycorrhizal fungi (AMF) application to improve plant tolerance in terms of growth, carbohydrate, photosynthetic characteristics, and antioxidant enzyme activities under salt stress conditions. So, a randomized complete block design with five replications was employed comprising various treatments of AMF application under salinity stress (200mM), and control samples were used for each treatment. The obtained results demonstrated significantly that AMF used in this study showed beneficial impacts in all parameters used as sensitive monitor for relation of plant-salt microbe interaction. The root colonization by AMF showed the highest plant growth criteria, relative water content, soluble sugar, starch, and total non-structural carbohydrates under both control and salinity stress conditions. Moreover, the application of AMF-treated plants showed the highest soluble protein concentration and activity in leaves and antioxidant enzymes (catalase, superoxide dismutase, guaiacol peroxidase). These findings highlight the potential impact of AMF application as a biologically based strategy to manage the mitigation of salt stress on wheat, which increases the availability of many salt marsh habitats for sustainable agriculture of such strategy crops.

Keywords: arbuscular mycorrhizal fungi, salt stress, plant growth criteria, soluble protein, antioxidant enzymes, wheat plant

Procedia PDF Downloads 41
5742 The Effect of Pre-Cracks on Structural Strength of the Nextel Fibers: A Multiscale Modeling Approach

Authors: Seyed Mohammad Mahdi Zamani, Kamran Behdinan

Abstract:

In this study, a multiscale framework is performed to model the strength of Nextel fibers in presence of an atomistic scale pre-crack at finite temperatures. The bridging cell method (BCM) is the multiscale technique applied in this study, which decomposes the system into the atomistic, bridging and continuum domains; solves the whole system in a finite element framework; and incorporates temperature dependent calculations. Since Nextel is known to be structurally stable and retain 70% of its initial strength up to 1100°C; simulations are conducted at both of the room temperatures, 25°C, and fire temperatures, 1200°C. Two cases are modeled for a pre-crack present in either phases of alumina or mullite of the Nextel structure. The materials’ response is studied with respect to deformation behavior and ultimate tensile strength. Results show different crack growth trends for the two cases, and as the temperature increases, the crack growth resistance and material’s strength decrease.

Keywords: Nextel fibers, multiscale modeling, pre-crack, ultimate tensile strength

Procedia PDF Downloads 413
5741 Determination of Critical Period for Weed Control in the Second Crop Forage Maize (454 Cultivar)

Authors: Farhad Farahvash, Parya Mobaseri

Abstract:

Weeds control based on their critical period leads to less production costs and risks of wide chemical application of weeds control methods. The present study considered effect of weeds control time (weeds interference after 20, 40 and 60 days, weeds full control, weeds interference and weeds control after 20, 40 and 60 days) on growth and yield of forage maize 454. The experiment based on full-randomized blocks design with three replications was conducted at research farm of Islamic Azad University of Tabriz located at 15th km of East Tabriz in 2013. According to the results, weeds interference after 40 and 60 days as well as weeds control after 20 days prevented from decrease of maize biomass resulted from weeds presence while weeds interference after 20 days, weeds interference and weeds control after 40 and 60 days led respectively to 41.2%, 35%, 25% and 32.5% decrease of forage maize biomass. The weeds-influenced decrease was manifested at different parts of the plant depending on presence period of weeds. Decrease of fresh weight of ear and fresh weight of leaf and stem was observed due to weeds interference after 20 days and weeds interference. If weeds are controlled after 60 days, decrease of ear weight and fresh weight of stem will lead to biomass decrease. Also, if weeds are controlled after 40 days, decrease of fresh weight of maize stems will result in biomass decrease. Ear traits were affected by weeds control treatment. Being affected by treatments of weeds interference after 20 days, weeds non-interference, weeds control after 40 and 60 days, ear length was shortened 29.9 %, 41.4 %, 27.6 % and 37.2 %, respectively. The stem diameter demonstrated a significant decrease although it was only affected by treatments of weeds interference and weeds control after 60 days. Considering results of the present study, generally, it is suggested to control weeds during initial 20-60 days of maize growth in order to prevent undesirable effect of weeds on growth, production and production biomass of maize and decrease of production costs.

Keywords: maize, competition, weed, biomass

Procedia PDF Downloads 358
5740 The Enzyme Inhibitory Potentials of Different Extracts from Linaria genistifolia subsp. genistifolia

Authors: Gokhan Zengin, Abdurrahman Aktumsek

Abstract:

The key enzyme inhibitory theory is one of the most accepted strategies in the treatment of global health problems including Alzheimer’s Disease and Diabetes mellitus. For this reason, the enzyme inhibitory potentials of different solvent extracts from Linaria genistifolia subsp. genistifolia were investigated against cholinesterase, and tyrosinase. The in vitro enzyme inhibitory potentials were measured with a microplate reader. The acetone and methanol extracts exhibited the strongest enzyme inhibitory effects on cholinesterase. However, the water extract was only active on tyrosinase. The results suggested that Linaria genistifolia subsp. genistifolia could be considered as a source of natural enzyme inhibitors for the treatment of major health problems.

Keywords: enzyme inhibitors, cholinesterase, tyrosinase, linaria, Turkey

Procedia PDF Downloads 305
5739 Silicon Nanoparticles and Irradiated Chitosan: Sustainable Elicitors for PS II Activity and Antioxidant Mediated Plant Immunity

Authors: Mohammad Mukarram, M. Masroor A. Khan, Daniel Kurjak, Marek Fabrika

Abstract:

Lemongrass (Cymbopogon flexuosus (Steud.) Wats) is an aromatic grass with great industrial potential. It is cultivated for its essential oil (EO), which has great economic value due to its numerous medicinal, cosmetic, and culinary applications. The present study had the goal to evaluate whether the combined application of silicon nanoparticles (SiNPs) 150 mg L⁻¹ and irradiated chitosan (ICH) 120 mg L⁻¹ can upgrade lemongrass crop and render enhanced growth and productivity. The analyses of growth and photosynthetic parameters, leaf-nitrogen, and reactive oxygen species metabolism, as well as the content of total essential oil, indicated that combined foliar sprays of SiNPs and ICH can significantly (p≤0.05) trigger a general activation of lemongrass metabolism. Overall, the data indicate that concomitant SiNPs and ICH application elicit lemongrass physiology and defence system, and opens new possibilities for their biotechnological application on other related plant species with agronomic potential.

Keywords: photosynthesis, Cymbopogon, antioxidant metabolism, essential oil, ROS, nanoparticles, polysaccharides

Procedia PDF Downloads 78
5738 Study of Nucleation and Growth Processes of Ettringite in Supersaturated Diluted Solutions

Authors: E. Poupelloz, S. Gauffinet

Abstract:

Ettringite Ca₆Al₂(SO₄)₃(OH)₁₂26H₂O is one of the major hydrates formed during cement hydration. Ettringite forms in Portland cement from the reaction between tricalcium aluminate Ca₃Al₂O₆ and calcium sulfate. Ettringite is also present in calcium sulfoaluminate cement in which it is the major hydrate, formed by the reaction between yeelimite Ca₄(AlO₂)₆SO₄ and calcium sulfate. About the formation of ettringite, numerous results are available in the literature even if some issues are still under discussion. However, almost all published work about ettringite was done on cementitious systems. Yet in cement, hydration reactions are very complex, the result of dissolution-precipitation processes and are submitted to various interactions. Understanding the formation process of a phase alone, here ettringite, is the first step to later understand the much more complex reactions happening in cement. This study is crucial for the comprehension of early cement hydration and physical behavior. Indeed formation of hydrates, in particular, ettringite, will have an influence on the rheological properties of the cement paste and on the need for admixtures. To make progress toward the understanding of existing phenomena, a specific study of nucleation and growth processes of ettringite was conducted. First ettringite nucleation was studied in ionic aqueous solutions, with controlled but different experimental conditions, as different supersaturation degrees (β), different pH or presence of exogenous ions. Through induction time measurements, interfacial ettringite crystals solution energies (γ) were determined. Growth of ettringite in supersaturated solutions was also studied through chain crystallization reactions. Specific BET surface area measurements and Scanning Electron Microscopy observations seemed to prove that growth process is favored over the nucleation process when ettringite crystals are initially present in a solution with a low supersaturation degree. The influence of stirring on ettringite formation was also investigated. Observation was made that intensity and nature of stirring have a high influence on the size of ettringite needles formed. Needle sizes vary from less than 10µm long depending on the stirring to almost 100µm long without any stirring. During all previously mentioned experiments, initially present ions are consumed to form ettringite in such a way that the supersaturation degree with regard to ettringite is decreasing over time. To avoid this phenomenon a device compensating the drop of ion concentrations by adding some more solutions, and therefore always have constant ionic concentrations, was used. This constant β recreates the conditions of the beginning of cement paste hydration, when the dissolution of solid reagents compensates the consumption of ions to form hydrates. This device allowed the determination of the ettringite precipitation rate as a function of the supersaturation degree β. Taking samples at different time during ettringite precipitation and doing BET measurements allowed the determination of the interfacial growth rate of ettringite in m²/s. This work will lead to a better understanding and control of ettringite formation alone and thus during cements hydration. This study will also ultimately define the impact of ettringite formation process on the rheology of cement pastes at early age, which is a crucial parameter from a practical point of view.

Keywords: cement hydration, ettringite, morphology of crystals, nucleation-growth process

Procedia PDF Downloads 122
5737 Direct Growth Rates of the Information Model for Traffic at the Service of Sustainable Development of Tourism in Dubrovacko-Neretvanska County 2014-2020

Authors: Vinko Viducic, Jelena Žanic Mikulicic, Maja Racic, Kristina Sladojevic

Abstract:

The research presented in this paper has been focused on analyzing the impact of traffic on the sustainable development of tourism in Croatia's Dubrovacko-Neretvanska County by the year 2020, based on the figures and trends reported in 2014 and using the relevant variables that characterise the synergy of traffic and tourism in, speaking from the geographic viewpoint, the most problematic county in the Republic of Croatia. The basic hypothesis has been confirmed through scientifically obtained research results, through the quantification of the model's variables and the direct growth rates of the designed model. On the basis of scientific insights into the sustainable development of traffic and tourism in Dubrovacko-Neretvanska County, it is possible to propose a new information model for traffic at the service of the sustainable development of tourism in the County for the period 2014-2020.

Keywords: environment protection, hotel industry, private sector, quantification

Procedia PDF Downloads 278
5736 Calibration and Validation of the Aquacrop Model for Simulating Growth and Yield of Rain-Fed Sesame (Sesamum Indicum L.) Under Different Soil Fertility Levels in the Semi-arid Areas of Tigray, Ethiopia

Authors: Abadi Berhane, Walelign Worku, Berhanu Abrha, Gebre Hadgu

Abstract:

Sesame is an important oilseed crop in Ethiopia, which is the second most exported agricultural commodity next to coffee. However, there is poor soil fertility management and a research-led farming system for the crop. The AquaCrop model was applied as a decision-support tool, which performs a semi-quantitative approach to simulate the yield of crops under different soil fertility levels. The objective of this experiment was to calibrate and validate the AquaCrop model for simulating the growth and yield of sesame under different nitrogen fertilizer levels and to test the performance of the model as a decision-support tool for improved sesame cultivation in the study area. The experiment was laid out as a randomized complete block design (RCBD) in a factorial arrangement in the 2016, 2017, and 2018 main cropping seasons. In this experiment, four nitrogen fertilizer rates, 0, 23, 46, and 69 Kg/ha nitrogen, and three improved varieties (Setit-1, Setit-2, and Humera-1). In the meantime, growth, yield, and yield components of sesame were collected from each treatment. Coefficient of determination (R2), Root mean square error (RMSE), Normalized root mean square error (N-RMSE), Model efficiency (E), and Degree of agreement (D) were used to test the performance of the model. The results indicated that the AquaCrop model successfully simulated soil water content with R2 varying from 0.92 to 0.98, RMSE 6.5 to 13.9 mm, E 0.78 to 0.94, and D 0.95 to 0.99, and the corresponding values for AB also varied from 0.92 to 0.98, 0.33 to 0.54 tons/ha, 0.74 to 0.93, and 0.9 to 0.98, respectively. The results on the canopy cover of sesame also showed that the model acceptably simulated canopy cover with R2 varying from 0.95 to 0.99 and a RMSE of 5.3 to 8.6%. The AquaCrop model was appropriately calibrated to simulate soil water content, canopy cover, aboveground biomass, and sesame yield; the results indicated that the model adequately simulated the growth and yield of sesame under the different nitrogen fertilizer levels. The AquaCrop model might be an important tool for improved soil fertility management and yield enhancement strategies of sesame. Hence, the model might be applied as a decision-support tool in soil fertility management in sesame production.

Keywords: aquacrop model, normalized water productivity, nitrogen fertilizer, canopy cover, sesame

Procedia PDF Downloads 73
5735 Biodegradation of Cellulosic Materials by Marine Fungi Isolated from South Corniche of Jeddah, Saudi Arabia

Authors: Fuad Ameen, Mohamed Moslem, Sarfaraz Hadi

Abstract:

Twenty-eight fungal isolates belonging to 12 genera were derived from debris, sediment and water samples collected from Avicennia marina stands 25km south of Jeddah city on the Red Sea coast of Saudi Arabia. Eight of these isolates were found to be able to grow in association cellulosic waste materials under in vitro conditions in the absence of any carbon source. Isolates were further tested for their potential to degrade paper and clothes wastes by co-cultivation under aeration on a rotary shaker. These fungi accumulated significantly higher biomass, produced ligninolytic and cellulase enzymes, and liberated larger volumes of CO2. These observations indicated that the selected isolates were able to break down and consume the waste materials.

Keywords: biodegradation, enzyme activity, waste materials, mangrove

Procedia PDF Downloads 558