Search results for: implementation of nep-2020. outcome based learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 35686

Search results for: implementation of nep-2020. outcome based learning

33976 Guidelines for Enhancing the Learning Environment by the Integration of Design Flexibility and Immersive Technology: The Case of the British University in Egypt’s Classrooms

Authors: Eman Ayman, Gehan Nagy

Abstract:

The learning environment has four main parameters that affect its efficiency which they are: pedagogy, user, technology, and space. According to Morrone, enhancing these parameters to be adaptable for future developments is essential. The educational organization will be in need of developing its learning spaces. Flexibility of design an immersive technology could be used as tools for this development. when flexible design concepts are used, learning spaces that can accommodate a variety of teaching and learning activities are created. To accommodate the various needs and interests of students, these learning spaces are easily reconfigurable and customizable. The immersive learning opportunities offered by technologies like virtual reality, augmented reality, and interactive displays, on the other hand, transcend beyond the confines of the traditional classroom. These technological advancements could improve learning. This thesis highlights the problem of the lack of innovative, flexible learning spaces in educational institutions. It aims to develop guidelines for enhancing the learning environment by the integration of flexible design and immersive technology. This research uses a mixed method approach, both qualitative and quantitative: the qualitative section is related to the literature review theories and case studies analysis. On the other hand, the quantitative section will be identified by the results of the applied studies of the effectiveness of redesigning a learning space from its traditional current state to a flexible technological contemporary space that will be adaptable to many changes and educational needs. Research findings determine the importance of flexibility in learning spaces' internal design as it enhances the space optimization and capability to accommodate the changes and record the significant contribution of immersive technology that assists the process of designing. It will be summarized by the questionnaire results and comparative analysis, which will be the last step of finalizing the guidelines.

Keywords: flexibility, learning space, immersive technology, learning environment, interior design

Procedia PDF Downloads 94
33975 Faster, Lighter, More Accurate: A Deep Learning Ensemble for Content Moderation

Authors: Arian Hosseini, Mahmudul Hasan

Abstract:

To address the increasing need for efficient and accurate content moderation, we propose an efficient and lightweight deep classification ensemble structure. Our approach is based on a combination of simple visual features, designed for high-accuracy classification of violent content with low false positives. Our ensemble architecture utilizes a set of lightweight models with narrowed-down color features, and we apply it to both images and videos. We evaluated our approach using a large dataset of explosion and blast contents and compared its performance to popular deep learning models such as ResNet-50. Our evaluation results demonstrate significant improvements in prediction accuracy, while benefiting from 7.64x faster inference and lower computation cost. While our approach is tailored to explosion detection, it can be applied to other similar content moderation and violence detection use cases as well. Based on our experiments, we propose a "think small, think many" philosophy in classification scenarios. We argue that transforming a single, large, monolithic deep model into a verification-based step model ensemble of multiple small, simple, and lightweight models with narrowed-down visual features can possibly lead to predictions with higher accuracy.

Keywords: deep classification, content moderation, ensemble learning, explosion detection, video processing

Procedia PDF Downloads 55
33974 A Study on the Effectiveness of Translanguaging in EFL Classrooms: The Case of First-year Japanese University Students

Authors: Malainine Ebnou

Abstract:

This study investigates the effectiveness of using translanguaging techniques in EFL classrooms. The interest in this topic stems from the lack of research on the effectiveness of translanguaging techniques in foreign language learning, both domestically in Japan and globally, as research has focused on translanguaging from a teaching perspective but not much on it from a learning perspective. The main question that the study departs from is whether students’ use of translanguaging techniques can produce better learning outcomes when used at the university level. The sample population of the study is first-year Japanese university students. The study takes an experimental approach where translanguaging is introduced to one group, the experimental group, and withheld from another group, the control group. Both groups will then be assessed and compared to see if the use of translanguaging has had a positive impact on learning. The impact of the research could be in three ways: challenging the prevailing argument that using learners' mother tongue in the classroom is detrimental to the learning process, challenging native speaker-centered approaches in the EFL field, and arguing that translanguaging in EFL classrooms can produce more meaningful learning outcomes. If the effectiveness of translanguaging is confirmed, it will be possible to promote the use of translanguaging in English learning at Japanese universities and contribute to the improvement of students' English, and even lay the foundations for extending the use of translanguaging to people of other ages/nationalities and other languages in the future.

Keywords: translanguaging, EFL, language learning and teaching, applied linguistics

Procedia PDF Downloads 58
33973 The Relationships between Autonomy-Based Insula Activity and Learning: A Functional Magnetic Resonance Imaging Study

Authors: Woogul Lee, Johnmarshall Reeve

Abstract:

Learners’ perceived autonomy predicts learners’ interest, engagement, and learning. To understand these processes, we conducted an fMRI experiment. In this experiment, participants saw the national flag and were asked to rate how much they freely wanted to learn about that particular national flag. The participants then learned the characteristics of the national flag. Results showed that (1) the degree of participants’ perceived autonomy was positively correlated with the degree of insula activity, (2) participants’ early-trial insula activity predicted corresponding late-trial dorsolateral prefrontal cortex activity, and (3) the degree of dorsolateral prefrontal cortex activity was positively correlated with the degree of participants’ learning about the characteristics of the national flag. Results suggest that learners’ perceived autonomy predicts learning through the mediation of insula activity associated with intrinsic satisfaction and 'pure self' processes.

Keywords: insular cortex, autonomy, self-determination, dorsolateral prefrontal cortex

Procedia PDF Downloads 205
33972 Strategies for Improving Teaching and Learning in Higher Institutions: Case Study of Enugu State University of Science and Technology, Nigeria

Authors: Gertrude Nkechi Okenwa

Abstract:

Higher institutions, especially the universities that are saddled with the responsibilities of teaching, learning, research, publications and social services for the production of graduates that are worthy in learning and character, and the creation of up-to-date knowledge and innovations for the total socio-economic and even political development of a given nation. Therefore, the purpose of the study was to identify the teaching, learning techniques used in the Enugu State University of Science and Technology to ensure or ascertain students’ perception on these techniques. To guide the study, survey research method was used. The population for the study was made up of second and final year students which summed up to one hundred and twenty-six students in the faculty of education. Stratified random sampling technique was adopted. A sample size of sixty (60) students was drawn for the study. The instrument used for data collection was questionnaire. To analyze the data, mean and standard deviation were used to answers the research questions. The findings revealed that direct instruction and construction techniques are used in the university. On the whole, it was observed that the students perceived constructivist techniques to be more useful and effective than direct instruction technique. Based on the findings recommendations were made to include diversification of teaching techniques among others.

Keywords: Strategies, Teaching and Learning, Constructive Technique, Direct Instructional Technique

Procedia PDF Downloads 541
33971 A Deep Learning Approach to Calculate Cardiothoracic Ratio From Chest Radiographs

Authors: Pranav Ajmera, Amit Kharat, Tanveer Gupte, Richa Pant, Viraj Kulkarni, Vinay Duddalwar, Purnachandra Lamghare

Abstract:

The cardiothoracic ratio (CTR) is the ratio of the diameter of the heart to the diameter of the thorax. An abnormal CTR, that is, a value greater than 0.55, is often an indicator of an underlying pathological condition. The accurate prediction of an abnormal CTR from chest X-rays (CXRs) aids in the early diagnosis of clinical conditions. We propose a deep learning-based model for automatic CTR calculation that can assist the radiologist with the diagnosis of cardiomegaly and optimize the radiology flow. The study population included 1012 posteroanterior (PA) CXRs from a single institution. The Attention U-Net deep learning (DL) architecture was used for the automatic calculation of CTR. A CTR of 0.55 was used as a cut-off to categorize the condition as cardiomegaly present or absent. An observer performance test was conducted to assess the radiologist's performance in diagnosing cardiomegaly with and without artificial intelligence (AI) assistance. The Attention U-Net model was highly specific in calculating the CTR. The model exhibited a sensitivity of 0.80 [95% CI: 0.75, 0.85], precision of 0.99 [95% CI: 0.98, 1], and a F1 score of 0.88 [95% CI: 0.85, 0.91]. During the analysis, we observed that 51 out of 1012 samples were misclassified by the model when compared to annotations made by the expert radiologist. We further observed that the sensitivity of the reviewing radiologist in identifying cardiomegaly increased from 40.50% to 88.4% when aided by the AI-generated CTR. Our segmentation-based AI model demonstrated high specificity and sensitivity for CTR calculation. The performance of the radiologist on the observer performance test improved significantly with AI assistance. A DL-based segmentation model for rapid quantification of CTR can therefore have significant potential to be used in clinical workflows.

Keywords: cardiomegaly, deep learning, chest radiograph, artificial intelligence, cardiothoracic ratio

Procedia PDF Downloads 98
33970 Effect of Facilitation in a Problem-Based Environment on the Metacognition, Motivation and Self-Directed Learning in Nursing: A Quasi-Experimental Study among Nurse Students in Tanzania

Authors: Walter M. Millanzi, Stephen M. Kibusi

Abstract:

Background: Currently, there has been a progressive shortage not only to the number but also the quality of medical practitioners for the most of nursing. Despite that, those who are present exhibit unethical and illegal practices, under standard care and malpractices. The concern is raised in the ways they are prepared, or there might be something missing in nursing curricula or how it is delivered. There is a need for transforming or testing new teaching modalities to enhance competent health workforces. Objective: to investigate the Effect of Facilitation in a Problem-based Environment (FPBE) on metacognition, self-directed learning and learning motivation to undergraduate nurse student in Tanzanian higher learning institutions. Methods: quasi-experimental study (quantitative research approach). A purposive sampling technique was employed to select institutions and achieving a sample size of 401 participants (interventional = 134 and control = 267). Self-administered semi-structured questionnaire; was the main data collection methods and the Statistical Package for Service Solution (v. 20) software program was used for data entry, data analysis, and presentations. Results: The pre-post test results between groups indicated noticeably significant change on metacognition in an intervention (M = 1.52, SD = 0.501) against the control (M = 1.40, SD = 0.490), t (399) = 2.398, p < 0.05). SDL in an intervention (M = 1.52, SD = 0.501) against the control (M = 1.40, SD = 0.490), t (399) = 2.398, p < 0.05. Motivation to learn in an intervention (M = 62.67, SD = 14.14) and the control (n = 267, M = 57.75), t (399) = 2.907, p < 0.01). A FPBE teaching pedagogy, was observed to be effective on the metacognition (AOR = 1.603, p < 0.05), SDL (OR = 1.729, p < 0.05) and Intrinsic motivation in learning (AOR = 1.720, p < 0.05) against conventional teaching pedagogy. Needless, was less likely to enhance Extrinsic motivation (AOR = 0.676, p > 0.05) and Amotivation (AOR = 0.538, p > 0.05). Conclusion and recommendation: FPBE teaching pedagogy, can improve student’s metacognition, self-directed learning and intrinsic motivation to learn among nurse students. Nursing curricula developers should incorporate it to produce 21st century competent and qualified nurses.

Keywords: facilitation, metacognition, motivation, self-directed

Procedia PDF Downloads 189
33969 Streamlining Cybersecurity Risk Assessment for Industrial Control and Automation Systems: Leveraging the National Institute of Standard and Technology’s Risk Management Framework (RMF) Using Model-Based System Engineering (MBSE)

Authors: Gampel Alexander, Mazzuchi Thomas, Sarkani Shahram

Abstract:

The cybersecurity landscape is constantly evolving, and organizations must adapt to the changing threat environment to protect their assets. The implementation of the NIST Risk Management Framework (RMF) has become critical in ensuring the security and safety of industrial control and automation systems. However, cybersecurity professionals are facing challenges in implementing RMF, leading to systems operating without authorization and being non-compliant with regulations. The current approach to RMF implementation based on business practices is limited and insufficient, leaving organizations vulnerable to cyberattacks resulting in the loss of personal consumer data and critical infrastructure details. To address these challenges, this research proposes a Model-Based Systems Engineering (MBSE) approach to implementing cybersecurity controls and assessing risk through the RMF process. The study emphasizes the need to shift to a modeling approach, which can streamline the RMF process and eliminate bloated structures that make it difficult to receive an Authorization-To-Operate (ATO). The study focuses on the practical application of MBSE in industrial control and automation systems to improve the security and safety of operations. It is concluded that MBSE can be used to solve the implementation challenges of the NIST RMF process and improve the security of industrial control and automation systems. The research suggests that MBSE provides a more effective and efficient method for implementing cybersecurity controls and assessing risk through the RMF process. The future work for this research involves exploring the broader applicability of MBSE in different industries and domains. The study suggests that the MBSE approach can be applied to other domains beyond industrial control and automation systems.

Keywords: authorization-to-operate (ATO), industrial control systems (ICS), model-based system’s engineering (MBSE), risk management framework (RMF)

Procedia PDF Downloads 95
33968 Effect of Cooperative Learning Strategy on Mathematics Achievement and Retention of Senior Secondary School Students of Different Ability Levels in Taraba State, Nigeria

Authors: Onesimus Bulus Shiaki

Abstract:

The study investigated the effect of cooperative learning strategy on mathematics achievement and retention among senior secondary school students of different abilities in Taraba State Nigeria. Cooperative learning strategy could hopefully contribute to students’ achievement which will spur the teachers to develop strategies for better learning. The quasi-experimental of pretest, posttest and control group design was adopted in this study. A sample of one hundred and sixty-four (164) Senior Secondary Two (SS2) students were selected from a population of twelve thousand, eight hundred and seventy-three (12,873) SS2 Students in Taraba State. Two schools with equivalent mean scores in the pre-test were randomly assigned to experimental and control groups. The experimental group students were stratified according to ability levels of low, medium and high. The experimental group was guided by the research assistants using the cooperative learning instructional package. After six weeks post-test was administered to the two groups while the retention test was administered two weeks after the post-test. The researcher developed a 50-item Mathematics Achievement Test (MAT) which was validated by experts obtaining the reliability coefficient of 0.87. Mean scores and standard deviations were used to answer the research questions while the Analysis of Co-variance (ANCOVA) was used to test the hypotheses. Major findings from the statistical analysis showed that cooperative learning strategy has a significant effect on the mean achievement of students as well as retention among students of high, medium and low ability in mathematics. However, cooperative learning strategy has no effect on the interaction of ability level and retention. Based on the results obtained, it was therefore recommended that the adoption of the use of cooperative learning strategy in the teaching and learning of mathematics in senior secondary schools be initiated, maintained and sustained for the benefit of senior secondary school students in Taraba State. Periodic Government sponsored in-service training in form of long vacation training programme, workshops, conferences and seminars on the nature, scope, and use of cooperative learning strategy should be organized for senior secondary school mathematics teachers in Taraba state.

Keywords: ability level, cooperative learning, mathematics achievement, retention

Procedia PDF Downloads 161
33967 Investigation of Learning Challenges in Building Measurement Unit

Authors: Argaw T. Gurmu, Muhammad N. Mahmood

Abstract:

The objective of this research is to identify the architecture and construction management students’ learning challenges of the building measurement. This research used the survey data obtained collected from the students who completed the building measurement unit. NVivo qualitative data analysis software was used to identify relevant themes. The analysis of the qualitative data revealed the major learning difficulties such as inadequacy of practice questions for the examination, inability to work as a team, lack of detailed understanding of the prerequisite units, insufficiency of the time allocated for tutorials and incompatibility of lecture and tutorial schedules. The output of this research can be used as a basis for improving the teaching and learning activities in construction measurement units.

Keywords: building measurement, construction management, learning challenges, evaluate survey

Procedia PDF Downloads 138
33966 Play in College: Shifting Perspectives and Creative Problem-Based Play

Authors: Agni Stylianou-Georgiou, Eliza Pitri

Abstract:

This study is a design narrative that discusses researchers’ new learning based on changes made in pedagogies and learning opportunities in the context of a Cognitive Psychology and an Art History undergraduate course. The purpose of this study was to investigate how to encourage creative problem-based play in tertiary education engaging instructors and student-teachers in designing educational games. Course instructors modified content to encourage flexible thinking during game design problem-solving. Qualitative analyses of data sources indicated that Thinking Birds’ questions could encourage flexible thinking as instructors engaged in creative problem-based play. However, student-teachers demonstrated weakness in adopting flexible thinking during game design problem solving. Further studies of student-teachers’ shifting perspectives during different instructional design tasks would provide insights for developing the Thinking Birds’ questions as tools for creative problem solving.

Keywords: creative problem-based play, educational games, flexible thinking, tertiary education

Procedia PDF Downloads 291
33965 Analysis of Changes in Land Uses Planning for Bangalore City as per Master Plans

Authors: Minakshi Goswami, M. V. Khire

Abstract:

The urban land use is an outcome of geographical and socio economic factors over the decades. Hence, spatial information on land use and possibilities of alternate use is essential for the selection, planning and implementation to meet the increasing demands of human needs and welfare of the urban area. This information assists in monitoring the land use resulting out of charging demands of increasing urban population over the decades. So in this paper, a detailed work on urban land use pattern, with a special reference to build up land in Bangalore city is analyzed in view of the various master plans from 1975to 2011. An attempt has been made to study the status of urban land use of Bangalore city during this period to detect the changes on land utilization rate that has taken place in each master plan period, particularly in the built-up land. The set of measures taken by the city corporation to contain the problems regarding the extremely bothering existing land use in Bangalore city is analyzed.

Keywords: built up land, land use changes, master plan, population

Procedia PDF Downloads 463
33964 GIS-Based Topographical Network for Minimum “Exertion” Routing

Authors: Katherine Carl Payne, Moshe Dror

Abstract:

The problem of minimum cost routing has been extensively explored in a variety of contexts. While there is a prevalence of routing applications based on least distance, time, and related attributes, exertion-based routing has remained relatively unexplored. In particular, the network structures traditionally used to construct minimum cost paths are not suited to representing exertion or finding paths of least exertion based on road gradient. In this paper, we introduce a topographical network or “topograph” that enables minimum cost routing based on the exertion metric on each arc in a given road network as it is related to changes in road gradient. We describe an algorithm for topograph construction and present the implementation of the topograph on a road network of the state of California with ~22 million nodes.

Keywords: topograph, RPE, routing, GIS

Procedia PDF Downloads 546
33963 A Risk Assessment Tool for the Contamination of Aflatoxins on Dried Figs Based on Machine Learning Algorithms

Authors: Kottaridi Klimentia, Demopoulos Vasilis, Sidiropoulos Anastasios, Ihara Diego, Nikolaidis Vasileios, Antonopoulos Dimitrios

Abstract:

Aflatoxins are highly poisonous and carcinogenic compounds produced by species of the genus Aspergillus spp. that can infect a variety of agricultural foods, including dried figs. Biological and environmental factors, such as population, pathogenicity, and aflatoxinogenic capacity of the strains, topography, soil, and climate parameters of the fig orchards, are believed to have a strong effect on aflatoxin levels. Existing methods for aflatoxin detection and measurement, such as high performance liquid chromatography (HPLC), and enzyme-linked immunosorbent assay (ELISA), can provide accurate results, but the procedures are usually time-consuming, sample-destructive, and expensive. Predicting aflatoxin levels prior to crop harvest is useful for minimizing the health and financial impact of a contaminated crop. Consequently, there is interest in developing a tool that predicts aflatoxin levels based on topography and soil analysis data of fig orchards. This paper describes the development of a risk assessment tool for the contamination of aflatoxin on dried figs, based on the location and altitude of the fig orchards, the population of the fungus Aspergillus spp. in the soil, and soil parameters such as pH, saturation percentage (SP), electrical conductivity (EC), organic matter, particle size analysis (sand, silt, clay), the concentration of the exchangeable cations (Ca, Mg, K, Na), extractable P, and trace of elements (B, Fe, Mn, Zn and Cu), by employing machine learning methods. In particular, our proposed method integrates three machine learning techniques, i.e., dimensionality reduction on the original dataset (principal component analysis), metric learning (Mahalanobis metric for clustering), and k-nearest neighbors learning algorithm (KNN), into an enhanced model, with mean performance equal to 85% by terms of the Pearson correlation coefficient (PCC) between observed and predicted values.

Keywords: aflatoxins, Aspergillus spp., dried figs, k-nearest neighbors, machine learning, prediction

Procedia PDF Downloads 184
33962 Coding of RMAC and Its Theoretical and Simulation-Based Performance Comparison with SMAC

Authors: Hamida Qumber Ali, Waseem Muhammad Arain, Shama Siddiqui, Sayeed Ghani

Abstract:

We present an implementing of RMAC in TinyOS 1.x. RMAC is a cross layer and Duty-cycle MAC protocols that was proposed to provide energy efficient transmission services for wireless sensor networks. The protocol has a unique and efficient packet transmission scheduling mechanism that enables it to overcome delivery latency and overcome traffic congestion. Design details and implementation challenges are divulged. Experiments are conducted to show the correctness of our implementation with numerous assumptions. Simulations are performed to compare the performance of RMAC and SMAC. Our results show that RMAC outperforms SMAC in energy efficiency and delay.

Keywords: MAC protocol, performance, RMAC, wireless sensor networks

Procedia PDF Downloads 325
33961 The Relationships among Learning Emotion, Major Satisfaction, Learning Flow, and Academic Achievement in Medical School Students

Authors: S. J. Yune, S. Y. Lee, S. J. Im, B. S. Kam, S. Y. Baek

Abstract:

This study explored whether academic emotion, major satisfaction, and learning flow are associated with academic achievement in medical school. We know that emotion and affective factors are important factors in students' learning and performance. Emotion has taken the stage in much of contemporary educational psychology literature, no longer relegated to secondary status behind traditionally studied cognitive constructs. Medical school students (n=164) completed academic emotion, major satisfaction, and learning flow online survey. Academic performance was operationalized as students' average grade on two semester exams. For data analysis, correlation analysis, multiple regression analysis, hierarchical multiple regression analyses and ANOVA were conducted. The results largely confirmed the hypothesized relations among academic emotion, major satisfaction, learning flow and academic achievement. Positive academic emotion had a correlation with academic achievement (β=.191). Positive emotion had 8.5% explanatory power for academic achievement. Especially, sense of accomplishment had a significant impact on learning performance (β=.265). On the other hand, negative emotion, major satisfaction, and learning flow did not affect academic performance. Also, there were differences in sense of great (F=5.446, p=.001) and interest (F=2.78, p=.043) among positive emotion, boredom (F=3.55, p=.016), anger (F=4.346, p=.006), and petulance (F=3.779, p=.012) among negative emotion by grade. This study suggested that medical students' positive emotion was an important contributor to their academic achievement. At the same time, it is important to consider that some negative emotions can act to increase one’s motivation. Of particular importance is the notion that instructors can and should create learning environment that foster positive emotion for students. In doing so, instructors improve their chances of positively impacting students’ achievement emotions, as well as their subsequent motivation, learning, and performance. This result had an implication for medical educators striving to understand the personal emotional factors that influence learning and performance in medical training.

Keywords: academic achievement, learning emotion, learning flow, major satisfaction

Procedia PDF Downloads 273
33960 Competency Based Talent Acquisition: Concept, Practice, and Model, with Reference to Indian Industries

Authors: Manasi V. Shah

Abstract:

Organizations, in the competitive era, are participating in the competency act. They have discerned that, strategically researched and defined competencies when put up on the shelf, can help in achieving business goals. The research focuses on critical elements of competency-based talent acquisition process from practical vantage, with significant experience in a variety of business settings. The research is exploratory and descriptive in nature. The research conduct and outcome is the hinge on with reference to Indian Industries. It elaborates about the concept, practice and a brief model that human resource practitioner can use for effective talent acquisition process, which in turn would be in alignment with business performance. The research helps to present a prudent understanding of recruiting and selecting apt human capital, that can fit in a given job role and has action oriented competency based assessment approach for measuring the probable success of a job incumbent in a given job role.

Keywords: competency based talent acquisition, competency model, talent acquisition concept, talent acquisition practice

Procedia PDF Downloads 312
33959 Groundwater Potential Delineation Using Geodetector Based Convolutional Neural Network in the Gunabay Watershed of Ethiopia

Authors: Asnakew Mulualem Tegegne, Tarun Kumar Lohani, Abunu Atlabachew Eshete

Abstract:

Groundwater potential delineation is essential for efficient water resource utilization and long-term development. The scarcity of potable and irrigation water has become a critical issue due to natural and anthropogenic activities in meeting the demands of human survival and productivity. With these constraints, groundwater resources are now being used extensively in Ethiopia. Therefore, an innovative convolutional neural network (CNN) is successfully applied in the Gunabay watershed to delineate groundwater potential based on the selected major influencing factors. Groundwater recharge, lithology, drainage density, lineament density, transmissivity, and geomorphology were selected as major influencing factors during the groundwater potential of the study area. For dataset training, 70% of samples were selected and 30% were used for serving out of the total 128 samples. The spatial distribution of groundwater potential has been classified into five groups: very low (10.72%), low (25.67%), moderate (31.62%), high (19.93%), and very high (12.06%). The area obtains high rainfall but has a very low amount of recharge due to a lack of proper soil and water conservation structures. The major outcome of the study showed that moderate and low potential is dominant. Geodetoctor results revealed that the magnitude influences on groundwater potential have been ranked as transmissivity (0.48), recharge (0.26), lineament density (0.26), lithology (0.13), drainage density (0.12), and geomorphology (0.06). The model results showed that using a convolutional neural network (CNN), groundwater potentiality can be delineated with higher predictive capability and accuracy. CNN-based AUC validation platform showed that 81.58% and 86.84% were accrued from the accuracy of training and testing values, respectively. Based on the findings, the local government can receive technical assistance for groundwater exploration and sustainable water resource development in the Gunabay watershed. Finally, the use of a detector-based deep learning algorithm can provide a new platform for industrial sectors, groundwater experts, scholars, and decision-makers.

Keywords: CNN, geodetector, groundwater influencing factors, Groundwater potential, Gunabay watershed

Procedia PDF Downloads 22
33958 Investigating Secondary Students’ Attitude towards Learning English

Authors: Pinkey Yaqub

Abstract:

The aim of this study was to investigate secondary (grades IX and X) students’ attitudes towards learning the English language based on the medium of instruction of the school, the gender of the students and the grade level in which they studied. A further aim was to determine students’ proficiency in the English language according to their gender, the grade level and the medium of instruction of the school. A survey was used to investigate the attitudes of secondary students towards English language learning. Simple random sampling was employed to obtain a representative sample of the target population for the research study as a comprehensive list of established English medium schools, and newly established English medium schools were available. A questionnaire ‘Attitude towards English Language Learning’ (AtELL) was adapted from a research study on Libyan secondary school students’ attitudes towards learning English language. AtELL was reviewed by experts (n=6) and later piloted on a representative sample of secondary students (n= 160). Subsequently, the questionnaire was modified - based on the reviewers’ feedback and lessons learnt during the piloting phase - and directly administered to students of grades 9 and 10 to gather information regarding their attitudes towards learning the English language. Data collection spanned a month and a half. As the data were not normally distributed, the researcher used Mann-Whitney tests to test the hypotheses formulated to investigate students’ attitudes towards learning English as well as proficiency in the language across the medium of instruction of the school, the gender of the students and the grade level of the respondents. Statistical analyses of the data showed that the students of established English medium schools exhibited a positive outlook towards English language learning in terms of the behavioural, cognitive and emotional aspects of attitude. A significant difference was observed in the attitudes of male and female students towards learning English where females showed a more positive attitude in terms of behavioural, cognitive and emotional aspects as compared to their male counterparts. Moreover, grade 10 students had a more positive attitude towards learning English language in terms of behavioural, cognitive and emotional aspects as compared to grade 9 students. Nonetheless, students of newly established English medium schools were more proficient in English as gauged by their examination scores in this subject as compared to their counterparts studying in established English medium schools. Moreover, female students were more proficient in English while students studying in grade 9 were less proficient in English than their seniors studying in grade 10. The findings of this research provide empirical evidence to future researchers wishing to explore the relationship between attitudes towards learning language and variables such as the medium of instruction of the school, gender and the grade level of the students. Furthermore, policymakers might revisit the English curriculum to formulate specific guidelines that promote a positive and gender-balanced outlook towards learning English for male and female students.

Keywords: attitude, behavioral aspect of attitude, cognitive aspect of attitude, emotional aspect of attitude

Procedia PDF Downloads 228
33957 A Framework of Dynamic Rule Selection Method for Dynamic Flexible Job Shop Problem by Reinforcement Learning Method

Authors: Rui Wu

Abstract:

In the volatile modern manufacturing environment, new orders randomly occur at any time, while the pre-emptive methods are infeasible. This leads to a real-time scheduling method that can produce a reasonably good schedule quickly. The dynamic Flexible Job Shop problem is an NP-hard scheduling problem that hybrid the dynamic Job Shop problem with the Parallel Machine problem. A Flexible Job Shop contains different work centres. Each work centre contains parallel machines that can process certain operations. Many algorithms, such as genetic algorithms or simulated annealing, have been proposed to solve the static Flexible Job Shop problems. However, the time efficiency of these methods is low, and these methods are not feasible in a dynamic scheduling problem. Therefore, a dynamic rule selection scheduling system based on the reinforcement learning method is proposed in this research, in which the dynamic Flexible Job Shop problem is divided into several parallel machine problems to decrease the complexity of the dynamic Flexible Job Shop problem. Firstly, the features of jobs, machines, work centres, and flexible job shops are selected to describe the status of the dynamic Flexible Job Shop problem at each decision point in each work centre. Secondly, a framework of reinforcement learning algorithm using a double-layer deep Q-learning network is applied to select proper composite dispatching rules based on the status of each work centre. Then, based on the selected composite dispatching rule, an available operation is selected from the waiting buffer and assigned to an available machine in each work centre. Finally, the proposed algorithm will be compared with well-known dispatching rules on objectives of mean tardiness, mean flow time, mean waiting time, or mean percentage of waiting time in the real-time Flexible Job Shop problem. The result of the simulations proved that the proposed framework has reasonable performance and time efficiency.

Keywords: dynamic scheduling problem, flexible job shop, dispatching rules, deep reinforcement learning

Procedia PDF Downloads 108
33956 Purpose-Driven Collaborative Strategic Learning

Authors: Mingyan Hong, Shuozhao Hou

Abstract:

Collaborative Strategic Learning (CSL) teaches students to use learning strategies while working cooperatively. Student strategies include the following steps: defining the learning task and purpose; conducting ongoing negotiation of the learning materials by deciding "click" (I get it and I can teach it – green card, I get it –yellow card) or "clunk" (I don't get it – red card) at the end of each learning unit; "getting the gist" of the most important parts of the learning materials; and "wrapping up" key ideas. Find out how to help students of mixed achievement levels apply learning strategies while learning content area in materials in small groups. The design of CSL is based on social-constructivism and Vygotsky’s best-known concept of the Zone of Proximal Development (ZPD). The definition of ZPD is the distance between the actual acquisition level as decided by individual problem solution case and the level of potential acquisition level, similar to Krashen (1980)’s i+1, as decided through the problem-solution case under the facilitator’s guidance, or in group work with other more capable members (Vygotsky, 1978). Vygotsky claimed that learners’ ideal learning environment is in the ZPD. An ideal teacher or more-knowledgable-other (MKO) should be able to recognize a learner’s ZPD and facilitates them to develop beyond it. Then the MKO is able to leave the support step by step until the learner can perform the task without aid. Steven Krashen (1980) proposed Input hypothesis including i+1 hypothesis. The input hypothesis models are the application of ZPD in second language acquisition and have been widely recognized until today. Krashen (2019)’s optimal language learning environment (2019) further developed the application of ZPD and added the component of strategic group learning. The strategic group learning is composed of desirable learning materials learners are motivated to learn and desirable group members who are more capable and are therefore able to offer meaningful input to the learners. Purpose-driven Collaborative Strategic Learning Model is a strategic integration of ZPD, i+1 hypothesis model, and Optimal Language Learning Environment Model. It is purpose driven to ensure group members are motivated. It is collaborative so that an optimal learning environment where meaningful input from meaningful conversation can be generated. It is strategic because facilitators in the model strategically assign each member a meaningful and collaborative role, e.g., team leader, technician, problem solver, appraiser, offer group learning instrument so that the learning process is structured, and integrate group learning and team building making sure holistic development of each participant. Using data collected from college year one and year two students’ English courses, this presentation will demonstrate how purpose-driven collaborative strategic learning model is implemented in the second/foreign language classroom, using the qualitative data from questionnaire and interview. Particular, this presentation will show how second/foreign language learners grow from functioning with facilitator or more capable peer’s aid to performing without aid. The implication of this research is that purpose-driven collaborative strategic learning model can be used not only in language learning, but also in any subject area.

Keywords: collaborative, strategic, optimal input, second language acquisition

Procedia PDF Downloads 127
33955 Self-Reliant Peer Learning for Nursing Students

Authors: U.-B. Schaer, M. Wehr, R. Hodler

Abstract:

Background: Most nursing students require more training time for necessary nursing skills than defined by nursing schools curriculum to acquire basic nursing skills. Given skills training lessons are too brief to enable effective student learning, meaning in-depth skills practice and repetition various learning steps. This increases stress levels and the pressure to succeed for a nursing student with slower learning capabilities. Another possible consequence is that nursing students are less prepared in the required skills for future clinical practice. Intervention: The Bern College of Higher Education of Nursing, Switzerland, started the independent peer practice learning program in 2012. A concept was developed which defines specific aims and content as well as student’s rights and obligations. Students enlist beforehand and order the required materials. They organize themselves and train in small groups in allocated training location in the area of Learning Training and Transfer (LTT). During the peer practice, skills and knowledge can be repeatedly trained and reflected in the peer groups without the presence of a tutor. All invasive skills are practiced only on teaching dummies. This allows students to use all their potential. The students may access learning materials as literature and their own student notes. This allows nursing students to practice their skills and to deepen their knowledge on corresponding with their own learning rate. Results: Peer group discussions during the independent peer practice learning support the students in gaining certainty and confidence in their knowledge and skills. This may improve patient safety in future daily care practice. Descriptive statics show that the number of students who take advantage of the independent peer practice learning increased continuously (2012-2018). It has to be mentioned that in 2012, solely students of the first semester attended the independent peer practice learning program, while in 2018 over one-third of the participating students were in their fifth semester and final study year. It is clearly visible that the demand for independent peer practice learning is increasing. This has to be considered in the development of future teaching curricula.

Keywords: learning program, nursing students, peer learning, skill training

Procedia PDF Downloads 121
33954 Potassium-Phosphorus-Nitrogen Detection and Spectral Segmentation Analysis Using Polarized Hyperspectral Imagery and Machine Learning

Authors: Nicholas V. Scott, Jack McCarthy

Abstract:

Military, law enforcement, and counter terrorism organizations are often tasked with target detection and image characterization of scenes containing explosive materials in various types of environments where light scattering intensity is high. Mitigation of this photonic noise using classical digital filtration and signal processing can be difficult. This is partially due to the lack of robust image processing methods for photonic noise removal, which strongly influence high resolution target detection and machine learning-based pattern recognition. Such analysis is crucial to the delivery of reliable intelligence. Polarization filters are a possible method for ambient glare reduction by allowing only certain modes of the electromagnetic field to be captured, providing strong scene contrast. An experiment was carried out utilizing a polarization lens attached to a hyperspectral imagery camera for the purpose of exploring the degree to which an imaged polarized scene of potassium, phosphorus, and nitrogen mixture allows for improved target detection and image segmentation. Preliminary imagery results based on the application of machine learning algorithms, including competitive leaky learning and distance metric analysis, to polarized hyperspectral imagery, suggest that polarization filters provide a slight advantage in image segmentation. The results of this work have implications for understanding the presence of explosive material in dry, desert areas where reflective glare is a significant impediment to scene characterization.

Keywords: explosive material, hyperspectral imagery, image segmentation, machine learning, polarization

Procedia PDF Downloads 142
33953 A Meta Analysis of the Recent Work-Related Research of BEC-Teachers in the Graduate Programs of the Selected HEIs in Region I and CAR

Authors: Sherelle Lou Sumera Icutan, Sheila P. Cayabyab, Mary Jane Laruan, Paulo V. Cenas, Agustina R. Tactay

Abstract:

This study critically analyzed the recent theses and dissertations of the Basic Education Curriculum (BEC) teachers who finished their graduate programs in selected higher educational institutions in Region I and CAR to be able to come up with a unified result from the varied results of the analyzed research works. All theses and dissertations completed by the educators/teachers/school personnel in the secondary and elementary public and private schools in Region 1 and CAR from AY 2003–2004 to AY 2007–2008 were classified first–as to work or non-work related; second–as to the different aspects of the curriculum: implementation, content, instructional materials, assessment instruments, learning, teaching, and others; third–as to being eligible for meta-analysis or not. Only studies found eligible for meta-analysis were subjected to the procedure. Aside from documentary analysis, the statistical treatments used in meta-analysis include the standardized effect size, Pearson’s correlation (r), the chi-square test of homogeneity and the inverse of the Fisher transformation. This study found out that the BEC-teachers usually probe on work-related researchers with topics that are focused on the learning performances of the students and on factors related to teaching. The development of instructional materials and assessment of implemented programs are also equally explored. However, there are only few researches on content and assessment instrument. Research findings on the areas of learning and teaching are the only aspects that are meta-analyzable. The research findings across studies in Region I and CAR of BEC teachers that focused on similar variables correlated to teaching do not vary significantly. On the contrary, research findings across studies in Region I and CAR that focused on variables correlated to learning performance significantly vary. Within each region, variations on the findings of research works related to learning performance that considered similar variables still exist. The combined finding on the effect size or relationship of the variables that are correlated to learning performance are low which means that effect is small but definite while the combined findings on the relationship of the variables correlated to teaching are slight or almost negligible.

Keywords: meta-analysis, BEC teachers, work-related research,

Procedia PDF Downloads 427
33952 Implementing Internet of Things through Building Information Modelling in Order to Assist with the Maintenance Stage of Commercial Buildings

Authors: Ushir Daya, Zenadene Lazarus, Dimelle Moodley, Ehsan Saghatforoush

Abstract:

It was found through literature that there is a lack of implementation of the Internet of Things (IoT) incorporated into Building Information Modelling (BIM) in South Africa. The research aims to find if the implementation of IoT into BIM will make BIM more useful during the maintenance stage of buildings and assist facility managers when doing their job. The research will look at the existing problematic areas with building information modelling, specifically BIM 7D. This paper will look at the capabilities of IoT and what issues IoT will be able to resolve in BIM software, as well as how IoT into BIM will assist facility managers and if such an implementation will make a facility manager's job more efficient.

Keywords: internet of things, building information modeling, facilities management, structural health monitoring

Procedia PDF Downloads 208
33951 A Study on the Strategy of Pocket Park in the Renewal of Old City in China

Authors: Xian Chen

Abstract:

In recent years, the tendency that the decline of material and social vitality of old city in China becomes more and more serious. Nowadays, transformation and renewal of the old city have become a hot topic in urban research. The traditional mode of large-scale promotion has been criticized. Thus, exploration of new ways to update the city turns to be a necessity on the way of sustainable urban development. Pocket Park is a small city open space, its location choose is based on abandoned or idle lands on urban structure, is scattered or hidden in corner of the urban. It has a great significance on improving the old city environment. Based on the theory of ‘pocket park’, this paper summarizes the successful experience of domestic and foreign practice, and discusses the update strategies which are suitable for China's national conditions according to the characteristics and predicament of the old city in China. The main methods and results are as follows: 1)Based on the conception of ‘pocket park’, though describing the research status in domestic and foreign, summarizing the experience which is worth learning and existing problems. 2) From the analysis of ‘pocket park’ function, general design principles and types of the deep-seated difficulties in renewal the old city and the possibility of the application of ‘pocket park’,the varied implementation of ‘pocket park’ form are established, and application value in the old city renewal are summed up. 3) It can’t be denied that pocket park plays an irreplaceable role in solving the recession and renewing the vitality of the old city. Anymore, It is recommended to develop corresponding supportive development policies.

Keywords: sustainable development, strategy, old city renewal, pocket park

Procedia PDF Downloads 350
33950 Variable Refrigerant Flow (VRF) Zonal Load Prediction Using a Transfer Learning-Based Framework

Authors: Junyu Chen, Peng Xu

Abstract:

In the context of global efforts to enhance building energy efficiency, accurate thermal load forecasting is crucial for both device sizing and predictive control. Variable Refrigerant Flow (VRF) systems are widely used in buildings around the world, yet VRF zonal load prediction has received limited attention. Due to differences between VRF zones in building-level prediction methods, zone-level load forecasting could significantly enhance accuracy. Given that modern VRF systems generate high-quality data, this paper introduces transfer learning to leverage this data and further improve prediction performance. This framework also addresses the challenge of predicting load for building zones with no historical data, offering greater accuracy and usability compared to pure white-box models. The study first establishes an initial variable set of VRF zonal building loads and generates a foundational white-box database using EnergyPlus. Key variables for VRF zonal loads are identified using methods including SRRC, PRCC, and Random Forest. XGBoost and LSTM are employed to generate pre-trained black-box models based on the white-box database. Finally, real-world data is incorporated into the pre-trained model using transfer learning to enhance its performance in operational buildings. In this paper, zone-level load prediction was integrated with transfer learning, and a framework was proposed to improve the accuracy and applicability of VRF zonal load prediction.

Keywords: zonal load prediction, variable refrigerant flow (VRF) system, transfer learning, energyplus

Procedia PDF Downloads 28
33949 Multi-Perspective Learning in a Real Production Plant Using Experiential Learning in Heterogeneous Groups to Develop System Competencies for Production System Improvements

Authors: Marlies Achenbach

Abstract:

System competencies play a key role to ensure an effective and efficient improvement of production systems. Thus, there can be observed an increasing demand for developing system competencies in industry as well as in engineering education. System competencies consist of the following two main abilities: Evaluating the current state of a production system and developing a target state. The innovative course ‘multi-perspective learning in a real production plant (multi real)’ is developed to create a learning setting that supports the development of these system competencies. Therefore, the setting combines two innovative aspects: First, the Learning takes place in heterogeneous groups formed by students as well as professionals and managers from industry. Second, the learning takes place in a real production plant. This paper presents the innovative didactic concept of ‘multi real’ in detail, which will initially be implemented in October/November 2016 in the industrial engineering, logistics and mechanical master’s program at TU Dortmund University.

Keywords: experiential learning, heterogeneous groups, improving production systems, system competencies

Procedia PDF Downloads 426
33948 Identifying the Mindset of Deaf Benildean Students in Learning Anatomy and Physiology

Authors: Joanne Rieta Miranda

Abstract:

Learning anatomy and physiology among Deaf Non-Science major students is a challenge. They have this mindset that Anatomy and Physiology are difficult and very technical. In this study, nine (9) deaf students who are business majors were considered. Non-conventional teaching strategies and classroom activities were employed such as cooperative learning, virtual lab, Facebook live, big sky, blood typing, mind mapping, reflections, etc. Of all the activities; the deaf students ranked cooperative learning as the best learning activity. This is where they played doctors. They measured the pulse rate, heart rate and blood pressure of their partner classmate. In terms of mindset, 2 out of 9 students have a growth mindset with some fixed ideas while 7 have a fixed mindset with some growth ideas. All the students passed the course. Three out of nine students got a grade of 90% and above. The teacher was evaluated by the deaf students as very satisfactory with a mean score of 3.54. This means that the learner-centered practices in the classroom are manifested to a great extent.

Keywords: deaf students, learning anatomy and physiology, teaching strategies, learner-entered practices

Procedia PDF Downloads 231
33947 Differentiated Instruction for All Learners: Strategies for Full Inclusion

Authors: Susan Dodd

Abstract:

This presentation details the methodology for teachers to identify and support a population of students who have historically been overlooked in regards to their educational needs. The twice exceptional (2e) student is a learner who is considered gifted and also has a learning disability, as defined by the Individuals with Disabilities Education Act (IDEA). Many of these students remain underserved throughout their educational careers because their exceptionalities may mask each other, resulting in a special population of students who are not achieving to their fullest potential. There are three common scenarios that may make the identification of a 2e student challenging. First, the student may have been identified as gifted, and her disability may go unnoticed. She could also be considered an under-achiever, or she may be able to compensate for her disability under the school works becomes more challenging. In the second scenario, the student may be identified as having a learning disability and is only receiving remedial services where his giftedness will not be highlighted. His overall IQ scores may be misleading because they were impacted by his learning disability. In the third scenario, the student is able to compensate for her ability well enough to maintain average scores, and she goes undetected as both gifted and learning disabled. Research in the area identifies the complexity involved in identifying 2e students, and how multiple forms of assessment are required. It is important for teachers to be aware of the common characteristics exhibited by many 2e students, so these learners can be identified and appropriately served. Once 2e students have been identified, teachers are then challenged to meet the varying needs of these exceptional learners. Strength-based teaching entails simultaneously providing gifted instruction as well as individualized accommodations for those students. Research in this field has yielded strategies that have proven helpful for teaching 2e students, as well as other students who may be struggling academically. Differentiated instruction, while necessary in all classrooms, is especially important for 2e students, as is encouragement for academic success. Teachers who take the time to really know their students will have a better understanding of each student’s strengths and areas for growth, and therefore tailor instruction to extend the intellectual capacities for optimal achievement. Teachers should also understand that some learning activities can prove very frustrating to students, and these activities can be modified based on individual student needs. Because 2e students can often become discouraged by their learning challenges, it is especially important for teachers to assist students in recognizing their own strengths and maintaining motivation for learning. Although research on the needs of 2e students has spanned across two decades, this population remains underserved in many educational institutions. Teacher awareness of the identification of and the support strategies for 2e students is critical for their success.

Keywords: gifted, learning disability, special needs, twice exceptional

Procedia PDF Downloads 179