Search results for: data driven decision making
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30480

Search results for: data driven decision making

28770 Designing a Pre-Assessment Tool to Support the Achievement of Green Building Certifications

Authors: Jisun Mo, Paola Boarin

Abstract:

The impact of common buildings on climate and environment has prompted people to get involved in the green building standards aimed at implementing rating tools or certifications. Thus, green building rating systems were introduced to the construction industry, and the demand for certified green buildings has increased gradually and succeeded considerably in enhancing people’s environmental awareness. However, the existing certification process has been unsatisfactory in attracting stakeholders and/or professionals who are actively engaged in adopting a rating system. It is because they have faced recurring barriers regarding limited information in understanding the rating process, time-consuming procedures and higher costs, which have a direct influence on pursuing green building rating systems. To promote the achievement of green building certifications within the building industry more successfully, this paper aims at designing a Pre-Assessment Tool (PAT) framework that can help stakeholders and/or professionals engaged in the construction industry to clarify their basic knowledge, timeframe and extra costs needed to activate a green building certification. First, taking the first steps towards the rating tool seems to be complicated because of upfront commitment to understanding the overall rating procedure is required. This conceptual PAT framework can increase basic knowledge of the rating tool and the certification process, mainly in terms of all resources or information of each credit requirements. Second, the assessment process of rating tools is generally known as a “lengthy and time-consuming system”, contributing to unenthusiastic reactions concerning green building projects. The proposed framework can predict the timeframe needed to identify how long it will take for a green project to process each credit requirement and the documentation required from the beginning of the certification process to final approval. Finally, most people often have the initial perception that pursuing green building certification costs more than constructing a non-green building, which makes it more difficult to execute rating tools. To overcome this issue, this PAT will help users to estimate the extra expenses such as certification fees and third-party contributions based on the track of the amount of time it takes to implement the rating tool throughout all the related stages. Also, it can prevent unexpected or hidden costs occurring in the process of assessment. Therefore, this proposed PAT framework can be recommended as an effective method to support the decision-making of inexperienced users and play an important role in promoting green building certification.

Keywords: green building rating tools, Pre-Occupancy Evaluation (PrOE), client’s decision-making, certification

Procedia PDF Downloads 249
28769 Optimal Bayesian Control of the Proportion of Defectives in a Manufacturing Process

Authors: Viliam Makis, Farnoosh Naderkhani, Leila Jafari

Abstract:

In this paper, we present a model and an algorithm for the calculation of the optimal control limit, average cost, sample size, and the sampling interval for an optimal Bayesian chart to control the proportion of defective items produced using a semi-Markov decision process approach. Traditional p-chart has been widely used for controlling the proportion of defectives in various kinds of production processes for many years. It is well known that traditional non-Bayesian charts are not optimal, but very few optimal Bayesian control charts have been developed in the literature, mostly considering finite horizon. The objective of this paper is to develop a fast computational algorithm to obtain the optimal parameters of a Bayesian p-chart. The decision problem is formulated in the partially observable framework and the developed algorithm is illustrated by a numerical example.

Keywords: Bayesian control chart, semi-Markov decision process, quality control, partially observable process

Procedia PDF Downloads 321
28768 Modelling High-Frequency Crude Oil Dynamics Using Affine and Non-Affine Jump-Diffusion Models

Authors: Katja Ignatieva, Patrick Wong

Abstract:

We investigated the dynamics of high frequency energy prices, including crude oil and electricity prices. The returns of underlying quantities are modelled using various parametric models such as stochastic framework with jumps and stochastic volatility (SVCJ) as well as non-parametric alternatives, which are purely data driven and do not require specification of the drift or the diffusion coefficient function. Using different statistical criteria, we investigate the performance of considered parametric and nonparametric models in their ability to forecast price series and volatilities. Our models incorporate possible seasonalities in the underlying dynamics and utilise advanced estimation techniques for the dynamics of energy prices.

Keywords: stochastic volatility, affine jump-diffusion models, high frequency data, model specification, markov chain monte carlo

Procedia PDF Downloads 107
28767 Evolving Software Assessment and Certification Models Using Ant Colony Optimization Algorithm

Authors: Saad M. Darwish

Abstract:

Recently, software quality issues have come to be seen as important subject as we see an enormous growth of agencies involved in software industries. However, these agencies cannot guarantee the quality of their products, thus leaving users in uncertainties. Software certification is the extension of quality by means that quality needs to be measured prior to certification granting process. This research participates in solving the problem of software assessment by proposing a model for assessment and certification of software product that uses a fuzzy inference engine to integrate both of process–driven and application-driven quality assurance strategies. The key idea of the on hand model is to improve the compactness and the interpretability of the model’s fuzzy rules via employing an ant colony optimization algorithm (ACO), which tries to find good rules description by dint of compound rules initially expressed with traditional single rules. The model has been tested by case study and the results have demonstrated feasibility and practicability of the model in a real environment.

Keywords: software quality, quality assurance, software certification model, software assessment

Procedia PDF Downloads 525
28766 Development of a Decision Model to Optimize Total Cost in Food Supply Chain

Authors: Henry Lau, Dilupa Nakandala, Li Zhao

Abstract:

All along the length of the supply chain, fresh food firms face the challenge of managing both product quality, due to the perishable nature of the products, and product cost. This paper develops a method to assist logistics managers upstream in the fresh food supply chain in making cost optimized decisions regarding transportation, with the objective of minimizing the total cost while maintaining the quality of food products above acceptable levels. Considering the case of multiple fresh food products collected from multiple farms being transported to a warehouse or a retailer, this study develops a total cost model that includes various costs incurred during transportation. The practical application of the model is illustrated by using several computational intelligence approaches including Genetic Algorithms (GA), Fuzzy Genetic Algorithms (FGA) as well as an improved Simulated Annealing (SA) procedure applied with a repair mechanism for efficiency benchmarking. We demonstrate the practical viability of these approaches by using a simulation study based on pertinent data and evaluate the simulation outcomes. The application of the proposed total cost model was demonstrated using three approaches of GA, FGA and SA with a repair mechanism. All three approaches are adoptable; however, based on the performance evaluation, it was evident that the FGA is more likely to produce a better performance than the other two approaches of GA and SA. This study provides a pragmatic approach for supporting logistics and supply chain practitioners in fresh food industry in making important decisions on the arrangements and procedures related to the transportation of multiple fresh food products to a warehouse from multiple farms in a cost-effective way without compromising product quality. This study extends the literature on cold supply chain management by investigating cost and quality optimization in a multi-product scenario from farms to a retailer and, minimizing cost by managing the quality above expected quality levels at delivery. The scalability of the proposed generic function enables the application to alternative situations in practice such as different storage environments and transportation conditions.

Keywords: cost optimization, food supply chain, fuzzy sets, genetic algorithms, product quality, transportation

Procedia PDF Downloads 224
28765 Factors of Social Media Platforms on Consumer Behavior

Authors: Zebider Asire Munyelet, Yibeltal Chanie Manie

Abstract:

In the modern digital landscape, the increase of social media platforms has become identical to the evolution of online consumer behavior. This study investigates the complicated relationship between social media and the purchasing decisions of online buyers. Through an extensive review of existing literature and empirical research, the aim is to comprehensively analyze the multidimensional impact that social media exerts on the various stages of the online buyer's journey. The investigation encompasses the exploration of how social media platforms serve as influential channels for information dissemination, product discovery, and consumer engagement. Additionally, the study investigates into the psychological aspects underlying the role of social media in shaping buyer preferences, perceptions, and trust in online transactions. The methodologies employed include both quantitative and qualitative analyses, incorporating surveys, interviews, and data analytics to derive meaningful insights. Statistical models are applied to distinguish patterns in online buyer behavior concerning product awareness, brand loyalty, and decision-making processes. The expected outcomes of this research contribute not only to the academic understanding of the dynamic interplay between social media and online buyer behavior but also offer practical implications for marketers, e-commerce platforms, and policymakers.

Keywords: consumer Behavior, social media, online purchasing, online transaction

Procedia PDF Downloads 78
28764 Data Quality on Regular Childhood Immunization Programme at Degehabur District: Somali Region, Ethiopia

Authors: Eyob Seife

Abstract:

Immunization is a life-saving intervention which prevents needless suffering through sickness, disability, and death. Emphasis on data quality and use will become even stronger with the development of the immunization agenda 2030 (IA2030). Quality of data is a key factor in generating reliable health information that enables monitoring progress, financial planning, vaccine forecasting capacities, and making decisions for continuous improvement of the national immunization program. However, ensuring data of sufficient quality and promoting an information-use culture at the point of the collection remains critical and challenging, especially in hard-to-reach and pastoralist areas where Degehabur district is selected based on a hypothesis of ‘there is no difference in reported and recounted immunization data consistency. Data quality is dependent on different factors where organizational, behavioral, technical, and contextual factors are the mentioned ones. A cross-sectional quantitative study was conducted on September 2022 in the Degehabur district. The study used the world health organization (WHO) recommended data quality self-assessment (DQS) tools. Immunization tally sheets, registers, and reporting documents were reviewed at 5 health facilities (2 health centers and 3 health posts) of primary health care units for one fiscal year (12 months) to determine the accuracy ratio. The data was collected by trained DQS assessors to explore the quality of monitoring systems at health posts, health centers, and the district health office. A quality index (QI) was assessed, and the accuracy ratio formulated were: the first and third doses of pentavalent vaccines, fully immunized (FI), and the first dose of measles-containing vaccines (MCV). In this study, facility-level results showed both over-reporting and under-reporting were observed at health posts when computing the accuracy ratio of the tally sheet to health post reports found at health centers for almost all antigens verified where pentavalent 1 was 88.3%, 60.4%, and 125.6% for Health posts A, B, and C respectively. For first-dose measles-containing vaccines (MCV), similarly, the accuracy ratio was found to be 126.6%, 42.6%, and 140.9% for Health posts A, B, and C, respectively. The accuracy ratio for fully immunized children also showed 0% for health posts A and B and 100% for health post-C. A relatively better accuracy ratio was seen at health centers where the first pentavalent dose was 97.4% and 103.3% for health centers A and B, while a first dose of measles-containing vaccines (MCV) was 89.2% and 100.9% for health centers A and B, respectively. A quality index (QI) of all facilities also showed results between the maximum of 33.33% and a minimum of 0%. Most of the verified immunization data accuracy ratios were found to be relatively better at the health center level. However, the quality of the monitoring system is poor at all levels, besides poor data accuracy at all health posts. So attention should be given to improving the capacity of staff and quality of monitoring system components, namely recording, reporting, archiving, data analysis, and using information for decision at all levels, especially in pastoralist areas where such kinds of study findings need to be improved beside to improving the data quality at root and health posts level.

Keywords: accuracy ratio, Degehabur District, regular childhood immunization program, quality of monitoring system, Somali Region-Ethiopia

Procedia PDF Downloads 109
28763 An Output Oriented Super-Efficiency Model for Considering Time Lag Effect

Authors: Yanshuang Zhang, Byungho Jeong

Abstract:

There exists some time lag between the consumption of inputs and the production of outputs. This time lag effect should be considered in calculating efficiency of decision making units (DMU). Recently, a couple of DEA models were developed for considering time lag effect in efficiency evaluation of research activities. However, these models can’t discriminate efficient DMUs because of the nature of basic DEA model in which efficiency scores are limited to ‘1’. This problem can be resolved a super-efficiency model. However, a super efficiency model sometimes causes infeasibility problem. This paper suggests an output oriented super-efficiency model for efficiency evaluation under the consideration of time lag effect. A case example using a long term research project is given to compare the suggested model with the MpO model

Keywords: DEA, Super-efficiency, Time Lag, research activities

Procedia PDF Downloads 660
28762 The Impact of Information and Communication Technology on the Re-Engineering Process of Small and Medium Enterprises

Authors: Hiba Mezaache

Abstract:

The current study aimed to know the impact of using information and communication technology on the process of re-engineering small and medium enterprises, as the world witnessed the speed development of the latter in its field of work and the diversity of its objectives and programs, that also made its process important for the growth and development of the institution and also gaining the flexibility to face the changes that may occur in the environment of work, so in order to know the impact of information and communication technology on the success of this process, we prepared an electronic questionnaire that included (70) items, and we also used the SPSS statistical calendar to analyze the data obtained. In the end of our study, our conclusion was that there was a positive correlation between the four dimensions of information and communication technology, i.e., hardware and equipment, software, communication networks, databases, and the re-engineering process, in addition to the fact that the studied institutions attach great importance to formal communication, for its positive advantages that it achieves in reducing time and effort and costs in performing the business. We could also say that communication technology contributes to the process of formulating objectives related to the re-engineering strategy. Finally, we recommend the necessity of empowering workers to use information technology and communication more in enterprises, and to integrate them more into the activity of the enterprise by involving them in the decision-making process, and also to keep pace with the development in the field of software, hardware, and technological equipment.

Keywords: information and communication technology, re-engineering, small and medium enterprises, the impact

Procedia PDF Downloads 180
28761 Modelling the Impact of Installation of Heat Cost Allocators in District Heating Systems Using Machine Learning

Authors: Danica Maljkovic, Igor Balen, Bojana Dalbelo Basic

Abstract:

Following the regulation of EU Directive on Energy Efficiency, specifically Article 9, individual metering in district heating systems has to be introduced by the end of 2016. These directions have been implemented in member state’s legal framework, Croatia is one of these states. The directive allows installation of both heat metering devices and heat cost allocators. Mainly due to bad communication and PR, the general public false image was created that the heat cost allocators are devices that save energy. Although this notion is wrong, the aim of this work is to develop a model that would precisely express the influence of installation heat cost allocators on potential energy savings in each unit within multifamily buildings. At the same time, in recent years, a science of machine learning has gain larger application in various fields, as it is proven to give good results in cases where large amounts of data are to be processed with an aim to recognize a pattern and correlation of each of the relevant parameter as well as in the cases where the problem is too complex for a human intelligence to solve. A special method of machine learning, decision tree method, has proven an accuracy of over 92% in prediction general building consumption. In this paper, a machine learning algorithms will be used to isolate the sole impact of installation of heat cost allocators on a single building in multifamily houses connected to district heating systems. Special emphasises will be given regression analysis, logistic regression, support vector machines, decision trees and random forest method.

Keywords: district heating, heat cost allocator, energy efficiency, machine learning, decision tree model, regression analysis, logistic regression, support vector machines, decision trees and random forest method

Procedia PDF Downloads 252
28760 Power Control in Solar Battery Charging Station Using Fuzzy Decision Support System

Authors: Krishnan Manickavasagam, Manikandan Shanmugam

Abstract:

Clean and abundant renewable energy sources (RES) such as solar energy is seen as the best solution to replace conventional energy source. Unpredictable power generation is a major issue in the penetration of solar energy, as power generated is governed by the irradiance received. Controlling the power generated from solar PV (SPV) panels to battery and load is a challenging task. In this paper, power flow control from SPV to load and energy storage device (ESD) is controlled by a fuzzy decision support system (FDSS) on the availability of solar irradiation. The results show that FDSS implemented with the energy management system (EMS) is capable of managing power within the area, and if excess power is available, then shared with the neighboring area.

Keywords: renewable energy sources, fuzzy decision support system, solar photovoltaic, energy storage device, energy management system

Procedia PDF Downloads 101
28759 Overcoming the Impacts of Covid-19 Outbreak Using Value Integrated Project Delivery Model

Authors: G. Ramya

Abstract:

Value engineering is a systematic approach, widely used to optimize the design or process or product in the designing stage. It used to achieve the client's obligation by increasing the functionality and attain the targeted cost in the cost planning. Value engineering effectiveness and benefits decrease along with the progress of the project since the change in the scope of the work and design will account for more cost all along the lifecycle of the project. Integrating the value engineering with other project management activities will promote cost minimization, client satisfaction, and ensure early completion of the project in time. Previous research studies suggested that value engineering can integrate with other project delivery activities, but research studies unable to frame a model that collaborates the project management activities with the job plan of value engineering approach. I analyzed various project management activities and their synergy between each other. The project management activities and processes like a)risk analysis b)lifecycle cost analysis c)lean construction d)facility management e)Building information modelling f)Contract administration, collaborated, and project delivery model planned along with the RIBA plan of work. The key outcome of the research is a value-driven project delivery model, which will succeed in dealing with the economic impact, constraints and conflicts arise due to the COVID-19 outbreak in the Indian construction sector. Benefits associated with the structured framework is construction project delivery that ensures early contractor involvement, mutual risk sharing, and reviving the project with a cost overrun and delay back on track ,are discussed. Keywords: Value-driven project delivery model, Integration, RIBA plan of work Themes: Design Economics

Keywords: value-driven project delivery model, Integration, RIBA

Procedia PDF Downloads 122
28758 Self-Attention Mechanism for Target Hiding Based on Satellite Images

Authors: Hao Yuan, Yongjian Shen, Xiangjun He, Yuheng Li, Zhouzhou Zhang, Pengyu Zhang, Minkang Cai

Abstract:

Remote sensing data can provide support for decision-making in disaster assessment or disaster relief. The traditional processing methods of sensitive targets in remote sensing mapping are mainly based on manual retrieval and image editing tools, which are inefficient. Methods based on deep learning for sensitive target hiding are faster and more flexible. But these methods have disadvantages in training time and cost of calculation. This paper proposed a target hiding model Self Attention (SA) Deepfill, which used self-attention modules to replace part of gated convolution layers in image inpainting. By this operation, the calculation amount of the model becomes smaller, and the performance is improved. And this paper adds free-form masks to the model’s training to enhance the model’s universal. The experiment on an open remote sensing dataset proved the efficiency of our method. Moreover, through experimental comparison, the proposed method can train for a longer time without over-fitting. Finally, compared with the existing methods, the proposed model has lower computational weight and better performance.

Keywords: remote sensing mapping, image inpainting, self-attention mechanism, target hiding

Procedia PDF Downloads 141
28757 Application of Data Driven Based Models as Early Warning Tools of High Stream Flow Events and Floods

Authors: Mohammed Seyam, Faridah Othman, Ahmed El-Shafie

Abstract:

The early warning of high stream flow events (HSF) and floods is an important aspect in the management of surface water and rivers systems. This process can be performed using either process-based models or data driven-based models such as artificial intelligence (AI) techniques. The main goal of this study is to develop efficient AI-based model for predicting the real-time hourly stream flow (Q) and apply it as early warning tool of HSF and floods in the downstream area of the Selangor River basin, taken here as a paradigm of humid tropical rivers in Southeast Asia. The performance of AI-based models has been improved through the integration of the lag time (Lt) estimation in the modelling process. A total of 8753 patterns of Q, water level, and rainfall hourly records representing one-year period (2011) were utilized in the modelling process. Six hydrological scenarios have been arranged through hypothetical cases of input variables to investigate how the changes in RF intensity in upstream stations can lead formation of floods. The initial SF was changed for each scenario in order to include wide range of hydrological situations in this study. The performance evaluation of the developed AI-based model shows that high correlation coefficient (R) between the observed and predicted Q is achieved. The AI-based model has been successfully employed in early warning throughout the advance detection of the hydrological conditions that could lead to formations of floods and HSF, where represented by three levels of severity (i.e., alert, warning, and danger). Based on the results of the scenarios, reaching the danger level in the downstream area required high RF intensity in at least two upstream areas. According to results of applications, it can be concluded that AI-based models are beneficial tools to the local authorities for flood control and awareness.

Keywords: floods, stream flow, hydrological modelling, hydrology, artificial intelligence

Procedia PDF Downloads 249
28756 Improving Contributions to the Strengthening of the Legislation Regarding Road Infrastructure Safety Management in Romania, Case Study: Comparison Between the Initial Regulations and the Clarity of the Current Regulations - Trends Regarding the Efficiency

Authors: Corneliu-Ioan Dimitriu, Gheorghe Frățilă

Abstract:

Romania and Bulgaria have high rates of road deaths per million inhabitants. Directive (EU) 2019/1936, known as the RISM Directive, has been transposed into national law by each Member State. The research focuses on the amendments made to Romanian legislation through Government Ordinance no. 3/2022, which aims to improve road safety management on infrastructure. The aim of the research is two-fold: to sensitize the Romanian Government and decision-making entities to develop an integrated and competitive management system and to establish a safe and proactive mobility system that ensures efficient and safe roads. The research includes a critical analysis of European and Romanian legislation, as well as subsequent normative acts related to road infrastructure safety management. Public data from European Union and national authorities, as well as data from the Romanian Road Authority-ARR and Traffic Police database, are utilized. The research methodology involves comparative analysis, criterion analysis, SWOT analysis, and the use of GANTT and WBS diagrams. The Excel tool is employed to process the road accident databases of Romania and Bulgaria. Collaboration with Bulgarian specialists is established to identify common road infrastructure safety issues. The research concludes that the legislative changes have resulted in a relaxation of road safety management in Romania, leading to decreased control over certain management procedures. The amendments to primary and secondary legislation do not meet the current safety requirements for road infrastructure. The research highlights the need for legislative changes and strengthened administrative capacity to enhance road safety. Regional cooperation and the exchange of best practices are emphasized for effective road infrastructure safety management. The research contributes to the theoretical understanding of road infrastructure safety management by analyzing legislative changes and their impact on safety measures. It highlights the importance of an integrated and proactive approach in reducing road accidents and achieving the "zero deaths" objective set by the European Union. Data collection involves accessing public data from relevant authorities and using information from the Romanian Road Authority-ARR and Traffic Police database. Analysis procedures include critical analysis of legislation, comparative analysis of transpositions, criterion analysis, and the use of various diagrams and tools such as SWOT, GANTT, WBS, and Excel. The research addresses the effectiveness of legislative changes in road infrastructure safety management in Romania and the impact on control over management procedures. It also explores the need for strengthened administrative capacity and regional cooperation in addressing road safety issues. The research concludes that the legislative changes made in Romania have not strengthened road safety management and emphasize the need for immediate action, legislative amendments, and enhanced administrative capacity. Collaboration with Bulgarian specialists and the exchange of best practices are recommended for effective road infrastructure safety management. The research contributes to the theoretical understanding of road safety management and provides valuable insights for policymakers and decision-makers in Romania.

Keywords: management, road infrastructure safety, legislation, amendments, collaboration

Procedia PDF Downloads 85
28755 Exploring Individual and Team Approaches in Crafting Workplace Inclusivity for Deaf and Hard of Hearing Employees in Malaysia

Authors: Nor Wahiza Abdul Wahat, Nor Haniza Abdul Wahat, Siti Noormi Alias, Mohamad Sazali Shaari

Abstract:

This study prepares the groundwork for the development of a strategic model and instrument for workplace inclusivity for deaf and hard-of-hearing employees in Malaysia. In the past, scholars have discussed inclusivity of workplaces to the extent to which employees feel they are significantly part of the organizational processes. Such processes include access to information, connectedness to colleagues and team members as well as their ability to participate in and influence decision-making processes. A qualitative study was conducted to explore on experiences of employed deaf and hard-of-hearing employees in a few Malaysian organizations. Data were collected from two focus group discussions involving male and female deaf and hard of hearing employees. Three in-depth interviews were also conducted with employer representatives. Generated themes highlighted individual, and team approaches towards crafting workplace inclusivity for deaf and hard of hearing employees in Malaysia. The adaptiveness of deaf and hard-of-hearing employees and social inclusion by colleagues were among the emerged sub-themes. This study allowed the researchers to further develop workplace inclusivity instruments and models for the benefit of deaf and hard of hearing Malaysian employees, as well as their employers.

Keywords: deaf, hard of hearing, workplace inclusivity, disabilities

Procedia PDF Downloads 177
28754 Autonomy in Pregnancy and Childbirth: The Next Frontier of Maternal Health Rights Advocacy

Authors: Alejandra Cardenas, Ona Flores, Fabiola Gretzinger

Abstract:

Since the 1990s, legal strategies for the promotion and protection of maternal health rights have achieved significant gains. Successful litigation in courts around the world have shown that these rights can be judicially enforceable. Governments and international organizations have acknowledged the importance of a human rights-based approach to maternal mortality and morbidity, and obstetric violence has been recognized as a human rights issue. Despite the progress made, maternal mortality has worsened in some regions of the world, while progress has stagnated elsewhere, and mistreatment in maternal care is reported almost universally. In this context, issues of maternal autonomy and decision-making during pregnancy, labor, and delivery as a critical barrier to access quality maternal health have been largely overlooked. Indeed, despite the principles of autonomy and informed consent in medical interventions being well-established in international and regional norms, how they are applied particularly during childbirth and pregnancy remains underdeveloped. National and global legal standards and decisions related to maternal health were reviewed and analyzed to determine how maternal autonomy and decision-making during pregnancy, labor, and delivery have been protected (or not) by international and national courts. The results of this legal research and analysis lead to the conclusion that a few standards have been set by courts regarding pregnant people’s rights to make choices during pregnancy and birth; however, most undermine the agency of pregnant people. These decisions recognize obstetric violence and gender-based discrimination, but fail to protect pregnant people’s autonomy, privacy, and their right to informed consent. As current human rights standards stand today, maternal health is the only field in medicine and law in which informed consent can be overridden, and patients can be forced to submit to treatments against their will. Unconsented treatment and loss of agency during pregnancy and childbirth can have long-term physical and mental impacts, reduce satisfaction and trust in health systems, and may deter future health-seeking behaviors. This research proposes a path forward that focuses on the pregnant person as an independent agent, relying on the doctrine of self-determination during pregnancy and childbirth, which includes access to the necessary conditions to enable autonomy and choice throughout pregnancy and childbirth as a critical step towards our approaches to reduce maternal mortality, morbidity, and mistreatment, and realize the promise of access to quality maternal health as a human right.

Keywords: autonomy in childbirth and pregnancy, choice, informed consent, jurisprudential analysis

Procedia PDF Downloads 55
28753 Logistics Optimization: A Literature Review of Techniques for Streamlining Land Transportation in Supply Chain Operations

Authors: Danica Terese Valda, Segundo Villa III, Michiko Yasuda, Jomel Tagaro

Abstract:

This study conducts a thorough literature review of logistics optimization techniques that aimed at improving the efficiency of supply chain operations. Logistics optimization encompasses key areas such as transportation management, inventory control, and distribution network design, each of which plays a critical role in streamlining supply chain performance. The review identifies mixed-integer linear programming (MILP) as a dominant method, widely used for its flexibility in handling complex logistics problems. Other methods like heuristic algorithms and combinatorial optimization also prove effective in solving large-scale logistics challenges. Furthermore, real-time data integration and advancements in simulation techniques are transforming the decision-making processes within supply chains, leading to more dynamic and responsive operations. The inclusion of sustainability goals, particularly in minimizing carbon emissions, has emerged as a growing trend in logistics optimization. This research highlights the need for integrated, holistic approaches that consider the interconnectedness of logistical components. The findings provide valuable insights to guide future research and practical applications, fostering more resilient and efficient supply chains.

Keywords: logistics, techniques, supply chain, land transportation

Procedia PDF Downloads 13
28752 Smart Structures for Cost Effective Cultural Heritage Preservation

Authors: Tamara Trček Pečak, Andrej Mohar, Denis Trček

Abstract:

This article investigates the latest technological means, which deploy smart structures that are based on (advanced) wireless sensors technologies and ubiquitous computing in general in order to support the above mentioned decision making. Based on two years of in-field research experiences it gives their analysis for these kinds of purposes and provides appropriate architectures and architectural solutions. Moreover, the directions for future research are stated, because these technologies are currently the most promising ones to enable cost-effective preservation of cultural heritage not only in uncontrolled places, but also in general.

Keywords: smart structures, wireless sensors, sensors networks, green computing, cultural heritage preservation, monitoring, cost effectiveness

Procedia PDF Downloads 447
28751 Prevalence of Disability among Children Two to Fourteen Years at Selected Districts in Greater Accra Region of Ghana

Authors: Yvonne Nanaama Brew, Bismark Jampim Abrokwah

Abstract:

Children with disabilities in Ghana are not routinely registered, and this can imply that they may be neglected in national policy planning since global estimates may not be near the exact numbers. Although there are some studies with reports on the prevalence of disability among children in Ghana, reliable information on the prevalence, types of disability in children, and children who die with disabilities in the Greater Accra region are lacking. The current study seeks to investigate the incidence of disability among children two to fourteen years at selected districts in the Greater Accra region of Ghana. A cross-sectional design is adapted with a quantitative method for this study. Parents with disabled children who access child welfare clinics at the Greater Accra regional hospital, Maamobi hospital, Ga west, and Ga south district hospitals will be selected through purposive sampling for the study. An adapted UNICEF structured Ten Questions will be used to collect relevant data about participants. The responses to the questions will be either 'Yes' or 'No'. Parents with children who answer 'Yes' to a disability and purposively sampled parents with children who answer 'No' to disability will be invited to Child Health Clinic at the Greater Accra regional hospital for a free clinical assessment. Data will be entered into Microsoft Office Excel 2013 and imported into STATA version 15 for analysis. The study is expected to provide reliable disaggregated data on less than fourteen years of children with disabilities in the Greater Accra region. The findings and recommendations of the study will demonstrate the importance of early detection of disability and facilitate more quality and holistic planning of appropriate programmes that best safeguard the rights of children with disabilities in Ghana. It will help in policy and decision-making on children less than fourteen years with disabilities in Ghana. Also, findings will be useful for health facilities in Ghana to plan services for disabled children. Finally, the study is expected to add to the guides for the National Council of Persons with Disabilities to fulfill its legal mandate for disabled persons in Ghana.

Keywords: prevalence, disability, children, Ghana

Procedia PDF Downloads 133
28750 Comparing Community Health Agents, Physicians and Nurses in Brazil's Family Health Strategy

Authors: Rahbel Rahman, Rogério Meireles Pinto, Margareth Santos Zanchetta

Abstract:

Background: Existing shortcomings of current health-service delivery include poor teamwork, competencies that do not address consumer needs, and episodic rather than continuous care. Brazil’s Sistema Único de Saúde (Unified Health System, UHS) is acknowledged worldwide as a model for delivering community-based care through Estratégia Saúde da Família (FHS; Family Health Strategy) interdisciplinary teams, comprised of Community Health Agents (in Portuguese, Agentes Comunitário de Saude, ACS), nurses, and physicians. FHS teams are mandated to collectively offer clinical care, disease prevention services, vector control, health surveillance and social services. Our study compares medical providers (nurses and physicians) and community-based providers (ACS) on their perceptions of work environment, professional skills, cognitive capacities and job context. Global health administrators and policy makers can leverage on similarities and differences across care providers to develop interprofessional training for community-based primary care. Methods: Cross-sectional data were collected from 168 ACS, 62 nurses and 32 physicians in Brazil. We compared providers’ demographic characteristics (age, race, and gender) and job context variables (caseload, work experience, work proximity to community, the length of commute, and familiarity with the community). Providers perceptions were compared to their work environment (work conditions and work resources), professional skills (consumer-input, interdisciplinary collaboration, efficacy of FHS teams, work-methods and decision-making autonomy), and cognitive capacities (knowledge and skills, skill variety, confidence and perseverance). Descriptive and bi-variate analysis, such as Pearson Chi-square and Analysis of Variance (ANOVA) F-tests, were performed to draw comparisons across providers. Results: Majority of participants were ACS (64%); 24% nurses; and 12% physicians. Majority of nurses and ACS identified as mixed races (ACS, n=85; nurses, n=27); most physicians identified as males (n=16; 52%), and white (n=18; 58%). Physicians were less likely to incorporate consumer-input and demonstrated greater decision-making autonomy than nurses and ACS. ACS reported the highest levels of knowledge and skills but the least confidence compared to nurses and physicians. ACS, nurses, and physicians were efficacious that FHS teams improved the quality of health in their catchment areas, though nurses tend to disagree that interdisciplinary collaboration facilitated their work. Conclusion: To our knowledge, there has been no study comparing key demographic and cognitive variables across ACS, nurses and physicians in the context of their work environment and professional training. We suggest that global health systems can leverage upon the diverse perspectives of providers to implement a community-based primary care model grounded in interprofessional training. Our study underscores the need for in-service trainings to instill reflective skills of providers, improve communication skills of medical providers and curative skills of ACS. Greater autonomy needs to be extended to community based providers to offer care integral to addressing consumer and community needs.

Keywords: global health systems, interdisciplinary health teams, community health agents, community-based care

Procedia PDF Downloads 236
28749 Credit Risk Evaluation of Dairy Farming Using Fuzzy Logic

Authors: R. H. Fattepur, Sameer R. Fattepur, D. K. Sreekantha

Abstract:

Dairy Farming is one of the key industries in India. India is the leading producer and also the consumer of milk, milk-based products in the world. In this paper, we have attempted to the replace the human expert system and to develop an artificial expert system prototype to increase the speed and accuracy of decision making dairy farming credit risk evaluation. Fuzzy logic is used for dealing with uncertainty, vague and acquired knowledge, fuzzy rule base method is used for representing this knowledge for building an effective expert system.

Keywords: expert system, fuzzy logic, knowledge base, dairy farming, credit risk

Procedia PDF Downloads 370
28748 Balloon Analogue Risk Task (BART) Performance Indicators Help Predict Outcomes of Matched Savings Program

Authors: Carlos M. Parra, Matthew Sutherland, Ranjita Poudel

Abstract:

Reduced mental-bandwidth related to low socioeconomic status (low-SES) might lead to impulsivity and risk-taking behavior, which poses as a major hurdle towards asset building (savings) behavior. Understanding the relationship between risk-related personality metrics as well as laboratory risk behavior and real-life savings behavior can help facilitate the development of effective asset building programs, which are vital for mitigating financial vulnerability and income inequality. As such, this study explored the relationship between personality metrics, laboratory behavior in a risky decision-making task and real-life asset building (savings) behaviors among individuals with low-SES from Miami, Florida (FL). Study participants (12 male, 15 female) included racially and ethnically diverse adults (mean age 41.22 ± 12.65 years), with incomplete higher education (18% had High School Diploma, 30% Associates, and 52% Some College), and low annual income (mean $13,872 ± $8020.43). Participants completed eight self-report surveys and played a widely used risky decision-making paradigm called the Balloon Analogue Risk Task (BART). Specifically, participants played three runs of BART (20 trials in each run; total 60 trials). In addition, asset building behavior data was collected for 24 participants who opened and used savings accounts and completed a 6-month savings program that involved monthly matches, and a final reward for completing the savings program without any interim withdrawals. Each participant’s total savings at the end of this program was the main asset building indicator considered. In addition, a new effective use of average pump bet (EUAPB) indicator was developed to characterize each participant’s ability to place winning bets. This indicator takes the ratio of each participant’s total BART earnings to average pump bet (APB) in all 60 trials. Our findings indicated that EUAPB explained more than a third of the variation in total savings among participants. Moreover, participants who managed to obtain BART earnings of at least 30 cents out of their APB, also tended to exhibit better asset building (savings) behavior. In particular, using this criterion to separate participants into high and low EUAPB groups, the nine participants with high EUAPB (mean BART earnings of 35.64 cents per APB) ended up with higher mean total savings ($255.11), while the 15 participants with low EUAPB (mean BART earnings of 22.50 cents per APB) obtained lower mean total savings ($40.01). All mean differences are statistically significant (2-tailed p  .0001) indicating that the relation between higher EUAPB and higher total savings is robust. Overall, these findings can help refine asset building interventions implemented by policy makers and practitioners interested in reducing financial vulnerability among low-SES population. Specifically, by helping identify individuals who are likely to readily take advantage of savings opportunities (such as matched savings programs) and avoiding the stipulation of unnecessary and expensive financial coaching programs to these individuals. This study was funded by J.P. Morgan Chase (JPMC) and carried out by scientists from Florida International University (FIU) in partnership with Catalyst Miami.

Keywords: balloon analogue risk task (BART), matched savings programs, asset building capability, low-SES participants

Procedia PDF Downloads 146
28747 Understanding the Lived Experiences of Children and Young People Using Client Preference Tools in Mental Health Therapy: A Systematic Literature Review

Authors: Charlotte Zamani

Abstract:

Children's and young people’s (CYP’s) perspectives on using client preference tools are central to understanding youth mental health therapy engagement. This systematic literature review attempts to understand the meanings of CYP using preference tools that may allow greater connection with the therapeutic process. Following a systematic search using PRISMA guidelines, seven studies were identified that reported qualitative feedback on preferred treatment options or activities within therapy. The data were analysed using interpretative phenomenological analysis (IPA). Three group experiential themes were found: ‘Tailor my support’, ‘My autonomy leads to greater engagement’ and ‘Preferences facilitate my authentic self’. CYP is broadly divided into those who thrive in decision-making and those who require more support. Being offered a choice in therapy delivery provides easier access and means more freedom for CYP. Preferences in therapy appeared to enable greater self-knowledge and a deeper connection to the therapeutic process. The therapist is integral in using preference tools in therapy. Youth feedback is currently limited, yet essential and ethical in order to understand critical factors of CYP engagement and for future research.

Keywords: child and adolescent, client preferences, mental health therapy, qualitative

Procedia PDF Downloads 14
28746 Sun-Driven Evaporation Enhanced Forward Osmosis Process for Application in Wastewater Treatment and Pure Water Regeneration

Authors: Dina Magdy Abdo, Ayat N. El-Shazly, E. A. Abdel-Aal

Abstract:

Forward osmosis (FO) is one of the important processes during the wastewater treatment system for environmental remediation and fresh water regeneration. Both Egypt and China are troubled by over millions of tons of wastewater every year, including domestic and industrial wastewater. However, the traditional FO process in wastewater treatment usually suffers low efficiency and high energy consumption because of the continuously diluted draw solution. An additional concentration process is necessary to keep running of FO separation, causing energy waste. Based on the previous study on photothermal membrane, a sun-driven evaporation process is integrated into the draw solution side of FO system. During the sun-driven evaporation, not only the draw solution can be concentrated to maintain a stable and sustainable FO system, but fresh water can be directly separated for regeneration. Solar energy is the ultimate energy source of everything we have on Earth and is, without any doubt, the most renewable and sustainable energy source available to us. Additionally, the FO membrane process is rationally designed to limit the concentration polarization and fouling. The FO membrane’s structure and surface property will be further optimized by the adjustment of doping ratio of controllable nano-materials, membrane formation conditions, and selection of functional groups. A novel kind of nano-composite functional separation membrane with bi-interception layers and high hydrophilicity will be developed for the application in wastewater treatment. So, herein we aim to design a new wastewater treatment system include forward osmosis with high-efficiency energy recovery via the integration of photothermal membrane.

Keywords: forward osmosis, membrane, solar, water treatement

Procedia PDF Downloads 92
28745 Fuzzy Logic for Control and Automatic Operation of Natural Ventilation in Buildings

Authors: Ekpeti Bukola Grace, Mahmoudi Sabar Esmail, Chaer Issa

Abstract:

Global energy consumption has been increasing steadily over the last half - century, and this trend is projected to continue. As energy demand rises in many countries throughout the world due to population growth, natural ventilation in buildings has been identified as a viable option for lowering these demands, saving costs, and also lowering CO2 emissions. However, natural ventilation is driven by forces that are generally unpredictable in nature thus, it is important to manage the resulting airflow in order to maintain pleasant indoor conditions, making it a complex system that necessitates specific control approaches. The effective application of fuzzy logic technique amidst other intelligent systems is one of the best ways to bridge this gap, as its control dynamics relates more to human reasoning and linguistic descriptions. This article reviewed existing literature and presented practical solutions by applying fuzzy logic control with optimized techniques, selected input parameters, and expert rules to design a more effective control system. The control monitors used indoor temperature, outdoor temperature, carbon-dioxide levels, wind velocity, and rain as input variables to the system, while the output variable remains the control of window opening. This is achieved through the use of fuzzy logic control tool box in MATLAB and running simulations on SIMULINK to validate the effectiveness of the proposed system. Comparison analysis model via simulation is carried out, and with the data obtained, an improvement in control actions and energy savings was recorded.

Keywords: fuzzy logic, intelligent control systems, natural ventilation, optimization

Procedia PDF Downloads 131
28744 Terraria AI: YOLO Interface for Decision-Making Algorithms

Authors: Emmanuel Barrantes Chaves, Ernesto Rivera Alvarado

Abstract:

This paper presents a method to enable agents for the Terraria game to evaluate algorithms commonly used in general video game artificial intelligence competitions. The usage of the ‘You Only Look Once’ model in the first layer of the process obtains information from the screen, translating this information into a video game description language known as “Video Game Description Language”; the agents take that as input to make decisions. For this, the state-of-the-art algorithms were tested and compared; Monte Carlo Tree Search and Rolling Horizon Evolutionary; in this case, Rolling Horizon Evolutionary shows a better performance. This approach’s main advantage is that a VGDL beforehand is unnecessary. It will be built on the fly and opens the road for using more games as a framework for AI.

Keywords: AI, MCTS, RHEA, Terraria, VGDL, YOLOv5

Procedia PDF Downloads 97
28743 Scenario-Based Learning Using Virtual Optometrist Applications

Authors: J. S. M. Yang, G. E. T. Chua

Abstract:

Diploma in Optometry (OPT) course is a three-year program offered by Ngee Ann Polytechnic (NP) to train students to provide primary eye care. Students are equipped with foundational conceptual knowledge and practical skills in the first three semesters before clinical modules in fourth to six semesters. In the clinical modules, students typically have difficulties in integrating the acquired knowledge and skills from the past semesters to perform general eye examinations on public patients at NP Optometry Centre (NPOC). To help the students overcome the challenge, a web-based game Virtual Optometrist (VO) was developed to help students apply their skills and knowledge through scenario-based learning. It consisted of two interfaces, Optical Practice Counter (OPC) and Optometric Consultation Room (OCR), to provide two simulated settings for authentic learning experiences. In OPC, students would recommend and provide appropriate frame and lens selection based on virtual patient’s case history. In OCR, students would diagnose and manage virtual patients with common ocular conditions. Simulated scenarios provided real-world clinical situations that required contextual application of integrated knowledge from relevant modules. The stages in OPC and OCR are of increasing complexity to align to expected students’ clinical competency as they progress to more senior semesters. This prevented gameplay fatigue as VO was used over the semesters to achieve different learning outcomes. Numerous feedback opportunities were provided to students based on their decisions to allow individualized learning to take place. The game-based learning element in VO was achieved through the scoreboard and leader board to enhance students' motivation to perform. Scores were based on the speed and accuracy of students’ responses to the questions posed in the simulated scenarios, preparing the students to perform accurately and effectively under time pressure in a realistic optometric environment. Learning analytics was generated in VO’s backend office based on students’ responses, offering real-time data on distinctive and observable learners’ behavior to monitor students’ engagement and learning progress. The backend office allowed versatility to add, edit, and delete scenarios for different intended learning outcomes. Likert Scale was used to measure students’ learning experience with VO for OPT Year 2 and 3 students. The survey results highlighted the learning benefits of implementing VO in the different modules, such as enhancing recall and reinforcement of clinical knowledge for contextual application to develop higher-order thinking skills, increasing efficiency in clinical decision-making, facilitating learning through immediate feedback and second attempts, providing exposure to common and significant ocular conditions, and training effective communication skills. The results showed that VO has been useful in reinforcing optometry students’ learning and supporting the development of higher-order thinking, increasing efficiency in clinical decision-making, and allowing students to learn from their mistakes with immediate feedback and second attempts. VO also exposed the students to diverse ocular conditions through simulated real-world clinical scenarios, which may otherwise not be encountered in NPOC, and promoted effective communication skills.

Keywords: authentic learning, game-based learning, scenario-based learning, simulated clinical scenarios

Procedia PDF Downloads 118
28742 Exploring Data Leakage in EEG Based Brain-Computer Interfaces: Overfitting Challenges

Authors: Khalida Douibi, Rodrigo Balp, Solène Le Bars

Abstract:

In the medical field, applications related to human experiments are frequently linked to reduced samples size, which makes the training of machine learning models quite sensitive and therefore not very robust nor generalizable. This is notably the case in Brain-Computer Interface (BCI) studies, where the sample size rarely exceeds 20 subjects or a few number of trials. To address this problem, several resampling approaches are often used during the data preparation phase, which is an overly critical step in a data science analysis process. One of the naive approaches that is usually applied by data scientists consists in the transformation of the entire database before the resampling phase. However, this can cause model’ s performance to be incorrectly estimated when making predictions on unseen data. In this paper, we explored the effect of data leakage observed during our BCI experiments for device control through the real-time classification of SSVEPs (Steady State Visually Evoked Potentials). We also studied potential ways to ensure optimal validation of the classifiers during the calibration phase to avoid overfitting. The results show that the scaling step is crucial for some algorithms, and it should be applied after the resampling phase to avoid data leackage and improve results.

Keywords: data leackage, data science, machine learning, SSVEP, BCI, overfitting

Procedia PDF Downloads 154
28741 Process Driven Architecture For The ‘Lessons Learnt’ Knowledge Sharing Framework: The Case Of A ‘Lessons Learnt’ Framework For KOC

Authors: Rima Al-Awadhi, Abdul Jaleel Tharayil

Abstract:

On a regular basis, KOC engages into various types of Projects. However, due to very nature and complexity involved, each project experience generates a lot of ‘learnings’ that need to be factored into while drafting a new contract and thus avoid repeating the same mistakes. But, many a time these learnings are localized and remain as tacit leading to scope re-work, larger cycle time, schedule overrun, adjustment orders and claims. Also, these experiences are not readily available to new employees leading to steep learning curve and longer time to competency. This is to share our experience in designing and implementing a process driven architecture for the ‘lessons learnt’ knowledge sharing framework in KOC. It high-lights the ‘lessons learnt’ sharing process adopted, integration with the organizational processes, governance framework, the challenges faced and learning from our experience in implementing a ‘lessons learnt’ framework.

Keywords: lessons learnt, knowledge transfer, knowledge sharing, successful practices, Lessons Learnt Workshop, governance framework

Procedia PDF Downloads 578