Search results for: cross-linking density
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3552

Search results for: cross-linking density

1842 Observation and Analysis of Urban Micro-Climate and Urban Morphology on Block Scale in Zhengzhou City

Authors: Linlin Guo, Baofeng Li

Abstract:

Zhengzhou is a typical plain city with a high population density and a permanent population of 10 million, located in central China. The scale of this city is constantly expanding, and the urban form has changed dramatically by the accelerating process of urbanization, which makes a great effect on the urban microclimate. In order to study the influence of block morphology on urban micro-climate, air temperature, humidity, wind velocity and so on in three typical types of blocks in the center of Zhengzhou were collected, which was chosen to perform the fixed and mobile observation. After data handling and analysis, a series of graphs and diagrams were obtained to reflect the differences in the influence of different types of block morphology on the urban microclimate. These can provide targeted strategies for urban design to improve and regulate urban micro-climate.

Keywords: urban micro-climate, block morphology, fixed and mobile observation, urban design

Procedia PDF Downloads 240
1841 New Findings on the Plasma Electrolytic Oxidation (PEO) of Aluminium

Authors: J. Martin, A. Nominé, T. Czerwiec, G. Henrion, T. Belmonte

Abstract:

The plasma electrolytic oxidation (PEO) is a particular electrochemical process to produce protective oxide ceramic coatings on light-weight metals (Al, Mg, Ti). When applied to aluminum alloys, the resulting PEO coating exhibit improved wear and corrosion resistance because thick, hard, compact and adherent crystalline alumina layers can be achieved. Several investigations have been carried out to improve the efficiency of the PEO process and one particular way consists in tuning the suitable electrical regime. Despite the considerable interest in this process, there is still no clear understanding of the underlying discharge mechanisms that make possible metal oxidation up to hundreds of µm through the ceramic layer. A key parameter that governs the PEO process is the numerous short-lived micro-discharges (micro-plasma in liquid) that occur continuously over the processed surface when the high applied voltage exceeds the critical dielectric breakdown value of the growing ceramic layer. By using a bipolar pulsed current to supply the electrodes, we previously observed that micro-discharges are delayed with respect to the rising edge of the anodic current. Nevertheless, explanation of the origin of such phenomena is still not clear and needs more systematic investigations. The aim of the present communication is to identify the relationship that exists between this delay and the mechanisms responsible of the oxide growth. For this purpose, the delay of micro-discharges ignition is investigated as the function of various electrical parameters such as the current density (J), the current pulse frequency (F) and the anodic to cathodic charge quantity ratio (R = Qp/Qn) delivered to the electrodes. The PEO process was conducted on Al2214 aluminum alloy substrates in a solution containing potassium hydroxide [KOH] and sodium silicate diluted in deionized water. The light emitted from micro-discharges was detected by a photomultiplier and the micro-discharge parameters (number, size, life-time) were measured during the process by means of ultra-fast video imaging (125 kfr./s). SEM observations and roughness measurements were performed to characterize the morphology of the elaborated oxide coatings while XRD was carried out to evaluate the amount of corundum -Al203 phase. Results show that whatever the applied current waveform, the delay of micro-discharge appearance increases as the process goes on. Moreover, the delay is shorter when the current density J (A/dm2), the current pulse frequency F (Hz) and the ratio of charge quantity R are high. It also appears that shorter delays are associated to stronger micro-discharges (localized, long and large micro-discharges) which have a detrimental effect on the elaborated oxide layers (thin and porous). On the basis of the results, a model for the growth of the PEO oxide layers will be presented and discussed. Experimental results support that a mechanism of electrical charge accumulation at the oxide surface / electrolyte interface takes place until the dielectric breakdown occurs and thus until micro-discharges appear.

Keywords: aluminium, micro-discharges, oxidation mechanisms, plasma electrolytic oxidation

Procedia PDF Downloads 264
1840 Assessment of Residual Stress on HDPE Pipe Wall Thickness

Authors: D. Sersab, M. Aberkane

Abstract:

Residual stresses, in high-density polyethylene (HDPE) pipes, result from a nonhomogeneous cooling rate that occurs between the inner and outer surfaces during the extrusion process in manufacture. Most known methods of measurements to determine the magnitude and profile of the residual stresses in the pipe wall thickness are layer removal and ring slitting method. The combined layer removal and ring slitting methods described in this paper involves measurement of the circumferential residual stresses with minimal local disturbance. The existing methods used for pipe geometry (ring slitting method) gives a single residual stress value at the bore. The layer removal method which is used more in flat plate specimen is implemented with ring slitting method. The method permits stress measurements to be made directly at different depth in the pipe wall and a well-defined residual stress profile was consequently obtained.

Keywords: residual stress, layer removal, ring splitting, HDPE, wall thickness

Procedia PDF Downloads 338
1839 Temporal Variation of Surface Runoff and Interrill Erosion in Different Soil Textures of a Semi-arid Region, Iran

Authors: Ali Reza Vaezi, Naser Fakori Ivand, Fereshteh Azarifam

Abstract:

Interrill erosion is the detachment and transfer of soil particles between the rills due to the impact of raindrops and the shear stress of shallow surface runoff. This erosion can be affected by some soil properties such as texture, amount of organic matter and stability of soil aggregates. Information on the temporal variation of interrill erosion during a rainfall event and the effect soil properties have on it can help in understanding the process of runoff production and soil loss between the rills in hillslopes. The importance of this study is especially grate in semi-arid regions, where the soil is weakly aggregated and vegetation cover is mostly poor. Therefore, this research was conducted to investigate the temporal variation of surface flow and interrill erosion and the effect of soil properties on it in some semi-arid soils. A field experiment was done in eight different soil textures under simulated rainfalls with uniform intensity. A total of twenty four plots were installed for eight study soils with three replicates in the form of a random complete block design along the land. The plots were 1.2 m (length) × 1 m (width) in dimensions which designed with a distance of 3 m from each other across the slope. Then, soil samples were purred into the plots. The plots were surrounded by a galvanized sheet, and runoff and soil erosion equipment were placed at their outlets. Rainfall simulation experiments were done using a designed portable simulator with an intensity of 60 mm per hour for 60 minutes. A plastic cover was used around the rainfall simulator frame to prevent the impact of the wind on the free fall of water drops. Runoff production and soil loss were measured during 1 hour time with 5-min intervals. In order to study soil properties, such as particle size distribution, aggregate stability, bulk density, ESP and Ks were determined in the laboratory. Correlation and regression analysis was done to determine the effect of soil properties on runoff and interrill erosion. Results indicated that the study soils have lower booth organic matter content and aggregate stability. The soils, except for coarse textured textures, are calcareous and with relatively higher exchangeable sodium percentages (ESP). Runoff production and soil loss didn’t occur in sand, which was associated with higher infiltration and drainage rates. In other study soils, interrill erosion occurred simultaneously with the generation of runoff. A strong relationship was found between interrill erosion and surface runoff (R2 = 0.75, p< 0.01). The correlation analysis showed that surface runoff was significantly affected by some soil properties consisting of sand, silt, clay, bulk density, gravel, hydraulic conductivity (Ks), lime (calcium carbonate), and ESP. The soils with lower Ks such as fine-textured soils, produced higher surface runoff and more interrill erosion. In the soils, Surface runoff production temporally increased during rainfall and finally reached a peak after about 25-35 min. Time to peak was very short (30 min) in fine-textured soils, especially clay, which was related to their lower infiltration rate.

Keywords: erosion plot, rainfall simulator, soil properties, surface flow

Procedia PDF Downloads 65
1838 Coupling Heat Transfer by Natural Convection and Thermal Radiation in a Storage Tank of LNG

Authors: R. Hariti, M. Saighi, H. Saidani-Scott

Abstract:

A numerical simulation of natural convection double diffusion, coupled with thermal radiation in unsteady laminar regime in a storage tank is carried out. The storage tank contains a liquefied natural gas (LNG) in its gaseous phase. Fluent, a commercial CFD package, based on the numerical finite volume method, is used to simulate the flow. The radiative transfer equation is solved using the discrete coordinate method. This numerical simulation is used to determine the temperature profiles, stream function, velocity vectors and variation of the heat flux density for unsteady laminar natural convection. Furthermore, the influence of thermal radiation on the heat transfer has been investigated and the results obtained were compared to those found in the literature. Good agreement between the results obtained by the numerical method and those taken on site for the temperature values.

Keywords: tank, storage, liquefied natural gas, natural convection, thermal radiation, numerical simulation

Procedia PDF Downloads 541
1837 The Utilization of Magneto-Hydrodynamics Framework in Expansion of Magnetized Conformal Flow

Authors: Majid Karimabadi, Ahmad Farzaneh Kore, Behnam Azadegan

Abstract:

The evolution of magnetized quark gluon plasma (QGP) in the framework of magneto- hydrodynamics is the focus of our study. We are investigating the temporal and spatial evolution of QGP using a second order viscous hydrodynamic framework. The fluid is considered to be magnetized and subjected to the influence of a magnetic field that is generated during the early stages of relativistic heavy ion collisions. We assume boost invariance along the beam line, which is represented by the z coordinate, and fluid expansion in the x direction. Additionally, we assume that the magnetic field is perpendicular to the reaction plane, which corresponds to the y direction. The fluid is considered to have infinite electrical conductivity. To analyze this system, we solve the coupled Maxwell and conservation equations. By doing so, we are able to determine the time and space dependence of the energy density, velocity, and magnetic field in the transverse plane of the viscous magnetized hot plasma. Furthermore, we obtain the spectrum of hadrons and compare it with experimental data.

Keywords: QGP, magnetohydrodynamics, hadrons, conversation

Procedia PDF Downloads 68
1836 Evaluation of Natural Frequency of Single and Grouped Helical Piles

Authors: Maryam Shahbazi, Amy B. Cerato

Abstract:

The importance of a systems’ natural frequency (fn) emerges when the vibration force frequency is equivalent to foundation's fn which causes response amplitude (resonance) that may cause irreversible damage to the structure. Several factors such as pile geometry (e.g., length and diameter), soil density, load magnitude, pile condition, and physical structure affect the fn of a soil-pile system; some of these parameters are evaluated in this study. Although experimental and analytical studies have assessed the fn of a soil-pile system, few have included individual and grouped helical piles. Thus, the current study aims to provide quantitative data on dynamic characteristics of helical pile-soil systems from full-scale shake table tests that will allow engineers to predict more realistic dynamic response under motions with variable frequency ranges. To evaluate the fn of single and grouped helical piles in dry dense sand, full-scale shake table tests were conducted in a laminar box (6.7 m x 3.0 m with 4.6 m high). Two different diameters (8.8 cm and 14 cm) helical piles were embedded in the soil box with corresponding lengths of 3.66m (excluding one pile with length of 3.96) and 4.27m. Different configurations were implemented to evaluate conditions such as fixed and pinned connections. In the group configuration, all four piles with similar geometry were tied together. Simulated real earthquake motions, in addition to white noise, were applied to evaluate the wide range of soil-pile system behavior. The Fast Fourier Transform (FFT) of measured time history responses using installed strain gages and accelerometers were used to evaluate fn. Both time-history records using accelerometer or strain gages were found to be acceptable for calculating fn. In this study, the existence of a pile reduced the fn of the soil slightly. Greater fn occurred on single piles with larger l/d ratios (higher slenderness ratio). Also, regardless of the connection type, the more slender pile group which is obviously surrounded by more soil, yielded higher natural frequencies under white noise, which may be due to exhibiting more passive soil resistance around it. Relatively speaking, within both pile groups, a pinned connection led to a lower fn than a fixed connection (e.g., for the same pile group the fn’s are 5.23Hz and 4.65Hz for fixed and pinned connections, respectively). Generally speaking, a stronger motion causes nonlinear behavior and degrades stiffness which reduces a pile’s fn; even more, reduction occurs in soil with a lower density. Moreover, fn of dense sand under white noise signal was obtained 5.03 which is reduced by 44% when an earthquake with the acceleration of 0.5g was applied. By knowing the factors affecting fn, the designer can effectively match the properties of the soil to a type of pile and structure to attempt to avoid resonance. The quantitative results in this study assist engineers in predicting a probable range of fn for helical pile foundations under potential future earthquake, and machine loading applied forces.

Keywords: helical pile, natural frequency, pile group, shake table, stiffness

Procedia PDF Downloads 133
1835 Effect of Filler Size and Shape on Positive Temperature Coefficient Effect

Authors: Eric Asare, Jamie Evans, Mark Newton, Emiliano Bilotti

Abstract:

Two types of filler shapes (sphere and flakes) and three different sizes are employed to study the size effect on PTC. The composite is prepared using a mini-extruder with high-density polyethylene (HDPE) as the matrix. A computer modelling is used to fit the experimental results. The percolation threshold decreases with decreasing filler size and this was observed for both the spherical particles as well as the flakes. This was caused by the decrease in interparticle distance with decreasing filler size. The 100 µm particles showed a larger PTC intensity compared to the 5 µm particles for the metal coated glass sphere and flake. The small particles have a large surface area and agglomeration and this makes it difficult for the conductive network to e disturbed. Increasing the filler content decreased the PTC intensity and this is due to an increase in the conductive network within the polymer matrix hence more energy is needed to disrupt the network.

Keywords: positive temperature coefficient (PTC) effect, conductive polymer composite (CPC), electrical conductivity

Procedia PDF Downloads 427
1834 Native Point Defects in ZnO

Authors: A. M. Gsiea, J. P. Goss, P. R. Briddon, Ramadan. M. Al-habashi, K. M. Etmimi, Khaled. A. S. Marghani

Abstract:

Using first-principles methods based on density functional theory and pseudopotentials, we have performed a details study of native defects in ZnO. Native point defects are unlikely to be cause of the unintentional n-type conductivity. Oxygen vacancies, which considered most often been invoked as shallow donors, have high formation energies in n-type ZnO, in edition are a deep donors. Zinc interstitials are shallow donors, with high formation energies in n-type ZnO, and thus unlikely to be responsible on their own for unintentional n-type conductivity under equilibrium conditions, as well as Zn antisites which have higher formation energies than zinc interstitials. Zinc vacancies are deep acceptors with low formation energies for n-type and in which case they will not play role in p-type coductivity of ZnO. Oxygen interstitials are stable in the form of electrically inactive split interstitials as well as deep acceptors at the octahedral interstitial site under n-type conditions. Our results may provide a guide to experimental studies of point defects in ZnO.

Keywords: DFT, native, n-type, ZnO

Procedia PDF Downloads 593
1833 First Principles Study of Structural and Elastic Properties of BaWO4 Scheelite Phase Structure under Pressure

Authors: Abdennour Benmakhlouf, Abdelouahab Bentabet

Abstract:

In this paper, we investigated the athermal pressure behavior of the structural and elastic properties of scheelite BaWO4 phase up to 7 GPa using the ab initio pseudo-potential method. The calculated lattice parameters pressure relation have been compared with the experimental values and found to be in good agreement with these results. Moreover, we present for the first time the investigation of the elastic properties of this compound using the density functional perturbation theory (DFPT). It is shown that this phase is mechanically stable up to 7 GPa after analyzing the calculated elastic constants. Other relevant quantities such as bulk modulus, pressure derivative of bulk modulus, shear modulus; Young’s modulus, Poisson’s ratio, anisotropy factors, Debye temperature and sound velocity have been calculated. The obtained results, which are reported for the first time to the best of the author’s knowledge, can facilitate assessment of possible applications of the title material.

Keywords: pseudo-potential method, pressure, structural and elastic properties, scheelite BaWO4 phase

Procedia PDF Downloads 439
1832 Effect of Dehydration Methods of the Proximate Composition, Mineral Content and Functional Properties of Starch Flour Extracted from Maize

Authors: Olakunle M. Makanjuola, Adebola Ajayi

Abstract:

Effect of the dehydrated method on proximate, functional and mineral properties of corn starch was evaluated. The study was carried and to determine the proximate, functional and mineral properties of corn starch produced using three different drying methods namely (sun) (oven) and (cabinet) drying methods. The corn starch was obtained by cleaning, steeping, milling, sieving, dewatering and drying corn starch was evaluated for proximate composition, functional properties, and mineral properties to determine the nutritional properties, moisture, crude protein, crude fat, ash, and carbohydrate were in the range of 9.35 to 12.16, 6.5 to 10.78 1.08 to 2.5, 1.08 to 2.5, 4.0 to 5.2, 69.58 to 75.8% respectively. Bulk density range between 0.610g/dm3 to 0.718 g/dm3, water, and oil absorption capacities range between 116.5 to 117.25 and 113.8 to 117.25 ml/g respectively. Swelling powder had value varying from 1.401 to 1.544g/g respectively. The results indicate that the cabinet method had the best result item of the quality attribute.

Keywords: starch flour, maize, dehydration, cabinet dryer

Procedia PDF Downloads 238
1831 BER Analysis of Energy Detection Spectrum Sensing in Cognitive Radio Using GNU Radio

Authors: B. Siva Kumar Reddy, B. Lakshmi

Abstract:

Cognitive Radio is a turning out technology that empowers viable usage of the spectrum. Energy Detector-based Sensing is the most broadly utilized spectrum sensing strategy. Besides, it is a lot of generic as receivers does not like any information on the primary user's signals, channel data, of even the sort of modulation. This paper puts forth the execution of energy detection sensing for AM (Amplitude Modulated) signal at 710 KHz, FM (Frequency Modulated) signal at 103.45 MHz (local station frequency), Wi-Fi signal at 2.4 GHz and WiMAX signals at 6 GHz. The OFDM/OFDMA based WiMAX physical layer with convolutional channel coding is actualized utilizing USRP N210 (Universal Software Radio Peripheral) and GNU Radio based Software Defined Radio (SDR). Test outcomes demonstrated the BER (Bit Error Rate) augmentation with channel noise and BER execution is dissected for different Eb/N0 (the energy per bit to noise power spectral density ratio) values.

Keywords: BER, Cognitive Radio, GNU Radio, OFDM, SDR, WiMAX

Procedia PDF Downloads 500
1830 Characterization of Iron Doped Titanium Dioxide Nanoparticles and Its Photocatalytic Degradation Ability for Congo Red Dye

Authors: Vishakha Parihar

Abstract:

This study reports the preparation of iron metal-doped nanoparticles of Titanium dioxide by the sol-gel process and the photocatalytic degradation of dye. Nano-particles were characterized by SEM, EDX, and UV-Vis spectroscopy. The detailed study confirmed that nanoparticles have grown in high density and have good optical properties. The photocatalytic batch experiment was performed in an aqueous solution where congo red dye was used as a dye pollutant under the irradiation of ultraviolet rays created by using a mercury lamp source. Total degradation efficiency achieved was approximately 85% to 93% in the duration of 100-120 minutes of irradiation under an ultraviolet light source. The decolorization ability of this process was measured by absorbance at a maximum wavelength of 498nm. The results indicated that the iron-doped Titanium dioxide nanoparticles showed an excellent photocatalytic response to the degradation of dye under the ultraviolet light source within a very short period of time.

Keywords: titanium dioxide, nano-particles iron dope, photocatalytic degradation, Congo red dye, sol-gel process

Procedia PDF Downloads 184
1829 High Efficiency Achievement by a New Heterojunction N-Zno:Al/P-Si Solar Cell

Authors: A. Bouloufa, F. Khaled, K. Djessas

Abstract:

This paper presents a new structure of solar cell based on p-type microcrystalline silicon as an absorber and n-type aluminum doped zinc oxide (ZnO:Al) transparent conductive oxide as an optical window. The ZnO:Al layer deposited by rf-magnetron sputtering at room temperature yields a low resistivity about 7,64.10-2Ω.cm and more than 85% mean optical transmittance in the VIS–NIR range, with an optical band gap of 3.3 eV. These excellent optical properties of this layer in combination with an optimal contact at the front surface result in a superior light trapping yielding to efficiencies about 20%. In order to improve efficiency, we have used a p+-µc-Si thin layer highly doped as a back surface field which minimizes significantly the impact of rear surface recombination velocity on voltage and current leading to a high efficiency of 24%. Optoelectronic parameters were determined using the current density-voltage (J-V) curve by means of a numerical simulation with Analysis of Microelectronic and Photonic Structures (AMPS-1D) device simulator.

Keywords: optical window, thin film, solar cell, efficiency

Procedia PDF Downloads 287
1828 Ab Initio Studies of Organic Electrodes for Li and Na Ion Batteries Based on Tetracyanoethylene

Authors: Yingqian Chen, Sergei Manzhos

Abstract:

Organic electrodes are a way to achieve high rate (high power) and environment-friendly batteries. We present a computational density functional theory study of Li and Na storage in tetracyanoethylene based molecular and crystalline materials. Up to five Li and Na atoms can be stored on TCNE chemisorbed on doped graphene (corresponding to ~1000 mAh/gTCNE), with binding energies stronger than cohesive energies of the Li and Na metals by 1-2 eV. TCNE has been experimentally shown to form a crystalline material with Li with stoichiometry Li-TCNE. We confirm this computationally and also predict that a similar crystal based of Na-TCNE is also stable. These crystalline materials have well defined channels for facile Li or Na ion insertion and diffusion. Specifically, Li and Na binding energies in Li-TCNE and Na-TCNE crystals are about 1.5 eV and stronger than the cohesive energy of Li and Na, respectively. TCNE immobilized on conducting graphene-based substrates and Li/Na-TCNE crystals could therefore become efficient anode materials for organic Li and Na ion batteries, with which it should also be possible to avoid reduction of common battery electrolytes.

Keywords: organic ion batteries, tetracyanoethylene, cohesive energies, electrolytes

Procedia PDF Downloads 640
1827 Enhanced Thermal Stability of Dielectric and Energy Storage Properties in 0.4BCZT-0.6BTSn Lead-Free Ceramics Elaborated by Sol-Gel Method

Authors: S. Khardazi, H. Zaitouni, A. Neqali, S. Lyubchyk, D. Mezzane, M. Amjoud, E. Choukri, S. Lyubchyk, Z. Kutnjak

Abstract:

In the present paper, structural, dielectric, ferroelectric, and energy storage properties of pure perovskite lead-free BCZT, BTSn, and BTSn-BCZT ferroelectric ceramics have been investigated. Rietveld refinement of XRD data confirms the coexistence of the rhombohedral and orthorhombic phases at room temperature in the composite BCZT–BTSn ceramic. Remarkably, an improved recoverable energy density of 137.86 mJ/cm³ and a high energy storage efficiency of 86.19 % at 80°C under a moderate applied electric field of 30 kV/cm were achieved in the designed BCZT–BTSn ceramic. Besides, the sample exhibits excellent thermal stability of the energy storage efficiency (less than 3%) in the temperature range of 70 to 130 °C under 30 kV/cm. Such results make the pb-free BCZT–BTSn ferroelectric ceramic a very promising potential matrix for energy storage capacitor applications.

Keywords: sol-gel, ferroelectrics, lead-free, perovskites, energy storage

Procedia PDF Downloads 79
1826 Understanding Governance of Biodiversity-Supporting and Edible Landscapes Using Network Analysis in a Fast Urbanising City of South India

Authors: M. Soubadra Devy, Savitha Swamy, Chethana V. Casiker

Abstract:

Sustainable smart cities are emerging as an important concept in response to the exponential rise in the world’s urbanizing population. While earlier, only technical, economic and governance based solutions were considered, more and more layers are being added in recent times. With the prefix of 'sustainability', solutions which help in judicious use of resources without negatively impacting the environment have become critical. We present a case study of Bangalore city which has transformed from being a garden city and pensioners' paradise to being an IT city with a huge, young population from different regions and diverse cultural backgrounds. This has had a big impact on the green spaces in the city and the biodiversity that they support, as well as on farming/gardening practices. Edible landscapes comprising farms lands, home gardens and neighbourhood parks (NPs henceforth) were examined. The land prices of areas having NPs were higher than those that did not indicate an appreciation of their aesthetic value. NPs were part of old and new residential areas largely managed by the municipality. They comprised manicured gardens which were similar in vegetation structure and composition. Results showed that NPs that occurred in higher density supported reasonable levels of biodiversity. In situations where NPs occurred in lower density, the presence of a larger green space such as a heritage park or botanical garden enhanced the biodiversity of these parks. In contrast, farm lands and home gardens which were common within the city are being lost at an unprecedented scale to developmental projects. However, there is also the emergence of a 'neo-culture' of home-gardening that promotes 'locovory' or consumption of locally grown food as a means to a sustainable living and reduced carbon footprint. This movement overcomes the space constraint by using vertical and terrace gardening techniques. Food that is grown within cities comprises of vegetables and fruits which are largely pollinator dependent. This goes hand in hand with our landscape-level study that has shown that cities support pollinator diversity. Maintaining and improving these man-made ecosystems requires analysing the functioning and characteristics of the existing structures of governance. Social network analysis tool was applied to NPs to examine relationships, between actors and ties. The management structures around NPs, gaps, and means to strengthen the networks from the current state to a near-ideal state were identified for enhanced services. Learnings from NPs were used to build a hypothetical governance structure and functioning of integrated governance of NPs and edible landscapes to enhance ecosystem services such as biodiversity support, food production, and aesthetic value. They also contribute to the sustainability axis of smart cities.

Keywords: biodiversity support, ecosystem services, edible green spaces, neighbourhood parks, sustainable smart city

Procedia PDF Downloads 138
1825 Effect of Sprouting Period of Proximate Composition, Functional Properties and Mineral Content on Malted Sorghum Flour

Authors: Adebola Ajayi, Olakunle M. Makanjuola

Abstract:

Effect of sprouting period on proximate, functional and mineral properties of malted sorghum flour was evaluated. The study was carried out to determine the proximate, functional and mineral properties of sprouting period on malted sorghum flour produced. The malted sorghum flour was obtained by sorting, weighing, washing, steeping, draining, germination, drying, dry milling, sieving. Malted sorghum flour was evaluated for proximate composition, functional properties and mineral contents. Moisture, protein, fat content, crude fiber, ash contents and carbohydrate of 24 and 48 hours, were in the range of 10.50-11.0, 11.17-11.17, 1.50-4.00, 2.50-1.50, 1.50-1.54 and 73.15-70.79% respectively. Bulk density ranged between 0.64 and 0.59g/ml, water and oil absorption capacities ranged between 139.3 and 150.0 and 217.3 and 222.7g/g respectively. Calcium, Magnesium, Zinc, Iron and Manganese were also range of 12.5, 59.3-60.0, 3.22-3.25, 3.80-3.90 and 3.22-3.25 mg/100g respectively. The results indicate that the germination of red sorghum resulted in the enhancement of the nutritional quality and its functional properties.

Keywords: sprouting, sorghum, malted sorghum flour, cabinet dryer

Procedia PDF Downloads 208
1824 Outdoor Thermal Comfort Strategies: The Case of Cool Facades

Authors: Noelia L. Alchapar, Cláudia C. Pezzuto, Erica N. Correa

Abstract:

Mitigating urban overheating is key to achieving the environmental and energy sustainability of cities. The management of the optical properties of the materials that make up the urban envelope -roofing, pavement, and facades- constitutes a profitable and effective tool to improve the urban microclimate and rehabilitate urban areas. Each material that makes up the urban envelope has a different capacity to reflect received solar radiation, which alters the fraction of solar radiation absorbed by the city. However, the paradigm of increasing solar reflectance in all areas of the city without distinguishing their relative position within the urban canyon can cause serious problems of overheating and discomfort among its inhabitants. The hypothesis that supports the research postulates that not all reflective technologies that contribute to urban radiative cooling favor the thermal comfort conditions of pedestrians to equal measure. The objective of this work is to determine to what degree the management of the optical properties of the facades modifies outdoor thermal comfort, given that the mitigation potential of materials with high reflectance in facades is strongly conditioned by geographical variables and by the geometric characteristics of the urban profile aspect ratio (H/W). This research was carried out under two climatic contexts, that of the city of Mendoza-Argentina and that of the city of Campinas-Brazil, according to the Köppen climate classification: BWk and Cwa, respectively. Two areas in two different climatic contexts (Mendoza - Argentina and Campinas - Brazil) were selected. Both areas have comparable urban morphology patterns. These areas are located in a region with low horizontal building density and residential zoning. The microclimatic conditions were monitored during the summer period with temperature and humidity fixed sensors inside vial channels. The microclimate model was simulated in ENVI-Met V5. A grid resolution of 3.5 x 3.5 x 3.5m was used for both cities, totaling an area of 145x145x30 grids. Based on the validated theoretical model, ten scenarios were simulated, modifying the height of buildings and the solar reflectivity of facades. The solar reflectivity façades ranges were: low (0.3) and high (0.75). The density scenarios range from 1th to the 5th level. The study scenarios' performance was assessed by comparing the air temperature, physiological equivalent temperature (PET), and thermal climate index (UTCI). As a result, it is observed that the behavior of the materials of the urban outdoor space depends on complex interactions. Many urban environmental factors influence including constructive characteristics, urban morphology, geographic locations, local climate, and so forth. The role of the vertical urban envelope is decisive for the reduction of urban overheating. One of the causes of thermal gain is the multiple reflections within the urban canyon, which affects not only the air temperature but also the pedestrian thermal comfort. One of the main findings of this work leads to the remarkable importance of considering both the urban warming and the thermal comfort aspects of pedestrians in urban mitigation strategies.

Keywords: materials facades, solar reflectivity, thermal comfort, urban cooling

Procedia PDF Downloads 92
1823 Adsorption of Phenolic Compounds on Activated Carbon DSAC36-24

Authors: Khaoula Hidouri, Ali Benhmidene, Bechir Chouachi, Dhananjay R. Mishra, Ammar Houas

Abstract:

Activated carbon DSAC36-24 iy is adsorbent materials, characterized by a specific surface area of 548.13 m²g⁻¹. Their manufacture uses the natural raw materials like the nucleus of dates. In this study the treatment is done in two stages: A chemical treatment by H3PO4 followed by a physical treatment under nitrogen for 1 hour then under stream of CO2 for 24 hours. A characterization of the various parameters was determined such as the measurement of the specific surface area, determination of pHPZC, bulk density, iodine value. The study of the adsorption of organic molecules (hydroquinone, paranitrophenol, 2,4-dinitrophenol, 2,4,6-trinitrophenol) indicates that the adsorption phenomena are essentially due to the van der Waals interaction. In the case of organic molecules carrying the polar substituents, the existence of hydrogen bonds is also proved by the donor-acceptor forces. The study of the pH effect was done with modeling by different models (Langmuir, Freundlich, Langmuir-Freundlich, Redlich-Peterson), a kinetic treatment is also followed by the application of Lagergren, Weber, Macky.

Keywords: adsoprtion ishoterms, adsorption kinetics, DSAC36-24, organic molecule

Procedia PDF Downloads 279
1822 Econophysics: The Use of Entropy Measures in Finance

Authors: Muhammad Sheraz, Vasile Preda, Silvia Dedu

Abstract:

Concepts of econophysics are usually used to solve problems related to uncertainty and nonlinear dynamics. In the theory of option pricing the risk neutral probabilities play very important role. The application of entropy in finance can be regarded as the extension of both information entropy and the probability entropy. It can be an important tool in various financial methods such as measure of risk, portfolio selection, option pricing and asset pricing. Gulko applied Entropy Pricing Theory (EPT) for pricing stock options and introduced an alternative framework of Black-Scholes model for pricing European stock option. In this article, we present solutions to maximum entropy problems based on Tsallis, Weighted-Tsallis, Kaniadakis, Weighted-Kaniadakies entropies, to obtain risk-neutral densities. We have also obtained the value of European call and put in this framework.

Keywords: option pricing, Black-Scholes model, Tsallis entropy, Kaniadakis entropy, weighted entropy, risk-neutral density

Procedia PDF Downloads 303
1821 Corrosion Protective Coatings in Machines Design

Authors: Cristina Diaz, Lucia Perez, Simone Visigalli, Giuseppe Di Florio, Gonzalo Fuentes, Roberto Canziani, Paolo Gronchi

Abstract:

During the last 50 years, the selection of materials is one of the main decisions in machine design for different industrial applications. It is due to numerous physical, chemical, mechanical and technological factors to consider in it. Corrosion effects are related with all of these factors and impact in the life cycle, machine incidences and the costs for the life of the machine. Corrosion affects the deterioration or destruction of metals due to the reaction with the environment, generally wet. In food industry, dewatering industry, concrete industry, paper industry, etc. corrosion is an unsolved problem and it might introduce some alterations of some characteristics in the final product. Nowadays, depending on the selected metal, its surface and its environment of work, corrosion prevention might be a change of metal, use a coating, cathodic protection, use of corrosion inhibitors, etc. In the vast majority of the situations, use of a corrosion resistant material or in its defect, a corrosion protection coating is the solution. Stainless steels are widely used in machine design, because of their strength, easily cleaned capacity, corrosion resistance and appearance. Typical used are AISI 304 and AISI 316. However, their benefits don’t fit every application, and some coatings are required against corrosion such as some paintings, galvanizing, chrome plating, SiO₂, TiO₂ or ZrO₂ coatings, etc. In this work, some coatings based in a bilayer made of Titanium-Tantalum, Titanium-Niobium, Titanium-Hafnium or Titanium-Zirconium, have been developed used magnetron sputtering configuration by PVD (Physical Vapor Deposition) technology, for trying to reduce corrosion effects on AISI 304, AISI 316 and comparing it with Titanium alloy substrates. Ti alloy display exceptional corrosion resistance to chlorides, sour and oxidising acidic media and seawater. In this study, Ti alloy (99%) has been included for comparison with coated AISI 304 and AISI 316 stainless steel. Corrosion tests were conducted by a Gamry Instrument under ASTM G5-94 standard, using different electrolytes such as tomato salsa, wine, olive oil, wet compost, a mix of sand and concrete with water and NaCl for testing corrosion in different industrial environments. In general, in all tested environments, the results showed an improvement of corrosion resistance of all coated AISI 304 and AISI 316 stainless steel substrates when they were compared to uncoated stainless steel substrates. After that, comparing these results with corrosion studies on uncoated Ti alloy substrate, it was observed that in some cases, coated stainless steel substrates, reached similar current density that uncoated Ti alloy. Moreover, Titanium-Zirconium and Titanium-Tantalum coatings showed for all substrates in study including coated Ti alloy substrates, a reduction in current density more than two order in magnitude. As conclusion, Ti-Ta, Ti-Zr, Ti-Nb and Ti-Hf coatings have been developed for improving corrosion resistance of AISI 304 and AISI 316 materials. After corrosion tests in several industry environments, substrates have shown improvements on corrosion resistance. Similar processes have been carried out in Ti alloy (99%) substrates. Coated AISI 304 and AISI 316 stainless steel, might reach similar corrosion protection on the surface than uncoated Ti alloy (99%). Moreover, coated Ti Alloy (99%) might increase its corrosion resistance using these coatings.

Keywords: coatings, corrosion, PVD, stainless steel

Procedia PDF Downloads 158
1820 A Density Functional Theory Computational Study on the Inhibiting Action of Some Derivatives of 1,8-Bis(Benzylideneamino)Naphthalene against Aluminum Corrosion

Authors: Taher S. Ababneh, Taghreed M. A. Jazzazi, Tareq M. A. Alshboul

Abstract:

The inhibiting action against aluminum corrosion by three derivatives of 1,8-bis (benzylideneamino) naphthalene (BN) Schiff base has been investigated by means of DFT quantum chemical calculations at the B3LYP/6-31G(d) level of theory. The derivatives (CBN, NBN and MBN) were prepared from the condensation reaction of 1,8-diaminonaphthalene with substituted benzaldehyde (4-CN, 3-NO₂ and 3,4-(OMe)₂, respectively). Calculations were conducted to study the adsorption of each Schiff base on aluminum surface to evaluate its potential as a corrosion inhibitor. The computational structural features and electronic properties of each derivative such as relative energies and energies of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) have been reported. Thermodynamic functions and quantum chemical parameters such as the hardness of the inhibitor, the softness and the electrophilicity index were calculated to determine the derivative of the highest inhibition efficiency.

Keywords: corrosion, aluminum, DFT calculation, 1, 8-diaminonaphthalene, benzaldehyde

Procedia PDF Downloads 347
1819 Li-Ion Batteries vs. Synthetic Natural Gas: A Life Cycle Analysis Study on Sustainable Mobility

Authors: Guido Lorenzi, Massimo Santarelli, Carlos Augusto Santos Silva

Abstract:

The growth of non-dispatchable renewable energy sources in the European electricity generation mix is promoting the research of technically feasible and cost-effective solutions to make use of the excess energy, produced when the demand is low. The increasing intermittent renewable capacity is becoming a challenge to face especially in Europe, where some countries have shares of wind and solar on the total electricity produced in 2015 higher than 20%, with Denmark around 40%. However, other consumption sectors (mainly transportation) are still considerably relying on fossil fuels, with a slow transition to other forms of energy. Among the opportunities for different mobility concepts, electric (EV) and biofuel-powered vehicles (BPV) are the options that currently appear more promising. The EVs are targeting mainly the light duty users because of their zero (Full electric) or reduced (Hybrid) local emissions, while the BPVs encourage the use of alternative resources with the same technologies (thermal engines) used so far. The batteries which are applied to EVs are based on ions of Lithium because of their overall good performance in energy density, safety, cost and temperature performance. Biofuels, instead, can be various and the major difference is in their physical state (liquid or gaseous). In this study gaseous biofuels are considered and, more specifically, Synthetic Natural Gas (SNG) produced through a process of Power-to-Gas consisting in an electrochemical upgrade (with Solid Oxide Electrolyzers) of biogas with CO2 recycling. The latter process combines a first stage of electrolysis, where syngas is produced, and a second stage of methanation in which the product gas is turned into methane and then made available for consumption. A techno-economic comparison between the two alternatives is possible, but it does not capture all the different aspects involved in the two routes for the promotion of a more sustainable mobility. For this reason, a more comprehensive methodology, i.e. Life Cycle Assessment, is adopted to describe the environmental implications of using excess electricity (directly or indirectly) for new vehicle fleets. The functional unit of the study is 1 km and the two options are compared in terms of overall CO2 emissions, both considering Cradle to Gate and Cradle to Grave boundaries. Showing how production and disposal of materials affect the environmental performance of the analyzed routes is useful to broaden the perspective on the impacts that different technologies produce, in addition to what is emitted during the operational life. In particular, this applies to batteries for which the decommissioning phase has a larger impact on the environmental balance compared to electrolyzers. The lower (more than one order of magnitude) energy density of Li-ion batteries compared to SNG implies that for the same amount of energy used, more material resources are needed to obtain the same effect. The comparison is performed in an energy system that simulates the Western European one, in order to assess which of the two solutions is more suitable to lead the de-fossilization of the transport sector with the least resource depletion and the mildest consequences for the ecosystem.

Keywords: electrical energy storage, electric vehicles, power-to-gas, life cycle assessment

Procedia PDF Downloads 178
1818 The Key Role of Yttrium Oxide on Devitrification Resilience of Barium Gallo-germanate Glasses: Physicochemical Properties and Crystallization Study

Authors: Samar Aoujia, Théo Guérineaub, Rayan Zaitera, Evelyne Fargina, Younès Messaddeqb, Thierry Cardinala

Abstract:

Two barium gallo-germanate glass series were elaborated to investigate the effect of the yttrium introduction on the glass physicochemical properties and crystallization behavior. One to twenty mol% of YO3/2 were either added into the glass matrix or substituted for gallium oxide. The glass structure was studied by Raman spectroscopy, and the thermal, optical, thermo-mechanical and physical properties are examined. The introduction of yttrium ions in both glass series increases the glass transition temperature, crystallization temperature, softening temperature, coefficient of linear thermal expansion and density. Through differential scanning calorimetry and X-ray diffraction analyses, it was found that competition occurs between the gallo-germanate zeolite-type phase and the yttrium-containing phase. From 13 mol% of YO3/2, the yttrium introduction impedes the formation of surface crystallization in these glasses.

Keywords: photonic, heavy-metal oxide, glass, crystallization

Procedia PDF Downloads 145
1817 Study on the Dynamic Characteristics Change of Welded Beam Due to Vibration Aging

Authors: S. H. Bae, D. W. Cho, W. B. Jeong, J. R. Cho

Abstract:

Fatigue fracture of an aluminum welded structure is a phenomenon frequently occurring from pores in a weld. In order to grasp the state of the welded structure in operation in real time, the acceleration signal of the structure is measured. At this time, the vibration characteristic of the signal according to the fatigue load is an important parameter of the state diagnosis. This paper was an experimental study on the variation of vibration characteristics of welded beams with vibration aging (especially bending vibration). First simple beams were produced according to welding conditions. Each beam was vibrated and measured beam's PSD (power spectral density) according to the degree of aging. Also, modal testing was conducted to compare the transfer functions of welded beams. Testing result shows that the natural frequencies of the beam changed with the vibration aging due to the change of stiffness in welding part and its stiffness was estimated by the finite element method.

Keywords: modal testing, natural frequency, vibration aging, welded structure

Procedia PDF Downloads 483
1816 Impact of Slenderness Ratios on the Seismic Behavior of Reinforced Concrete Buildings

Authors: Juan Bojórquez, F. de Jesús Merino, Edén Bojórquez, Mario Llanez-Tizoc, Federico Valenzuela-Beltrán, Mario R. Flores, J. Ramón Gaxiola-Camacho, Henry Reyes

Abstract:

As urban populations continue to grow, the demand for higher housing density in large cities has led to increased use of slender buildings to maximize limited land availability. However, structures with high slenderness ratios face significant challenges related to their resistance capacity and lateral stiffness, particularly in seismic conditions. This study evaluates the seismic behavior of four reinforced concrete frame buildings with varying slenderness ratios situated on soft soil in Mexico City. Utilizing step-by-step nonlinear dynamic analysis, the research compares the seismic performance of these buildings, presenting detailed results, conclusions, and recommendations for enhancing the earthquake resistance of slender structures.

Keywords: dynamic analysis, reinforced concrete buildings, seismic behavior, slenderness ratio

Procedia PDF Downloads 24
1815 High-Intensity, Short-Duration Electric Pulses Induced Action Potential in Animal Nerves

Authors: Jiahui Song, Ravindra P. Joshi

Abstract:

The use of high-intensity, short-duration electric pulses is a promising development with many biomedical applications. The uses include irreversible electroporation for killing abnormal cells, reversible poration for drug and gene delivery, neuromuscular manipulation, and the shrinkage of tumors, etc. High intensity, short-duration electric pulses result in the creation of high-density, nanometer-sized pores in the cellular membrane. This electroporation amounts to localized modulation of the transverse membrane conductance, and effectively provides a voltage shunt. The electrically controlled changes in the trans-membrane conductivity could be used to affect neural traffic and action potential propagation. A rat was taken as the representative example in this research. The simulation study shows the pathway from the sensorimotor cortex down to the spinal motoneurons, and effector muscles could be reversibly blocked by using high-intensity, short-duration electrical pulses. Also, actual experimental observations were compared against simulation predictions.

Keywords: action potential, electroporation, high-intensity, short-duration

Procedia PDF Downloads 269
1814 Magnetic Simulation of the Underground Electric Cable in the Presence of a Short Circuit and Harmonics

Authors: Ahmed Nour El Islam Ayad, Wafa Krika, Abdelghani Ayad, Moulay Larab, Houari Boudjella, Farid Benhamida

Abstract:

The purpose of this study is to evaluate the magnetic emission of underground electric cable of high voltage, because these power lines generate electromagnetic interaction with other objects near to it. The aim of this work shows a numerical simulation of the magnetic field of buried 400 kV line in three cases: permanent and transient states of short circuit and the last case with the presence of the harmonics at different positions as a function of time variation, with finite element resolution using Comsol Multiphysics software. The results obtained showed that the amplitude and distribution of the magnetic flux density change in the transient state and the presence of harmonics. The results of this work calculate the magnetic field generated by the underground lines in order to evaluate and know their impact on ecology and health.

Keywords: underground, electric power cables, cables crossing, harmonic, emission

Procedia PDF Downloads 229
1813 Heterogeneity, Asymmetry and Extreme Risk Perception; Dynamic Evolution Detection From Implied Risk Neutral Density

Authors: Abderrahmen Aloulou, Younes Boujelbene

Abstract:

The current paper displays a new method of extracting information content from options prices by eliminating biases caused by daily variation of contract maturity. Based on Kernel regression tool, this non-parametric technique serves to obtain a spectrum of interpolated options with constant maturity horizons from negotiated optional contracts on the S&P TSX 60 index. This method makes it plausible to compare daily risk neutral densities from which extracting time continuous indicators allows the detection traders attitudes’ evolution, such as, belief homogeneity, asymmetry and extreme Risk Perception. Our findings indicate that the applied method contribute to develop effective trading strategies and to adjust monetary policies through controlling trader’s reactions to economic and monetary news.

Keywords: risk neutral densities, kernel, constant maturity horizons, homogeneity, asymmetry and extreme risk perception

Procedia PDF Downloads 486