Search results for: corporate credit rating prediction
2251 Artificial Neural Network Approach for GIS-Based Soil Macro-Nutrients Mapping
Authors: Shahrzad Zolfagharnassab, Abdul Rashid Mohamed Shariff, Siti Khairunniza Bejo
Abstract:
Conventional methods for nutrient soil mapping are based on laboratory tests of samples that are obtained from surveys. The time and cost involved in gathering and analyzing soil samples are the reasons that researchers use Predictive Soil Mapping (PSM). PSM can be defined as the development of a numerical or statistical model of the relationship among environmental variables and soil properties, which is then applied to a geographic database to create a predictive map. Kriging is a group of geostatistical techniques to spatially interpolate point values at an unobserved location from observations of values at nearby locations. The main problem with using kriging as an interpolator is that it is excessively data-dependent and requires a large number of closely spaced data points. Hence, there is a need to minimize the number of data points without sacrificing the accuracy of the results. In this paper, an Artificial Neural Networks (ANN) scheme was used to predict macronutrient values at un-sampled points. ANN has become a popular tool for prediction as it eliminates certain difficulties in soil property prediction, such as non-linear relationships and non-normality. Back-propagation multilayer feed-forward network structures were used to predict nitrogen, phosphorous and potassium values in the soil of the study area. A limited number of samples were used in the training, validation and testing phases of ANN (pattern reconstruction structures) to classify soil properties and the trained network was used for prediction. The soil analysis results of samples collected from the soil survey of block C of Sawah Sempadan, Tanjung Karang rice irrigation project at Selangor of Malaysia were used. Soil maps were produced by the Kriging method using 236 samples (or values) that were a combination of actual values (obtained from real samples) and virtual values (neural network predicted values). For each macronutrient element, three types of maps were generated with 118 actual and 118 virtual values, 59 actual and 177 virtual values, and 30 actual and 206 virtual values, respectively. To evaluate the performance of the proposed method, for each macronutrient element, a base map using 236 actual samples and test maps using 118, 59 and 30 actual samples respectively produced by the Kriging method. A set of parameters was defined to measure the similarity of the maps that were generated with the proposed method, termed the sample reduction method. The results show that the maps that were generated through the sample reduction method were more accurate than the corresponding base maps produced through a smaller number of real samples. For example, nitrogen maps that were produced from 118, 59 and 30 real samples have 78%, 62%, 41% similarity, respectively with the base map (236 samples) and the sample reduction method increased similarity to 87%, 77%, 71%, respectively. Hence, this method can reduce the number of real samples and substitute ANN predictive samples to achieve the specified level of accuracy.Keywords: artificial neural network, kriging, macro nutrient, pattern recognition, precision farming, soil mapping
Procedia PDF Downloads 702250 Combating Corruption to Enhance Learner Academic Achievement: A Qualitative Study of Zimbabwean Public Secondary Schools
Authors: Onesmus Nyaude
Abstract:
The aim of the study was to investigate participants’ views on how corruption can be combated to enhance learner academic achievement. The study was undertaken on three select public secondary institutions in Zimbabwe. This study also focuses on exploring the various views of educators; parents and the learners on the role played by corruption in perpetuating the seemingly existing learner academic achievement disparities in various educational institutions. The study further interrogates and examines the nexus between the prevalence of corruption in schools and the subsequent influence on the academic achievement of learners. Corruption is considered a form of social injustice; hence in Zimbabwe, the general consensus is that it is perceived rife to the extent that it is overtaking the traditional factors that contributed to the poor academic achievement of learners. Coupled to this, have been the issue of gross abuse of power and some malpractices emanating from concealment of essential and official transactions in the conduct of business. Through proposing robust anti-corruption mechanisms, teaching and learning resources poured in schools would be put into good use. This would prevent the unlawful diversion and misappropriation of the resources in question which has always been the culture. This study is of paramount significance to curriculum planners, teachers, parents, and learners. The study was informed by the interpretive paradigm; thus qualitative research approaches were used. Both probability and non-probability sampling techniques were adopted in ‘site and participants’ selection. A representative sample of (150) participants was used. The study found that the majority of the participants perceived corruption as a social problem and a human right threat affecting the quality of teaching and learning processes in the education sector. It was established that corruption prevalence within institutions is as a result of the perpetual weakening of ethical values and other variables linked to upholding of ‘Ubuntu’ among general citizenry. It was further established that greediness and weak systems are major causes of rampant corruption within institutions of higher learning and are manifesting through abuse of power, bribery, misappropriation and embezzlement of material and financial resources. Therefore, there is great need to collectively address the problem of corruption in educational institutions and society at large. The study additionally concludes that successful combating of corruption will promote successful moral development of students as well as safeguarding their human rights entitlements. The study recommends the adoption of principles of good corporate governance within educational institutions in order to successfully curb corruption. The study further recommends the intensification of interventionist strategies and strengthening of systems in educational institutions as well as regular audits to overcome the problem associated with rampant corruption cases.Keywords: academic achievement, combating, corruption, good corporate governance, qualitative study
Procedia PDF Downloads 2432249 Evaluation of Fuel Properties of Six Tropical Hardwood Timber Species for Briquettes
Authors: Stephen J. Mitchual, Kwasi Frimpong-Mensah, Nicholas A. Darkwa
Abstract:
The fuel potential of six tropical hardwood species namely: Triplochiton scleroxylon, Ceiba pentandra, Aningeria robusta, Terminalia superba, Celtis mildbreadii and Piptadenia africana were studied. Properties studied include the species density, gross calorific value, volatile matter, ash, organic carbon, N, H, S, Cu, Pb, As and Cd content. Fuel properties were determined using standard laboratory methods. The result indicates that the Gross Calorific Value (GCV) of the species ranged from 20.16 to 22.22 MJ/kg and they slightly varied from each other. Additionally, the GCV of the biomass materials were higher than that of other biomass materials like; wheat straw, rice straw, maize straw and sugar cane. The ash and volatile matter content varied from 0.6075 to 5.0407%, and 75.23% to 83.70% respectively. The overall rating of the properties of the six biomass materials suggest that Piptadenia africana has the best fuel property to be used as briquettes and Aningeria robusta the worse. This study therefore suggests that a holistic assessment of a biomass material needs to be done before selecting it for fuel purpose.Keywords: ash content, briquette, calorific value, elemental composition, species, volatile matter
Procedia PDF Downloads 4202248 Modification of Rk Equation of State for Liquid and Vapor of Ammonia by Genetic Algorithm
Authors: S. Mousavian, F. Mousavian, V. Nikkhah Rashidabad
Abstract:
Cubic equations of state like Redlich–Kwong (RK) EOS have been proved to be very reliable tools in the prediction of phase behavior. Despite their good performance in compositional calculations, they usually suffer from weaknesses in the predictions of saturated liquid density. In this research, RK equation was modified. The result of this study shows that modified equation has good agreement with experimental data.Keywords: equation of state, modification, ammonia, genetic algorithm
Procedia PDF Downloads 3822247 Deep Learning Prediction of Residential Radon Health Risk in Canada and Sweden to Prevent Lung Cancer Among Non-Smokers
Authors: Selim M. Khan, Aaron A. Goodarzi, Joshua M. Taron, Tryggve Rönnqvist
Abstract:
Indoor air quality, a prime determinant of health, is strongly influenced by the presence of hazardous radon gas within the built environment. As a health issue, dangerously high indoor radon arose within the 20th century to become the 2nd leading cause of lung cancer. While the 21st century building metrics and human behaviors have captured, contained, and concentrated radon to yet higher and more hazardous levels, the issue is rapidly worsening in Canada. It is established that Canadians in the Prairies are the 2nd highest radon-exposed population in the world, with 1 in 6 residences experiencing 0.2-6.5 millisieverts (mSv) radiation per week, whereas the Canadian Nuclear Safety Commission sets maximum 5-year occupational limits for atomic workplace exposure at only 20 mSv. This situation is also deteriorating over time within newer housing stocks containing higher levels of radon. Deep machine learning (LSTM) algorithms were applied to analyze multiple quantitative and qualitative features, determine the most important contributory factors, and predicted radon levels in the known past (1990-2020) and projected future (2021-2050). The findings showed gradual downwards patterns in Sweden, whereas it would continue to go from high to higher levels in Canada over time. The contributory factors found to be the basement porosity, roof insulation depthness, R-factor, and air dynamics of the indoor environment related to human window opening behaviour. Building codes must consider including these factors to ensure adequate indoor ventilation and healthy living that can prevent lung cancer in non-smokers.Keywords: radon, building metrics, deep learning, LSTM prediction model, lung cancer, canada, sweden
Procedia PDF Downloads 1122246 The Term Spread Impact on Economic Activity for Transition Economies: Case of Georgia
Authors: L. Totladze
Abstract:
The role of financial sector in supporting economic growth and development is well acknowledged. The term spread (the difference between the yields on long-term and short-term Treasury securities) has been found useful for predicting economic variables as output growth, inflation, industrial production, consumption. The temp spread is one of the leading economic indicators according to NBER methodology. Leading economic indicators are widely used in forecasting of economic activity. Many empirical studies find that the term spread predicts future economic activity. The article shortly explains how the term spread might predict future economic activity. This paper analyses the dynamics of the spread between short and long-term interest rates in countries with transition economies. The research paper analyses term spread dynamics in Georgia and compare it with post-communist countries and transition economies spread dynamics. In Georgia, the banking sector plays an important and dominant role in the financial sector, especially with respect to the mobilization of savings and provision of credit and may impact on economic activity. For this purpose, we study the impact of the term spread on economic growth in Georgia.Keywords: forecasting, leading economic indicators, term spread, transition economies
Procedia PDF Downloads 1762245 Earthquake Identification to Predict Tsunami in Andalas Island, Indonesia Using Back Propagation Method and Fuzzy TOPSIS Decision Seconder
Authors: Muhamad Aris Burhanudin, Angga Firmansyas, Bagus Jaya Santosa
Abstract:
Earthquakes are natural hazard that can trigger the most dangerous hazard, tsunami. 26 December 2004, a giant earthquake occurred in north-west Andalas Island. It made giant tsunami which crushed Sumatra, Bangladesh, India, Sri Lanka, Malaysia and Singapore. More than twenty thousand people dead. The occurrence of earthquake and tsunami can not be avoided. But this hazard can be mitigated by earthquake forecasting. Early preparation is the key factor to reduce its damages and consequences. We aim to investigate quantitatively on pattern of earthquake. Then, we can know the trend. We study about earthquake which has happened in Andalas island, Indonesia one last decade. Andalas is island which has high seismicity, more than a thousand event occur in a year. It is because Andalas island is in tectonic subduction zone of Hindia sea plate and Eurasia plate. A tsunami forecasting is needed to mitigation action. Thus, a Tsunami Forecasting Method is presented in this work. Neutral Network has used widely in many research to estimate earthquake and it is convinced that by using Backpropagation Method, earthquake can be predicted. At first, ANN is trained to predict Tsunami 26 December 2004 by using earthquake data before it. Then after we get trained ANN, we apply to predict the next earthquake. Not all earthquake will trigger Tsunami, there are some characteristics of earthquake that can cause Tsunami. Wrong decision can cause other problem in the society. Then, we need a method to reduce possibility of wrong decision. Fuzzy TOPSIS is a statistical method that is widely used to be decision seconder referring to given parameters. Fuzzy TOPSIS method can make the best decision whether it cause Tsunami or not. This work combines earthquake prediction using neural network method and using Fuzzy TOPSIS to determine the decision that the earthquake triggers Tsunami wave or not. Neural Network model is capable to capture non-linear relationship and Fuzzy TOPSIS is capable to determine the best decision better than other statistical method in tsunami prediction.Keywords: earthquake, fuzzy TOPSIS, neural network, tsunami
Procedia PDF Downloads 4952244 Assess and Improve Building Energy Efficiency– a Case Study on the Office of Research and Graduate Studies at Qatar University
Authors: Mohamed Youssef
Abstract:
The proliferation of energy consumption in the built environment has made energy efficiency and savings strategies a priority objective for energy policies in most countries. Qatar is a clear example, where it has initiated several programs and institutions to mitigate the overuse of electricity consumption and control the energy load of the building by following global standards and spreading awareness campaigns. A Case study on the Office of Research and Graduate Studies at Qatar University has been investigated in this paper. The paper studied the rating load of existing buildings before and after retrofitting by using Carrier’s Hourly Analysis Program (HAP). The performance of the building has increased especially after using the LED light system instead of fluorescent light with a low payback period. GINAN paint and green roof have shown a considerable contribution to the reduction of electrical load in the building. In comparison, the double HR window had the least effect on the reduction of electricity consumption.Keywords: energy conservation in Qatar, HAP, LED light, GINAN paint, green roof, double HR window
Procedia PDF Downloads 1722243 The Importance of Functioning and Disability Status Follow-Up in People with Multiple Sclerosis
Authors: Sanela Slavkovic, Congor Nad, Spela Golubovic
Abstract:
Background: The diagnosis of multiple sclerosis (MS) is a major life challenge and has repercussions on all aspects of the daily functioning of those attained by it – personal activities, social participation, and quality of life. Regular follow-up of only the neurological status is not informative enough so that it could provide data on the sort of support and rehabilitation that is required. Objective: The aim of this study was to establish the current level of functioning of persons attained by MS and the factors that influence it. Methods: The study was conducted in Serbia, on a sample of 108 persons with relapse-remitting form of MS, aged 20 to 53 (mean 39.86 years; SD 8.20 years). All participants were fully ambulatory. Methods applied in the study include Expanded Disability Status Scale-EDSS and World Health Organization Disability Assessment Schedule, WHODAS 2.0 (36-item version, self-administered). Results: Participants were found to experience the most problems in the domains of Participation, Mobility, Life activities and Cognition. The least difficulties were found in the domain of Self-care. Symptom duration was the only control variable with a significant partial contribution to the prediction of the WHODAS scale score (β=0.30, p < 0.05). The total EDSS score correlated with the total WHODAS 2.0 score (r=0.34, p=0.00). Statistically significant differences in the domain of EDSS 0-5.5 were found within categories (0-1.5; 2-3.5; 4-5.5). The more pronounced a participant’s EDSS score was, although not indicative of large changes in the neurological status, the more apparent the changes in the functional domain, i.e. in all areas covered by WHODAS 2.0. Pyramidal (β=0.34, p < 0.05) and Bowel and bladder (β=0.24, p < 0.05) functional systems were found to have a significant partial contribution to the prediction of the WHODAS score. Conclusion: Measuring functioning and disability is important in the follow-up of persons suffering from MS in order to plan rehabilitation and define areas in which additional support is needed.Keywords: disability, functionality, multiple sclerosis, rehabilitation
Procedia PDF Downloads 1222242 Low-Voltage Multiphase Brushless DC Motor for Electric Vehicle Application
Authors: Mengesha Mamo Wogari
Abstract:
In this paper, low voltage multiphase brushless DC motor with square wave air-gap flux distribution for electric vehicle application is proposed. Ten-phase, 5 kW motor, has been designed and simulated by finite element methods demonstrating the desired high torque capability at low speed and flux weakening operation for high-speed operations. The motor torque is proportional to number of phases for a constant phase current and air-gap flux. The concept of vector control and simple space vector modulation technique is used on MATLAB to control the motor demonstrating simple switching pattern for selected number of phases. The low voltage DC and inverter output AC are desired characteristics to avoid any electric shock in the vehicle, accidentally and during abnormal conditions. The switching devices for inverter are of low-voltage rating and cost effective though their number is equal to twice the number of phases.Keywords: brushless DC motors, electric Vehicle, finite element methods, Low-voltage inverter, multiphase
Procedia PDF Downloads 1542241 A Framework for ERP Project Evaluation Based on BSC Model: A Study in Iran
Authors: Mohammad Reza Ostad Ali Naghi Kashani, Esfanji Elia
Abstract:
Nowadays, the amounts of companies which tend to have an Enterprise Resource Planning (ERP) application are increasing particularly in developing countries like Iran. ERP projects are expensive, time consuming, and complex, in addition the failure rate is high among these projects. It is important to know whether these projects could meet their goals or not. Furthermore, the area which should be improved should be identified. In this paper we made a framework to evaluate ERP projects success implementation. First, based on literature review we made a framework based on BSC model, financial, customer, processes, learning and knowledge, because of the importance of change management it was added to model. Then an organization was divided in three layers. We choose corporate, managerial, and operational levels. Then to find criteria to assess each aspect, we use Delphi method in two rounds. And for the second round we made a questionnaire and did some statistical tasks on them. Based on the statistical results some of them are accepted and others are rejected.Keywords: ERP, BSC, ERP project evaluation, IT projects
Procedia PDF Downloads 3222240 Improvement of Environment and Climate Change Canada’s Gem-Hydro Streamflow Forecasting System
Authors: Etienne Gaborit, Dorothy Durnford, Daniel Deacu, Marco Carrera, Nathalie Gauthier, Camille Garnaud, Vincent Fortin
Abstract:
A new experimental streamflow forecasting system was recently implemented at the Environment and Climate Change Canada’s (ECCC) Canadian Centre for Meteorological and Environmental Prediction (CCMEP). It relies on CaLDAS (Canadian Land Data Assimilation System) for the assimilation of surface variables, and on a surface prediction system that feeds a routing component. The surface energy and water budgets are simulated with the SVS (Soil, Vegetation, and Snow) Land-Surface Scheme (LSS) at 2.5-km grid spacing over Canada. The routing component is based on the Watroute routing scheme at 1-km grid spacing for the Great Lakes and Nelson River watersheds. The system is run in two distinct phases: an analysis part and a forecast part. During the analysis part, CaLDAS outputs are used to force the routing system, which performs streamflow assimilation. In forecast mode, the surface component is forced with the Canadian GEM atmospheric forecasts and is initialized with a CaLDAS analysis. Streamflow performances of this new system are presented over 2019. Performances are compared to the current ECCC’s operational streamflow forecasting system, which is different from the new experimental system in many aspects. These new streamflow forecasts are also compared to persistence. Overall, the new streamflow forecasting system presents promising results, highlighting the need for an elaborated assimilation phase before performing the forecasts. However, the system is still experimental and is continuously being improved. Some major recent improvements are presented here and include, for example, the assimilation of snow cover data from remote sensing, a backward propagation of assimilated flow observations, a new numerical scheme for the routing component, and a new reservoir model.Keywords: assimilation system, distributed physical model, offline hydro-meteorological chain, short-term streamflow forecasts
Procedia PDF Downloads 1302239 The Impact of COVID-19 on Antibiotic Prescribing in Primary Care in England: Evaluation and Risk Prediction of the Appropriateness of Type and Repeat Prescribing
Authors: Xiaomin Zhong, Alexander Pate, Ya-Ting Yang, Ali Fahmi, Darren M. Ashcroft, Ben Goldacre, Brian Mackenna, Amir Mehrkar, Sebastian C. J. Bacon, Jon Massey, Louis Fisher, Peter Inglesby, Kieran Hand, Tjeerd van Staa, Victoria Palin
Abstract:
Background: This study aimed to predict risks of potentially inappropriate antibiotic type and repeat prescribing and assess changes during COVID-19. Methods: With the approval of NHS England, we used the OpenSAFELY platform to access the TPP SystmOne electronic health record (EHR) system and selected patients prescribed antibiotics from 2019 to 2021. Multinomial logistic regression models predicted the patient’s probability of receiving an inappropriate antibiotic type or repeating the antibiotic course for each common infection. Findings: The population included 9.1 million patients with 29.2 million antibiotic prescriptions. 29.1% of prescriptions were identified as repeat prescribing. Those with same-day incident infection coded in the EHR had considerably lower rates of repeat prescribing (18.0%), and 8.6% had a potentially inappropriate type. No major changes in the rates of repeat antibiotic prescribing during COVID-19 were found. In the ten risk prediction models, good levels of calibration and moderate levels of discrimination were found. Important predictors included age, prior antibiotic prescribing, and region. Patients varied in their predicted risks. For sore throat, the range from 2.5 to 97.5th percentile was 2.7 to 23.5% (inappropriate type) and 6.0 to 27.2% (repeat prescription). For otitis externa, these numbers were 25.9 to 63.9% and 8.5 to 37.1%, respectively. Interpretation: Our study found no evidence of changes in the level of inappropriate or repeat antibiotic prescribing after the start of COVID-19. Repeat antibiotic prescribing was frequent and varied according to regional and patient characteristics. There is a need for treatment guidelines to be developed around antibiotic failure and clinicians provided with individualised patient information.Keywords: antibiotics, infection, COVID-19 pandemic, antibiotic stewardship, primary care
Procedia PDF Downloads 1202238 Multi-Criteria Inventory Classification Process Based on Logical Analysis of Data
Authors: Diana López-Soto, Soumaya Yacout, Francisco Ángel-Bello
Abstract:
Although inventories are considered as stocks of money sitting on shelve, they are needed in order to secure a constant and continuous production. Therefore, companies need to have control over the amount of inventory in order to find the balance between excessive and shortage of inventory. The classification of items according to certain criteria such as the price, the usage rate and the lead time before arrival allows any company to concentrate its investment in inventory according to certain ranking or priority of items. This makes the decision making process for inventory management easier and more justifiable. The purpose of this paper is to present a new approach for the classification of new items based on the already existing criteria. This approach is called the Logical Analysis of Data (LAD). It is used in this paper to assist the process of ABC items classification based on multiple criteria. LAD is a data mining technique based on Boolean theory that is used for pattern recognition. This technique has been tested in medicine, industry, credit risk analysis, and engineering with remarkable results. An application on ABC inventory classification is presented for the first time, and the results are compared with those obtained when using the well-known AHP technique and the ANN technique. The results show that LAD presented very good classification accuracy.Keywords: ABC multi-criteria inventory classification, inventory management, multi-class LAD model, multi-criteria classification
Procedia PDF Downloads 8812237 LEED Empirical Evidence in Northern and Southern Europe
Authors: Svetlana Pushkar
Abstract:
The Leadership in Energy and Environmental Design (LEED) green building rating system is recognized in Europe. LEED uses regional priority (RP) points that are adapted to different environmental conditions. However, the appropriateness of the RP points is still a controversial question. To clarify this issue, two different parts of Europe: northern Europe (Finland and Sweden) and southern Europe (Turkey and Spain) were considered. Similarities and differences in the performances of LEED 2009-new construction (LEED-NC 2009) in these four countries were analyzed. It was found that LEED-NC 2009 performances in northern and southern parts of Europe in terms of Sustainable Sites (SS), Water Efficiency (WE), Materials and Resources (MR), and Indoor Environmental Quality (EQ) were similar, whereas in Energy and Atmosphere (EA), their performances were different. WE and SS revealed high performances (70-100%); EA and EQ demonstrated intermediate performance (40-60%); and MR displayed low performance (20-40%). It should be recommended introducing the following new RP points: for Turkey - water-related points and for all four observed countries - green power-related points for improving the LEED adaptation in Europe.Keywords: green building, Europe, LEED, leadership in energy and environmental design, regional priority points
Procedia PDF Downloads 2522236 Interpretable Deep Learning Models for Medical Condition Identification
Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji
Abstract:
Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.Keywords: deep learning, interpretability, attention, big data, medical conditions
Procedia PDF Downloads 912235 Machine Learning Approaches Based on Recency, Frequency, Monetary (RFM) and K-Means for Predicting Electrical Failures and Voltage Reliability in Smart Cities
Authors: Panaya Sudta, Wanchalerm Patanacharoenwong, Prachya Bumrungkun
Abstract:
As With the evolution of smart grids, ensuring the reliability and efficiency of electrical systems in smart cities has become crucial. This paper proposes a distinct approach that combines advanced machine learning techniques to accurately predict electrical failures and address voltage reliability issues. This approach aims to improve the accuracy and efficiency of reliability evaluations in smart cities. The aim of this research is to develop a comprehensive predictive model that accurately predicts electrical failures and voltage reliability in smart cities. This model integrates RFM analysis, K-means clustering, and LSTM networks to achieve this objective. The research utilizes RFM analysis, traditionally used in customer value assessment, to categorize and analyze electrical components based on their failure recency, frequency, and monetary impact. K-means clustering is employed to segment electrical components into distinct groups with similar characteristics and failure patterns. LSTM networks are used to capture the temporal dependencies and patterns in customer data. This integration of RFM, K-means, and LSTM results in a robust predictive tool for electrical failures and voltage reliability. The proposed model has been tested and validated on diverse electrical utility datasets. The results show a significant improvement in prediction accuracy and reliability compared to traditional methods, achieving an accuracy of 92.78% and an F1-score of 0.83. This research contributes to the proactive maintenance and optimization of electrical infrastructures in smart cities. It also enhances overall energy management and sustainability. The integration of advanced machine learning techniques in the predictive model demonstrates the potential for transforming the landscape of electrical system management within smart cities. The research utilizes diverse electrical utility datasets to develop and validate the predictive model. RFM analysis, K-means clustering, and LSTM networks are applied to these datasets to analyze and predict electrical failures and voltage reliability. The research addresses the question of how accurately electrical failures and voltage reliability can be predicted in smart cities. It also investigates the effectiveness of integrating RFM analysis, K-means clustering, and LSTM networks in achieving this goal. The proposed approach presents a distinct, efficient, and effective solution for predicting and mitigating electrical failures and voltage issues in smart cities. It significantly improves prediction accuracy and reliability compared to traditional methods. This advancement contributes to the proactive maintenance and optimization of electrical infrastructures, overall energy management, and sustainability in smart cities.Keywords: electrical state prediction, smart grids, data-driven method, long short-term memory, RFM, k-means, machine learning
Procedia PDF Downloads 562234 Online Factorial Experimental Study Testing the Effectiveness of Pictorial Waterpipe-specific Health Warning Labels Compared with Text-only Labels in the United States of America
Authors: Taghrid Asfar, Olusanya J. Oluwole, Michael Schmidt, Alejandra Casas, Zoran Bursac, Wasim Maziak.
Abstract:
Waterpipe (WP) smoking (a.k.a. hookah) has increased dramatically in the US mainly due to the misperception that it is safer than cigarette smoking. Mounting evidence show that WP smoking is addictive and harmful. Health warning labels (HWLs) are effective in communicating smoking-related risks. Currently, the FDA requires that WP tobacco packages have a textual HWL about nicotine. While this represents a good step, it is inadequate given the established harm of WP smoking beyond addiction and the superior performance of pictorial HWLs over text-only ones. We developed 24 WP pictorial HWLs in a Delphi study among international expert panel. HWLs were grouped into 6 themes: addiction, harm compared to cigarettes, harm to others, health effects, quitting, and specific harms. This study aims to compare the effect of the pictorial HWLs compared to the FDA HWL, and 2) the effect of pictorial HWLs between the 6 themes. A 2x7 between/within subject online factorial experimental study was conducted among a national convenience sample of 300 (50% current WP smokers; 50% nonsmokers) US adults (females 71.1%; mean age of 31.1±3.41 years) in March 2022. The first factor varied WP smoking status (smokers, nonsmokers). The second factor varied the HWL theme and type (text, pictorial). Participants were randomized to view and rate 7 HWLs: 1 FDA text HWL (control) and 6 HWLs, one from each of the 6 themes, all presented in random order. HWLs were rated based on the message impact framework into five categories: attention, reaction (believability, relevance, fear), perceived effectiveness, intentions to quit WP among current smokers, and intention to not initiate WP among nonsmokers. measures were assessed on a 5-point Likert scale (1=not at all to 5=very much) for attention and reaction and on a 7-point Likert scale (1=not at all to 7=very much) for the perceived effectiveness and intentions to quit or not initiate WP smoking. Means and SDs of outcome measures for each HWL type and theme were calculated. Planned comparisons using Friedman test followed by pairwise Wilcoxon signed-rank test for multiple comparisons were used to examine distributional differences of outcomes between the HWL type and themes. Approximately 74.4 % of participants were non-Hispanic Whites, 68.4% had college degrees, and 41.5% were under the poverty level. Participants reported starting WTS on average at 20.3±8.19 years. Compared with the FDA text HWL, pictorial HWLs elicited higher attention (p<0.0001), fear (p<0.0001), harm perception (p<0.0003), perceived effectiveness (p<0.0001), and intentions to quit (p=0.0014) and not initiate WP smoking (p<0.0003). HWLs in theme 3 (harm to others) achieved the highest rating in attention (4.14±1), believability (4.15±0.95), overall perceived effectiveness (7.60±2.35), harm perception (7.53±2.43), and intentions to quit (7.35±2.57). HWLs in theme 2 (WP harm compared to cigarettes) achieved the highest rating in discouraging WP smoking initiation (7.32±2.54). Pictorial HWLs were superior to the FDA text-only for several communication outcomes. Pictorial HWLs related to WP harm to others and WP harm compared to cigarette are promising. These findings provide strong evidence for the potential implementation of WP-specific pictorial HWLs.Keywords: health communication, waterpipe smoking, factorial experiment, reaction, harm perception, tobacco regulations
Procedia PDF Downloads 1152233 Heart Rate Variability Analysis for Early Stage Prediction of Sudden Cardiac Death
Authors: Reeta Devi, Hitender Kumar Tyagi, Dinesh Kumar
Abstract:
In present scenario, cardiovascular problems are growing challenge for researchers and physiologists. As heart disease have no geographic, gender or socioeconomic specific reasons; detecting cardiac irregularities at early stage followed by quick and correct treatment is very important. Electrocardiogram is the finest tool for continuous monitoring of heart activity. Heart rate variability (HRV) is used to measure naturally occurring oscillations between consecutive cardiac cycles. Analysis of this variability is carried out using time domain, frequency domain and non-linear parameters. This paper presents HRV analysis of the online dataset for normal sinus rhythm (taken as healthy subject) and sudden cardiac death (SCD subject) using all three methods computing values for parameters like standard deviation of node to node intervals (SDNN), square root of mean of the sequences of difference between adjacent RR intervals (RMSSD), mean of R to R intervals (mean RR) in time domain, very low-frequency (VLF), low-frequency (LF), high frequency (HF) and ratio of low to high frequency (LF/HF ratio) in frequency domain and Poincare plot for non linear analysis. To differentiate HRV of healthy subject from subject died with SCD, k –nearest neighbor (k-NN) classifier has been used because of its high accuracy. Results show highly reduced values for all stated parameters for SCD subjects as compared to healthy ones. As the dataset used for SCD patients is recording of their ECG signal one hour prior to their death, it is therefore, verified with an accuracy of 95% that proposed algorithm can identify mortality risk of a patient one hour before its death. The identification of a patient’s mortality risk at such an early stage may prevent him/her meeting sudden death if in-time and right treatment is given by the doctor.Keywords: early stage prediction, heart rate variability, linear and non-linear analysis, sudden cardiac death
Procedia PDF Downloads 3422232 Maturity Transformation Risk Factors in Islamic Banking: An Implication of Basel III Liquidity Regulations
Authors: Haroon Mahmood, Christopher Gan, Cuong Nguyen
Abstract:
Maturity transformation risk is highlighted as one of the major causes of recent global financial crisis. Basel III has proposed new liquidity regulations for transformation function of banks and hence to monitor this risk. Specifically, net stable funding ratio (NSFR) is introduced to enhance medium- and long-term resilience against liquidity shocks. Islamic banking is widely accepted in many parts of the world and contributes to a significant portion of the financial sector in many countries. Using a dataset of 68 fully fledged Islamic banks from 11 different countries, over a period from 2005 – 2014, this study has attempted to analyze various factors that may significantly affect the maturity transformation risk in these banks. We utilize 2-step system GMM estimation technique on unbalanced panel and find bank capital, credit risk, financing, size and market power are most significant among the bank specific factors. Also, gross domestic product and inflation are the significant macro-economic factors influencing this risk. However, bank profitability, asset efficiency, and income diversity are found insignificant in determining the maturity transformation risk in Islamic banking model.Keywords: Basel III, Islamic banking, maturity transformation risk, net stable funding ratio
Procedia PDF Downloads 4152231 Impact of Similarity Ratings on Human Judgement
Authors: Ian A. McCulloh, Madelaine Zinser, Jesse Patsolic, Michael Ramos
Abstract:
Recommender systems are a common artificial intelligence (AI) application. For any given input, a search system will return a rank-ordered list of similar items. As users review returned items, they must decide when to halt the search and either revise search terms or conclude their requirement is novel with no similar items in the database. We present a statistically designed experiment that investigates the impact of similarity ratings on human judgement to conclude a search item is novel and halt the search. 450 participants were recruited from Amazon Mechanical Turk to render judgement across 12 decision tasks. We find the inclusion of ratings increases the human perception that items are novel. Percent similarity increases novelty discernment when compared with star-rated similarity or the absence of a rating. Ratings reduce the time to decide and improve decision confidence. This suggests the inclusion of similarity ratings can aid human decision-makers in knowledge search tasks.Keywords: ratings, rankings, crowdsourcing, empirical studies, user studies, similarity measures, human-centered computing, novelty in information retrieval
Procedia PDF Downloads 1312230 Technology Angels and Entrepreneurs: Insights from a Study in Poland
Authors: Rafal Morawczynski
Abstract:
The paper presents results of a study of technology angels in Poland, who are important for the development of the high technology industries. For entrepreneurs, they offer not only capital but also expertise, engagement, and networking. A technology angel is a relatively new type of investor who invests in high-tech start-ups and supports their founders (entrepreneurs) in the development process of a new venture. Conclusions are drawn from a comparison between 8 technology angels and 7 'classical' business angels. Results present features and behaviors of technology angels that distinguish them from traditional (typical, classic) business angels. As this type of investor actively cooperates with entrepreneurs, the study focuses mainly on their perception of venture founders and several aspects of this cooperation: perception of entrepreneurs’ characteristics by angels, correction of expectations toward corporate governance, and 'value adding' activities.Keywords: business angels, entrepreneurs, Poland, start-up, technology entrepreneurship, venture capital
Procedia PDF Downloads 1892229 Comparison of Electrical Parameters of Oil-Immersed and Dry-Type Transformer Using Finite Element Method
Authors: U. Amin, A. Talib, S. A. Qureshi, M. J. Hossain, G. Ahmad
Abstract:
The choice evaluation between oil-immersed and dry-type transformers is often controlled by cost, location, and application. This paper compares the electrical performance of liquid- filled and dry-type transformers, which will assist the customer to choose the right and efficient ones for particular applications. An accurate assessment of the time-average flux density, electric field intensity and voltage distribution in an oil-insulated and a dry-type transformer have been computed and investigated. The detailed transformer modeling and analysis has been carried out to determine electrical parameter distributions. The models of oil-immersed and dry-type transformers are developed and solved by using the finite element method (FEM) to compare the electrical parameters. The effects of non-uniform and non-coherent voltage gradient, flux density and electric field distribution on the power losses and insulation properties of transformers are studied in detail. The results show that, for the same voltage and kilo-volt-ampere (kVA) rating, oil-immersed transformers have better insulation properties and less hysteresis losses than the dry-type.Keywords: finite element method, flux density, transformer, voltage gradient
Procedia PDF Downloads 2922228 Validation of Nutritional Assessment Scores in Prediction of Mortality and Duration of Admission in Elderly, Hospitalized Patients: A Cross-Sectional Study
Authors: Christos Lampropoulos, Maria Konsta, Vicky Dradaki, Irini Dri, Konstantina Panouria, Tamta Sirbilatze, Ifigenia Apostolou, Vaggelis Lambas, Christina Kordali, Georgios Mavras
Abstract:
Objectives: Malnutrition in hospitalized patients is related to increased morbidity and mortality. The purpose of our study was to compare various nutritional scores in order to detect the most suitable one for assessing the nutritional status of elderly, hospitalized patients and correlate them with mortality and extension of admission duration, due to patients’ critical condition. Methods: Sample population included 150 patients (78 men, 72 women, mean age 80±8.2). Nutritional status was assessed by Mini Nutritional Assessment (MNA full, short-form), Malnutrition Universal Screening Tool (MUST) and short Nutritional Appetite Questionnaire (sNAQ). Sensitivity, specificity, positive and negative predictive values and ROC curves were assessed after adjustment for the cause of current admission, a known prognostic factor according to previously applied multivariate models. Primary endpoints were mortality (from admission until 6 months afterwards) and duration of hospitalization, compared to national guidelines for closed consolidated medical expenses. Results: Concerning mortality, MNA (short-form and full) and SNAQ had similar, low sensitivity (25.8%, 25.8% and 35.5% respectively) while MUST had higher sensitivity (48.4%). In contrast, all the questionnaires had high specificity (94%-97.5%). Short-form MNA and sNAQ had the best positive predictive value (72.7% and 78.6% respectively) whereas all the questionnaires had similar negative predictive value (83.2%-87.5%). MUST had the highest ROC curve (0.83) in contrast to the rest questionnaires (0.73-0.77). With regard to extension of admission duration, all four scores had relatively low sensitivity (48.7%-56.7%), specificity (68.4%-77.6%), positive predictive value (63.1%-69.6%), negative predictive value (61%-63%) and ROC curve (0.67-0.69). Conclusion: MUST questionnaire is more advantageous in predicting mortality due to its higher sensitivity and ROC curve. None of the nutritional scores is suitable for prediction of extended hospitalization.Keywords: duration of admission, malnutrition, nutritional assessment scores, prognostic factors for mortality
Procedia PDF Downloads 3462227 Lecturer’s Perception of the Role of Information and Communication Technology in Office Technology and Management Programme in Polytechnics in Nigeria
Authors: Felicia Kikelomo Oluwalola
Abstract:
This study examined lecturers’ perception of the roles of Information and Communication Technology (ICT) in Office Technology and Management (OTM) programme in polytechnics, in South-West, Nigeria. Descriptive survey design was adopted in this study. Purposive sampling technique was used to select all OTM lecturers in the nine (9) Polytechnics in the South-West, Nigeria. A 4-rating scale was adopted questionnaire titled ‘Lecturers’ Perception of the Roles of ICT in OTM Programme in Polytechnics’ with a reliability index of 0.93 was used. Two research questions were answered, and one null hypothesis was tested for the study. Data collected was analysed using descriptive statistics, independent t-test and one way Analysis of Variance (ANOVA) at 0.05 level of significance. The study revealed that lecturers have right perception of the roles of ICT in OTM programme in polytechnics. Also, the study revealed no significant difference between the mean perception of male and female lecturers in office technology and management. Based on the findings, the study recommended among others that recruitment of professionals in the field of ICT is necessary for effective teaching learning to be established and OTM curriculum should be constantly reviewed to enhance some ICT package that is acceptable globally.Keywords: communication, information, perception, technology
Procedia PDF Downloads 4572226 Brain-Derived Neurotrophic Factor and It's Precursor ProBDNF Serum Levels in Adolescents with Mood Disorders: 2-Year Follow-Up Study
Authors: M. Skibinska, A. Rajewska-Rager, M. Dmitrzak-Weglarz, N. Lepczynska, P. Sibilski, P. Kapelski, J. Pawlak, J. Twarowska-Hauser
Abstract:
Introduction: Neurotrophic factors have been implicated in neuropsychiatric disorders. Brain-Derived Neurotrophic Factor (BDNF) influences neuron differentiation in development as well as synaptic plasticity and neuron survival in adulthood. BDNF is widely studied in mood disorders and has been proposed as a biomarker for depression. BDNF is synthesized as precursor protein – proBDNF. Both forms are biologically active and exert opposite effects on neurons. Aim: The aim of the study was to examine the serum levels of BDNF and proBDNF in unipolar and bipolar young patients below 24 years old during hypo/manic, depressive episodes and in remission compared to healthy control group. Methods: In a prospective 2 years follow-up study, we investigated alterations in levels of BDNF and proBDNF in 79 patients (23 males, mean age 19.08, SD 3.3 and 56 females, mean age 18.39, SD 3.28) diagnosed with mood disorders: unipolar and bipolar disorder compared with 35 healthy control subjects (7 males, mean age 20.43, SD 4.23 and 28 females, mean age 21.25, SD 2.11). Clinical characteristics including mood, comorbidity, family history, and treatment, were evaluated during control visits and clinical symptoms were rated using the Hamilton Depression Rating Scale and Young Mania Rating Scale. Serum BDNF and proBDNF concentrations were determined by Enzyme-Linked Immunosorbent Assays (ELISA) method. Serum BDNF and proBDNF levels were analysed with covariates: sex, age, age > 18 and < 18 years old, family history of affective disorders, drug-free vs. medicated status. Normality of the data was tested using Shapiro-Wilk test. Levene’s test was used to calculate homogeneity of variance. Non-parametric Tests: Mann-Whitney U test, Kruskal-Wallis ANOVA, Friedman’s ANOVA, Wilcoxon signed rank test, Spearman correlation coefficient were applied in analyses The statistical significance level was set at p < 0.05. Results: BDNF and proBDNF serum levels did not differ between patients at baseline and controls as well as comparing patients in acute episode of depression/hypo/mania at baseline and euthymia (at month 3 or 6). Comparing BDNF and proBDNF levels between patients in euthymia and control group no differences have been found. Increased BDNF level in women compared to men at baseline (p=0.01) have been observed. BDNF level at baseline was negatively correlated with depression and mania occurence at 24 month (p=0.04). BDNF level at 12 month was negatively correlated with depression and mania occurence at 12 month (p=0.01). Correlation of BDNF level with sex have been detected (p=0.01). proBDNF levels at month 3, 6 and 12 negatively correlated with disease status (p=0.02, p=0.008, p=0.009, respectively). No other correlations of BDNF and proBDNF levels with clinical and demographical variables have been detected. Discussion: Our results did not show any differences in BDNF and proBDNF levels between depression, mania, euthymia, and controls. Imbalance in BDNF/proBDNF signalling may be involved in pathogenesis of mood disorders. Further studies on larger groups are recommended. Grant was founded by National Science Center in Poland no 2011/03/D/NZ5/06146.Keywords: bipolar disorder, Brain-Derived Neurotrophic Factor (BDNF), proBDNF, unipolar depression
Procedia PDF Downloads 2442225 Behind Egypt’s Financial Crisis: Dollarization
Authors: Layal Mansour
Abstract:
This paper breaks down Egypt’s financial crisis by constructing a customized financial stress index by including the vulnerable economic indicator “dollarization” as a vulnerable indicator in the credit and exchange sector. The Financial Stress Index for Egypt (FSIE) includes informative vulnerable indicators of the main financial sectors: the banking sector, the equities market, and the foreign exchange market. It is calculated on a monthly basis from 2010 to December 2022, so to report the two recent world’s most devastating financial crises: Covid 19 crisis and Ukraine-Russia War, in addition to the local 2016 and 2022 financial crises. We proceed first by a graphical analysis then by empirical analysis in running under Vector Autoregression (VAR) Model, dynamic causality tests between foreign reserves, dollarization rate, and FSIE. The graphical analysis shows that unexpectedly, Egypt’s economy seems to be immune to internal economic/political instabilities, however it is highly exposed to the foreign and exchange market. Empirical analysis confirms the graphical observations and proves that dollarization, or more precisely debt in foreign currency seems to be the main trigger of Egypt’s current financial crisis.Keywords: egypt, financial crisis, financial stress index, dollarization, VAR model, causality tests
Procedia PDF Downloads 942224 Split-Share Structure Reform and Statutory Audit Fees in China
Authors: Hsiao-Wen Wang
Abstract:
The split-share structure reform in China represents one of the most significant milestones in the evolution of the capital market. With the goal of converting non-tradable shares into tradable shares, the reform laid the foundation and supported the development of full-scale privatization. This study explores China’s split-share structure reform and its impact on statutory audit fees. This study finds that auditors earn a significant statutory audit fee premium after the split-share structure reform. The Big 4 auditors who provide better audit quality receive higher statutory audit fee premium than non-Big 4 auditors after the share reform, which is attributable to their brand reputation, rather than the relative market dominance.Keywords: chinese split-share structure reform, statutory audit fees, big-4 auditors, corporate governance
Procedia PDF Downloads 3962223 Effect of Monsoon on Ground Water Quality and Contamination: A Case Study of Narsapur-Mogalthur Mandals, West Godavari District, Andhra Pradesh, India
Authors: M. S. V. K. V. Prasad, G. Siva Praveena, P. V. V. Prasada Rao
Abstract:
It is known that the groundwater quality is very important parameter because it is the main factor determining its suitability for drinking, agricultural and industrial purposes. Water Quality Index (WQI) has been calculated for ground water samples taken from Narsapur-Mogalthur mandals, West Godavari district, Andhra Pradesh, India, from 10 different locations in the pre-monsoon season as well as post monsoon. The water samples were analyzed for pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), Total Hardness (TH), major cations like calcium, magnesium, sodium, potassium and anions like chloride, nitrate and sulphate in the laboratory using the standard methods given by the American Public Health Association (APHA). The overall quality of water in the study area is somewhat good for all constituents. Drinking water at almost all the locations was found to be slightly contaminated, except a few locations during the year 2014. It was found that some effective measures are urgently required for water quality management in this region.Keywords: Water Quality Index, Physico-chemical parameters, Quality rating, monsoon
Procedia PDF Downloads 3332222 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach
Authors: James Ladzekpo
Abstract:
Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.Keywords: diabetes, machine learning, prediction, biomarkers
Procedia PDF Downloads 55