Search results for: composite forecasting
846 Real Time Classification of Political Tendency of Twitter Spanish Users based on Sentiment Analysis
Authors: Marc Solé, Francesc Giné, Magda Valls, Nina Bijedic
Abstract:
What people say on social media has turned into a rich source of information to understand social behavior. Specifically, the growing use of Twitter social media for political communication has arisen high opportunities to know the opinion of large numbers of politically active individuals in real time and predict the global political tendencies of a specific country. It has led to an increasing body of research on this topic. The majority of these studies have been focused on polarized political contexts characterized by only two alternatives. Unlike them, this paper tackles the challenge of forecasting Spanish political trends, characterized by multiple political parties, by means of analyzing the Twitters Users political tendency. According to this, a new strategy, named Tweets Analysis Strategy (TAS), is proposed. This is based on analyzing the users tweets by means of discovering its sentiment (positive, negative or neutral) and classifying them according to the political party they support. From this individual political tendency, the global political prediction for each political party is calculated. In order to do this, two different strategies for analyzing the sentiment analysis are proposed: one is based on Positive and Negative words Matching (PNM) and the second one is based on a Neural Networks Strategy (NNS). The complete TAS strategy has been performed in a Big-Data environment. The experimental results presented in this paper reveal that NNS strategy performs much better than PNM strategy to analyze the tweet sentiment. In addition, this research analyzes the viability of the TAS strategy to obtain the global trend in a political context make up by multiple parties with an error lower than 23%.Keywords: political tendency, prediction, sentiment analysis, Twitter
Procedia PDF Downloads 238845 A Multilayer Perceptron Neural Network Model Optimized by Genetic Algorithm for Significant Wave Height Prediction
Authors: Luis C. Parra
Abstract:
The significant wave height prediction is an issue of great interest in the field of coastal activities because of the non-linear behavior of the wave height and its complexity of prediction. This study aims to present a machine learning model to forecast the significant wave height of the oceanographic wave measuring buoys anchored at Mooloolaba of the Queensland Government Data. Modeling was performed by a multilayer perceptron neural network-genetic algorithm (GA-MLP), considering Relu(x) as the activation function of the MLPNN. The GA is in charge of optimized the MLPNN hyperparameters (learning rate, hidden layers, neurons, and activation functions) and wrapper feature selection for the window width size. Results are assessed using Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). The GAMLPNN algorithm was performed with a population size of thirty individuals for eight generations for the prediction optimization of 5 steps forward, obtaining a performance evaluation of 0.00104 MSE, 0.03222 RMSE, 0.02338 MAE, and 0.71163% of MAPE. The results of the analysis suggest that the MLPNNGA model is effective in predicting significant wave height in a one-step forecast with distant time windows, presenting 0.00014 MSE, 0.01180 RMSE, 0.00912 MAE, and 0.52500% of MAPE with 0.99940 of correlation factor. The GA-MLP algorithm was compared with the ARIMA forecasting model, presenting better performance criteria in all performance criteria, validating the potential of this algorithm.Keywords: significant wave height, machine learning optimization, multilayer perceptron neural networks, evolutionary algorithms
Procedia PDF Downloads 107844 A Numerical Study on the Connection of an SC Wall to an RC Foundation
Authors: Siamak Epackachi, Andrew S. Whittaker, Amit H. Varma
Abstract:
There are a large number of methods to connect SC walls to RC foundations. An experimental study of the cyclic nonlinear behavior of SC walls in the NEES laboratory at the University at Buffalo used a connection detail involving the post-tensioning of a steel baseplate to the SC wall to a RC foundation. This type of connection introduces flexibility that influenced substantially the global response of the SC walls. The assumption of a rigid base, which would be commonly made by practitioners, would lead to a substantial overestimation of initial stiffness. This paper presents an analytical approach to characterize the rotational flexibility and to predict the initial stiffness of flexure-critical SC wall piers with baseplate connection. The good agreement between the analytical and test results confirmed the utility of the proposed method for calculating the initial stiffness of an SC wall with baseplate connection.Keywords: steel-plate composite shear wall, flexure-critical wall, cyclic loading, analytical model
Procedia PDF Downloads 340843 High Efficiency Perovskite Solar Cells Fabricated under Ambient Conditions with Mesoporous TiO2/In2O3 Scaffold
Authors: A. Apostolopoulou, D. Sygkridou, A. N. Kalarakis, E. Stathatos
Abstract:
Mesoscopic perovskite solar cells (mp-PSCs) with mesoporous bilayer were fabricated under ambient conditions. The bilayer was formed by capping the mesoporous TiO2 layer with a layer of In2O3. CH3NH3I3-xClx mixed halide perovskite was prepared through the one-step method and was used as the light absorber. The mp-PSCs with the composite TiO2/In2O3 mesoporous layer exhibited optimized electrical parameters, compared with the PSCs that employed only a TiO2 mesoporous layer, with a current density of 23.86 mA/cm2, open circuit voltage of 0.863 V, fill factor of 0.6 and a power conversion efficiency of 11.2%. These results indicate that the formation of a proper semiconductor capping layer over the basic TiO2 mesoporous layer can facilitate the electron transfer, suppress the recombination and subsequently lead to higher charge collection efficiency.Keywords: ambient conditions, high efficiency solar cells, mesoscopic perovskite solar cells, TiO₂ / In₂O₃ bilayer
Procedia PDF Downloads 270842 Magnetoelectric Effect in Polyvinylidene Fluoride Beta Phase Thin Films
Authors: Belouadah Rabah, Guyomar Daneil, Guiffard Benoit
Abstract:
The magnetoelectric (ME) materials has dielectric polarization induced by the magnetic field or induced magnetization under an electric field. A strong ME effect requires the simultaneous presence of magnetic moments and electric dipoles. In the last decades, extensive research has been conducted on the ME effect in single phase and composite materials. This article reported the results obtained with two samples, the first is mono layer of PVDF bi-stretched and the second is the multi layer PVDF bi-stretched with the Polyurethane filled with micro particles magnetic Fe3O4 (PU+2% Fe3O4). Compare with non ME material like Alumine, a large ME polarization coefficient for the two samples was obtained. The piezoelectric properties of the PVDF and elastic proprieties of Pu+2% Fe3O4 give a big linear ME coefficient of the multi layer PVDF/(Pu+2% Fe3O4) than in the monolayer of PVDF.Keywords: magnetoelectric effect, polymers, magnetic particles, composites, films
Procedia PDF Downloads 395841 Assessing the Cumulative Impact of PM₂.₅ Emissions from Power Plants by Using the Hybrid Air Quality Model and Evaluating the Contributing Salient Factor in South Taiwan
Authors: Jackson Simon Lusagalika, Lai Hsin-Chih, Dai Yu-Tung
Abstract:
Particles with an aerodynamic diameter of 2.5 meters or less are referred to as "fine particulate matter" (PM₂.₅) are easily inhaled and can go deeper into the lungs than other particles in the atmosphere, where it may have detrimental health consequences. In this study, we use a hybrid model that combined CMAQ and AERMOD as well as initial meteorological fields from the Weather Research and Forecasting (WRF) model to study the impact of power plant PM₂.₅ emissions in South Taiwan since it frequently experiences higher PM₂.₅ levels. A specific date of March 3, 2022, was chosen as a result of a power outage that prompted the bulk of power plants to shut down. In some way, it is not conceivable anywhere in the world to turn off the power for the sole purpose of doing research. Therefore, this catastrophe involving a power outage and the shutdown of power plants offers a great occasion to evaluate the impact of air pollution driven by this power sector. As a result, four numerical experiments were conducted in the study using the Continuous Emission Data System (CEMS), assuming that the power plants continued to function normally after the power outage. The hybrid model results revealed that power plants have a minor impact in the study region. However, we examined the accumulation of PM₂.₅ in the study and discovered that once the vortex at 925hPa was established and moved to the north of Taiwan's coast, the study region experienced higher observed PM₂.₅ concentrations influenced by meteorological factors. This study recommends that decision-makers take into account not only control techniques, specifically emission reductions, but also the atmospheric and meteorological implications for future investigations.Keywords: PM₂.₅ concentration, powerplants, hybrid air quality model, CEMS, Vorticity
Procedia PDF Downloads 76840 Flexural Performance of the Sandwich Structures Having Aluminum Foam Core with Different Thicknesses
Authors: Emre Kara, Ahmet Fatih Geylan, Kadir Koç, Şura Karakuzu, Metehan Demir, Halil Aykul
Abstract:
The structures obtained with the use of sandwich technologies combine low weight with high energy absorbing capacity and load carrying capacity. Hence, there is a growing and markedly interest in the use of sandwiches with aluminium foam core because of very good properties such as flexural rigidity and energy absorption capability. The static (bending and penetration) and dynamic (dynamic bending and low velocity impact) tests were already performed on the aluminum foam cored sandwiches with different types of outer skins by some of the authors. In the current investigation, the static three-point bending tests were carried out on the sandwiches with aluminum foam core and glass fiber reinforced polymer (GFRP) skins at different values of support span distances (L= 55, 70, 80, 125 mm) aiming the analyses of their flexural performance. The influence of the core thickness and the GFRP skin type was reported in terms of peak load, energy absorption capacity and energy efficiency. For this purpose, the skins with two different types of fabrics ([0°/90°] cross ply E-Glass Woven and [0°/90°] cross ply S-Glass Woven which have same thickness value of 1.5 mm) and the aluminum foam core with two different thicknesses (h=10 and 15 mm) were bonded with a commercial polyurethane based flexible adhesive in order to combine the composite sandwich panels. The GFRP skins fabricated via Vacuum Assisted Resin Transfer Molding (VARTM) technique used in the study can be easily bonded to the aluminum foam core and it is possible to configure the base materials (skin, adhesive and core), fiber angle orientation and number of layers for a specific application. The main results of the bending tests are: force-displacement curves, peak force values, absorbed energy, energy efficiency, collapse mechanisms and the effect of the support span length and core thickness. The results of the experimental study showed that the sandwich with the skins made of S-Glass Woven fabrics and with the thicker foam core presented higher mechanical values such as load carrying and energy absorption capacities. The increment of the support span distance generated the decrease of the mechanical values for each type of panels, as expected, because of the inverse proportion between the force and span length. The most common failure types of the sandwiches are debonding of the upper or lower skin and the core shear. The obtained results have particular importance for applications that require lightweight structures with a high capacity of energy dissipation, such as the transport industry (automotive, aerospace, shipbuilding and marine industry), where the problems of collision and crash have increased in the last years.Keywords: aluminum foam, composite panel, flexure, transport application
Procedia PDF Downloads 338839 SiC Particulate-Reinforced SiC Composites Fabricated by PIP Method Using Highly Concentrated SiC Slurry
Authors: Jian Gu, Sea-Hoon Lee, Jun-Seop Kim
Abstract:
SiC particulate-reinforced SiC ceramic composites (SiCp/SiC) were successfully fabricated using polymer impregnation and pyrolysis (PIP) method. The effects of green density, infiltrated method, pyrolytic temperature, and heating rate on the densification behavior of the composites were investigated. SiCp/SiC particulate reinforced composites with high relative density up to 88.06% were fabricated after 4 PIP cycles using SiC pellets with high green density. The pellets were prepared by drying 62-70 vol.% aqueous SiC slurries, and the maximum relative density of the pellets was 75.5%. The hardness of the as-fabricated SiCp/SiCs was 21.05 GPa after 4 PIP cycles, which value increased to 23.99 GPa after a heat treatment at 2000℃. Excellent mechanical properties, thermal stability, and short processing time render the SiCp/SiC composite as a challenging candidate for the high-temperature application.Keywords: high green density, mechanical property, polymer impregnation and pyrolysis, structural application
Procedia PDF Downloads 138838 Application of Response Surface Methodology (RSM) for Optimization of Fluoride Removal by Using Banana Peel
Authors: Pallavi N., Gayatri Jadhav
Abstract:
Good quality water is of prime importance for a healthy living. Fluoride is one such mineral present in water which causes many health problems in humans and specially children. Fluoride is said to be a double edge sword because lesser and higher concentration of fluoride in drinking water can cause both dental and skeletal fluorosis. Fluoride is one of the important mineral usually present at a higher concentration in ground water. There are many researches being carried out for defluoridation method. In the present research, fluoride removal is demonstrated using banana peel which is a biowaste as a biocoagulant. Response Surface Methodology (RSM) is a statistical design tool which is used to design the experiment. Central Composite Design (CCD) was used to determine the influence of the pH and dosage of the coagulant on the optimal removal of fluoride from a simulated water sample. 895 of fluoride removal were obtained in a acidic pH range of 4 – 9 and bio coagulant dosage of dosage of 18 – 20mg/L.Keywords: Fluoride, Response Surface Methodology, Dosage, banana peel
Procedia PDF Downloads 160837 Computational Intelligence and Machine Learning for Urban Drainage Infrastructure Asset Management
Authors: Thewodros K. Geberemariam
Abstract:
The rapid physical expansion of urbanization coupled with aging infrastructure presents a unique decision and management challenges for many big city municipalities. Cities must therefore upgrade and maintain the existing aging urban drainage infrastructure systems to keep up with the demands. Given the overall contribution of assets to municipal revenue and the importance of infrastructure to the success of a livable city, many municipalities are currently looking for a robust and smart urban drainage infrastructure asset management solution that combines management, financial, engineering and technical practices. This robust decision-making shall rely on sound, complete, current and relevant data that enables asset valuation, impairment testing, lifecycle modeling, and forecasting across the multiple asset portfolios. On this paper, predictive computational intelligence (CI) and multi-class machine learning (ML) coupled with online, offline, and historical record data that are collected from an array of multi-parameter sensors are used for the extraction of different operational and non-conforming patterns hidden in structured and unstructured data to determine and produce actionable insight on the current and future states of the network. This paper aims to improve the strategic decision-making process by identifying all possible alternatives; evaluate the risk of each alternative, and choose the alternative most likely to attain the required goal in a cost-effective manner using historical and near real-time urban drainage infrastructure data for urban drainage infrastructures assets that have previously not benefited from computational intelligence and machine learning advancements.Keywords: computational intelligence, machine learning, urban drainage infrastructure, machine learning, classification, prediction, asset management space
Procedia PDF Downloads 152836 Investigation on Properties and Applications of Graphene as Single Layer of Carbon Atoms
Authors: Ali Ashjaran
Abstract:
Graphene is undoubtedly emerging as one of the most promising materials because of its unique combination of superb properties, which opens a way for its exploitation in a wide spectrum of applications ranging from electronics to optics, sensors, and biodevices. In addition, Graphene-based nanomaterials have many promising applications in energy-related areas. Graphene a single layer of carbon atoms, combines several exceptional properties, which makes it uniquely suited as a coating material: transparency, excellent mechanical stability, low chemical reactivity, Optical, impermeability to most gases, flexibility, and very high thermal and electrical conductivity. Graphene is a material that can be utilized in numerous disciplines including, but not limited to: bioengineering, composite materials, energy technology and nanotechnology, biological engineering, optical electronics, ultrafiltration, photovoltaic cells. This review aims to provide an overiew of graphene structure, properties and some applications.Keywords: graphene, carbon, anti corrosion, optical and electrical properties, sensors
Procedia PDF Downloads 274835 Green Synthesis of Silver Nanoparticles by Olive Leaf Extract: Application in the Colorimetric Detection of Fe+3 Ions
Authors: Nasibeh Azizi Khereshki
Abstract:
Olive leaf (OL) extract as a green reductant agent was utilized for the biogenic synthesis of silver nanoparticles (Ag NPs) for the first time in this study, and then its performance was evaluated for colorimetric detection of Fe3+ in different media. Some analytical methods were used to characterize the nanosensor. The effective sensing parameters were optimized by central composite design (CCD) combined with response surface methodology (RSM) application. Then, the prepared material's applicability in antibacterial and optical chemical sensing for naked-eye detection of Fe3+ ions in aqueous solutions were evaluated. Furthermore, OL-Ag NPs-loaded paper strips were successfully applied to the colorimetric visualization of Fe3+. The colorimetric probe based on OL-AgNPs illustrated excellent selectivity and sensitivity towards Fe3+ ions, with LOD and LOQ of 0.81 μM and 2.7 μM, respectively. In addition, the developed method was applied to detect Fe3+ ions in real water samples and validated with a 95% confidence level against a reference spectroscopic method.Keywords: Ag NPs, colorimetric detection, Fe(III) ions, green synthesis, olive leaves
Procedia PDF Downloads 77834 A FE-Based Scheme for Computing Wave Interaction with Nonlinear Damage and Generation of Harmonics in Layered Composite Structures
Authors: R. K. Apalowo, D. Chronopoulos
Abstract:
A Finite Element (FE) based scheme is presented for quantifying guided wave interaction with Localised Nonlinear Structural Damage (LNSD) within structures of arbitrary layering and geometric complexity. The through-thickness mode-shape of the structure is obtained through a wave and finite element method. This is applied in a time domain FE simulation in order to generate time harmonic excitation for a specific wave mode. Interaction of the wave with LNSD within the system is computed through an element activation and deactivation iteration. The scheme is validated against experimental measurements and a WFE-FE methodology for calculating wave interaction with damage. Case studies for guided wave interaction with crack and delamination are presented to verify the robustness of the proposed method in classifying and identifying damage.Keywords: layered structures, nonlinear ultrasound, wave interaction with nonlinear damage, wave finite element, finite element
Procedia PDF Downloads 163833 Irreducible Sign Patterns of Minimum Rank of 3 and Symmetric Sign Patterns That Allow Diagonalizability
Authors: Sriparna Bandopadhyay
Abstract:
It is known that irreducible sign patterns in general may not allow diagonalizability and in particular irreducible sign patterns with minimum rank greater than or equal to 4. It is also known that every irreducible sign pattern matrix with minimum rank of 2 allow diagonalizability with rank of 2 and the maximum rank of the sign pattern. In general sign patterns with minimum rank of 3 may not allow diagonalizability if the condition of irreducibility is dropped, but the problem of whether every irreducible sign pattern with minimum rank of 3 allows diagonalizability remains open. In this paper it is shown that irreducible sign patterns with minimum rank of 3 under certain conditions on the underlying graph allow diagonalizability. An alternate proof of the results that every sign pattern matrix with minimum rank of 2 and no zero lines allow diagonalizability with rank of 2 and also that every full sign pattern allows diagonalizability with all permissible ranks of the sign pattern is given. Some open problems regarding composite cycles in an irreducible symmetric sign pattern that support of a rank principal certificate are also answered.Keywords: irreducible sign patterns, minimum rank, symmetric sign patterns, rank -principal certificate, allowing diagonalizability
Procedia PDF Downloads 98832 Real-Time Radar Tracking Based on Nonlinear Kalman Filter
Authors: Milca F. Coelho, K. Bousson, Kawser Ahmed
Abstract:
To accurately track an aerospace vehicle in a time-critical situation and in a highly nonlinear environment, is one of the strongest interests within the aerospace community. The tracking is achieved by estimating accurately the state of a moving target, which is composed of a set of variables that can provide a complete status of the system at a given time. One of the main ingredients for a good estimation performance is the use of efficient estimation algorithms. A well-known framework is the Kalman filtering methods, designed for prediction and estimation problems. The success of the Kalman Filter (KF) in engineering applications is mostly due to the Extended Kalman Filter (EKF), which is based on local linearization. Besides its popularity, the EKF presents several limitations. To address these limitations and as a possible solution to tracking problems, this paper proposes the use of the Ensemble Kalman Filter (EnKF). Although the EnKF is being extensively used in the context of weather forecasting and it is being recognized for producing accurate and computationally effective estimation on systems with a very high dimension, it is almost unknown by the tracking community. The EnKF was initially proposed as an attempt to improve the error covariance calculation, which on the classic Kalman Filter is difficult to implement. Also, in the EnKF method the prediction and analysis error covariances have ensemble representations. These ensembles have sizes which limit the number of degrees of freedom, in a way that the filter error covariance calculations are a lot more practical for modest ensemble sizes. In this paper, a realistic simulation of a radar tracking was performed, where the EnKF was applied and compared with the Extended Kalman Filter. The results suggested that the EnKF is a promising tool for tracking applications, offering more advantages in terms of performance.Keywords: Kalman filter, nonlinear state estimation, optimal tracking, stochastic environment
Procedia PDF Downloads 146831 A Review on the Use of Salt in Building Construction
Authors: Vesna Pungercar, Florian Musso
Abstract:
Identifying materials that can substitute rare or expensive natural resources is one of the key challenges for improving resource efficiency in the building sector. With a growing world population and rising living standards, more and more salt is produced as waste through seawater desalination and potash mining processes. Unfortunately, most of the salt is directly disposed of into nature, where it causes environmental pollution. On the other hand, salt is affordable, is used therapeutically in various respiratory treatments, and can store humidity and heat. It was, therefore, necessary to determine salt materials already in use in building construction and their hygrothermal properties. This research aims to identify salt materials from different scientific branches and historically, to investigate their properties and prioritize the most promising salt materials for indoor applications in a thermal envelope. This was realized through literature review and classification of salt materials into three groups (raw salt materials, composite salt materials, and processed salt materials). The outcome of this research shows that salt has already been used as a building material for centuries and has a potential for future applications due to its hygrothermal properties in a thermal envelope.Keywords: salt, building material, hygrothermal properties, environment
Procedia PDF Downloads 169830 Material Research for Sustainable Design: An Exploration Towards the Application of Foam into Textile and Fashion Design
Authors: Jichi Wu
Abstract:
Though fast fashion and consumption do boost the economy and push the progress of the industry, they have also caused a mass of waste, which has led to great pressure on the environment. This project mainly focuses on how to develop new sustainable textile and fashion design through recycling, upcycling, and reusing. Substantial field researches were implemented from the very beginning, including collecting reusable material from recycling centers. Hot-pressed composite materials, hand-cutting, and weaving were finally selected as the core material/method of this project after attempts and experiments. Four pieces of menswear, as well as hats and other decorative products made from wasted foams and fabrics, were successfully manufactured. Results show that foam is not only possible for furniture but also for clothing. It helps people to realize that foam is warm, heatproof, anti-slippery, and crease-resistant. So, all advantages could inspire people that even common materials could have new usage and are worthy of upcycling.Keywords: sustainable design, foam, upcycling, life cycle, textile design
Procedia PDF Downloads 127829 Laser Welding of Titanium Alloy Ti64 to Polyamide 6.6: Effects of Welding Parameters on Temperature Profile Evolution
Authors: A. Al-Sayyad, P. Lama, J. Bardon, P. Hirchenhahn, L. Houssiau, P. Plapper
Abstract:
Composite metal–polymer materials, in particular titanium alloy (Ti-6Al-4V) to polyamide (PA6.6), fabricated by laser joining, have gained cogent interest among industries and researchers concerned with aerospace and biomedical applications. This work adopts infrared (IR) thermography technique to investigate effects of laser parameters used in the welding process on the three-dimensional temperature profile at the rear-side of titanium, at the region to be welded with polyamide. Cross sectional analysis of welded joints showed correlations between the morphology of titanium and polyamide at the weld zone with the corresponding temperature profile. In particular, spatial temperature profile was found to be correlated with the laser beam energy density, titanium molten pool width and depth, and polyamide heat affected zone depth.Keywords: laser welding, metals to polymers joining, process monitoring, temperature profile, thermography
Procedia PDF Downloads 134828 Fabrication of All-Cellulose Composites from End-of-Life Textiles
Authors: Behnaz Baghaei, Mikael Skrifvars
Abstract:
Sustainability is today a trend that is seen everywhere, with no exception for the textiles 31 industry. However, there is a rather significant downside regarding how the textile industry currently operates, namely the huge amount of end-of-life textiles coming along with it. Approximately 73% of the 53 million tonnes of fibres used annually for textile production is landfilled or incinerated, while only 12% is recycled as secondary products. Mechanical recycling of end-of-life textile fabrics into yarns and fabrics was before very common, but due to the low costs for virgin man-made fibres, the current textile material composition diversity, the fibre material quality variations and the high recycling costs this route is not feasible. Another way to decrease the ever-growing pile of textile waste is to repurpose the textile. If a feasible methodology can be found to reuse end-of life textiles as secondary market products including a manufacturing process that requires rather low investment costs, then this can be highly beneficial to counteract the increasing textile waste volumes. In structural composites, glass fibre textiles are used as reinforcements, but today there is a growing interest in biocomposites where the reinforcement and/or the resin are from a biomass resource. All-cellulose composites (ACCs) are monocomponent or single polymer composites, and they are entirely made from cellulose, ideally leading to a homogeneous biocomposite. Since the matrix and the reinforcement are both made from cellulose, and therefore chemically identical, they are fully compatible with each other which allow efficient stress transfer and adhesion at their interface. Apart from improving the mechanical performance of the final products, the recycling of the composites will be facilitated. This paper reports the recycling of end-of-life cellulose containing textiles by fabrication of all-cellulose composites (ACCs). Composite laminates were prepared by using an ionic liquid (IL) in a hot process, involving a partial dissolving of the cellulose fibres. Discharged denim fabrics were used as the reinforcement while dissolved cellulose from two different cellulose resources was used as the matrix phase. Virgin cotton staple fibres and recovered cotton from polyester/cotton (polycotton) waste fabrics were used to form the matrix phase. The process comprises the dissolving 6 wt.% cellulose solution in the ionic liquid 1-butyl-3-methyl imidazolium acetate ([BMIM][Ac]), this solution acted as a precursor for the matrix component. The denim fabrics were embedded in the cellulose/IL solution after which laminates were formed, which also involved removal of the IL by washing. The effect of reuse of the recovered IL was also investigated. The mechanical properties of the obtained ACCs were determined regarding tensile, impact and flexural properties. Mechanical testing revealed that there are no clear differences between the values measured for mechanical strength and modulus of the manufactured ACCs from denim/cotton-fresh IL, denim/recovered cotton-fresh IL and denim/cotton-recycled IL. This could be due to the low weight fraction of the cellulose matrix in the final ACC laminates and presumably the denim as cellulose reinforcement strongly influences and dominates the mechanical properties. Fabricated ACC composite laminates were further characterized regarding scanning electron microscopy.Keywords: all-cellulose composites, denim fabrics, ionic liquid, mechanical properties
Procedia PDF Downloads 117827 Kitchenary Metaphors in Hindi-Urdu: A Cognitive Analysis
Authors: Bairam Khan, Premlata Vaishnava
Abstract:
The ability to conceptualize one entity in terms of another allows us to communicate through metaphors. This central feature of human cognition has evolved with the development of language, and the processing of metaphors is without any conscious appraisal and is quite effortless. South Asians, like other speech communities, have been using the kitchenary [culinary] metaphor in a very simple yet interesting way and are known for bringing into new and unique constellations wherever they are. This composite feature of our language is used to communicate in a precise and compact manner and maneuvers the expression. The present study explores the role of kitchenary metaphors in the making and shaping of idioms by applying Cognitive Metaphor Theories. Drawing on examples from a corpus of adverts, print, and electronic media, the study looks at the metaphorical language used by real people in real situations. The overarching theme throughout the course is that kitchenary metaphors are powerful tools of expression in Hindi-Urdu.Keywords: cognitive metaphor theories, kitchenary metaphors, hindi-urdu print, and electronic media, grammatical structure of kitchenary metaphors of hindi-urdu
Procedia PDF Downloads 93826 Preparation of Nanocomposites Based on Biodegradable Polycaprolactone by Melt Mixture
Authors: Mohamed Amine Zenasni, Bahia Meroufel, André Merlin, Said Benfarhi, Stéphane Molina, Béatrice George
Abstract:
The introduction of nano-fillers into polymers field lead to the creation of the nano composites. This creation is starting up a new revolution into the world of materials. Nano composites are similar to traditional composite of a polymer blend and filler with at least one nano-scopic dimension. In our project, we worked with nano composites of biodegradable polymer: polycaprolactone, combined with nano-clay (Maghnite) and with different nano-organo-clays. These nano composites have been prepared by melt mixture method. The advantage of this polymer is its degradability and bio compatibility. A study of the relationship between development, micro structure and physico chemical properties of nano composites, clays modified with 3-aminopropyltriethoxysilane (APTES) and Hexadecyltriméthy ammonium bromide (CTAB) and untreated clays were made. Melt mixture method is most suitable methods to get a better dispersion named exfoliation.Keywords: nanocomposite, biodegradable, polycaprolactone, maghnite, melt mixture, APTES, CTAB
Procedia PDF Downloads 435825 Production of Renewable and Clean Bio-Fuel (DME) from Biomethanol over Copper Modified Alumina Catalyst
Authors: Ahmed I. Osman, Jehad K. Abu-Dahrieh, David W. Rooney, Jillian Thompson
Abstract:
The effect of loading of copper on the catalytic performance of different alumina support during the dehydration of methanol to dimethyl ether (DME) was performed in a fixed bed reactor. There are two levels of loading; low loading (1, 2, 4 and 6% Cu wt/wt) and high loading (10 and 15% Cu wt/wt) on both AC350 (alumina catalyst calcined at 350) and AC550 (alumina catalyst calcined at 550), to study the effect of loading and the effect of the support during methanol dehydration to DME (MTD). The catalysts were characterized by TGA, XRD, BET, TPD-NH3, TEM and DRIFT-Pyridine. Under reaction conditions where the temperature ranged from 180-300˚C with a WHSV= 12.1 h-1 it was found that all the catalysts calcined at 550˚C showed higher activity than those calcined at 350˚C. In this study, the optimum catalyst was 6% Cu/AC550. This catalyst showed a high degree of stability, had one half activity of the pure catalyst (AC550) and double the activity of the optimum catalyst calcined at 350˚C (6% Cu/AC350). So, we recommended 6% Cu/AC550 for the production of DME from methanol.Keywords: bio-fuel, nano composite catalyst, DME, Cu-Al2O3
Procedia PDF Downloads 297824 Shielding Effectiveness of Rice Husk and CNT Composites in X-Band Frequency
Authors: Y. S. Lee, F. Malek, E. M. Cheng, W. W. Liu, F. H. Wee, M. N. Iqbal, Z. Liyana, B. S. Yew, F. S. Abdullah
Abstract:
This paper presents the electromagnetic interference (EMI) shielding effectiveness of rice husk and carbon nanotubes (RHCNTs) composites in the X-band region (8.2-12.4 GHz). The difference weight ratio of carbon nanotubes (CNTs) were mix with the rice husk. The rectangular wave guide technique was used to measure the complex permittivity of the RHCNTs composites materials. The complex permittivity is represented in terms of both the real and imaginary parts of permittivity in X-band frequency. The conductivity of RHCNTs shows increasing when the ratio of CNTs mixture increases. The composites materials were simulated using Computer Simulation Technology (CST) Microwave Studio simulation software. The shielding effectiveness of RHCNTs and pure rice husk was compared. The highest EMI SE of 30 dB is obtained for RHCNTs composites of 10 wt % CNTs with 10 mm thick.Keywords: EMI shielding effectiveness, carbon nanotube, composite materials wave guide, x-band
Procedia PDF Downloads 409823 Chemical Functionalization of Graphene Oxide for Improving Mechanical and Thermal Properties of Polyurethane Composites
Authors: Qifei Jing, Vadim V. Silberschmidt, Lin Li, ZhiLi Dong
Abstract:
Graphene oxide (GO) was chemically functionalized to prepare polyurethane (PU) composites with improved mechanical and thermal properties. In order to achieve a well exfoliated and stable GO suspension in an organic solvent (dimethylformamide, DMF), 4, 4′- methylenebis(phenyl isocyanate) and polycaprolactone diol, which were the two monomers for synthesizing PU, were selectively used to functionalize GO. The obtained functionalized GO (FGO) could form homogeneous dispersions in DMF solvent and the PU matrix, as well as provide a good compatibility with the PU matrix. The most efficient improvement of mechanical properties was achieved when 0.4 wt% FGO was added into the PU matrix, showing increases in the tensile stress, elongation at break and toughness by 34.2%, 27.6% and 64.5%, respectively, compared with those of PU. Regarding the thermal stability, PU filled with 1 wt% FGO showed the largest extent of improvement with T2% and T50% (the temperatures at which 2% and 50% weight-loss happened) 16 °C and 21 °C higher than those of PU, respectively. The significant improvement in both mechanical properties and thermal stability of FGO/PU composites should be attributed to the homogeneous dispersion of FGO in the PU matrix and strong interfacial interaction between them.Keywords: composite, dispersion, graphene oxide, polyurethane
Procedia PDF Downloads 263822 Use of Landsat OLI Images in the Mapping of Landslides: Case of the Taounate Province in Northern Morocco
Authors: S. Benchelha, H. Chennaoui, M. Hakdaoui, L. Baidder, H. Mansouri, H. Ejjaaouani, T. Benchelha
Abstract:
Northern Morocco is characterized by relatively young mountains experiencing a very important dynamic compared to other areas of Morocco. The dynamics associated with the formation of the Rif chain (Alpine tectonics), is accompanied by instabilities essentially related to tectonic movements. The realization of important infrastructures (Roads, Highways,...) represents a triggering factor and favoring landslides. This paper is part of the establishment of landslides susceptibility map and concerns the mapping of unstable areas in the province of Taounate. The landslide was identified using the components of the false color (FCC) of images Landsat OLI: i) the first independent component (IC1), ii) The main component (PC), iii) Normalized difference index (NDI). This mapping for landslides class is validated by in-situ surveys.Keywords: landslides, False Color Composite (FCC), Independent Component Analysis (ICA), Principal Component Analysis (PCA), Normalized Difference Index (NDI), Normalized Difference Mid Red Index (NDMIDR)
Procedia PDF Downloads 290821 Lanthanum Strontium Titanate Based Anode Materials for Intermediate Temperature Solid Oxide Fuel Cells
Authors: A. Saurabh Singh, B. Raghvendra, C. Prabhakar Singh
Abstract:
Solid Oxide Fuel Cells (SOFCs) are one of the most attractive electrochemical energy conversion systems, as these devices present a clean energy production, thus promising high efficiencies and low environmental impact. The electrodes are the main components that decisively control the performance of a SOFC. Conventional, anode materials (like Ni-YSZ) are operates at very high temperature. Therefore, cost-effective materials which operate at relatively lower temperatures are still required. In present study, we have synthesized La doped Strontium Titanate via solid state reaction route. The structural, microstructural and density of the pellet have been investigated employing XRD, SEM and Archimedes Principle, respectively. The electrical conductivity of the systems has been determined by impedance spectroscopy techniques. The electrical conductivity of the Lanthanum Strontium Titanate (LST) has been found to be higher than the composite Ni-YSZ system at 700 °C.Keywords: IT-SOFC, LST, Lanthanum Strontium Titanate, electrical conductivity
Procedia PDF Downloads 386820 Mechanical Properties of CNT Reinforced Composite Using Berkovich Nanoindentation Analysis
Authors: Khondaker Sakil Ahmed, Ang Kok Keng, Shah Md Muniruzzaman
Abstract:
Spherical and Berkovich indentation tests are carried out numerically using finite element method for uniformly dispersed Carbon Nanotube (CNT) in the polymer matrix in which perfectly bonded CNT/matrix interface is considered. The Large strain elasto-plastic analysis is performed to investigate the actual scenario of nanoindentation test. This study investigates how the addition of CNT in polymer matrix influences the mechanical properties like hardness, elastic modulus of the nanocomposite. Since the wall thickness to radius ratio (t/r) is significantly small for SWCNT there is a huge possibility of lateral buckling which is a function of the location of indentation tip as well as the mechanical properties of matrix. Separate finite element models are constructed to compare the result with Berkovich indentation. This study also investigates the buckling behavior of different nanotube in a different polymer matrix.Keywords: carbon nanotube, elasto-plastic, finite element model, nano-indentation
Procedia PDF Downloads 389819 Kitchenary Metaphors In Hindi-urdu: A Cognitive Analysis
Authors: Bairam Khan, Premlata Vaishnava
Abstract:
The ability to conceptualize one entity in terms of another allows us to communicate through metaphors. This central feature of human cognition has evolved with the development of language, and the processing of metaphors is without any conscious appraisal and is quite effortless. South Asians, like other speech communities, have been using the kitchenary [culinary] metaphor in a very simple yet interesting way and are known for bringing into new and unique constellations wherever they are. This composite feature of our language is used to communicate in a precise and compact manner and maneuvers the expression. The present study explores the role of kitchenary metaphors in the making and shaping of idioms by applying Cognitive Metaphor Theories. Drawing on examples from a corpus of adverts, print, and electronic media, the study looks at the metaphorical language used by real people in real situations. The overarching theme throughout the course is that kitchenary metaphors are powerful tools of expression in Hindi-Urdu.Keywords: cognitive metaphor theory, source domain, target domain, signifier- signified, kitchenary, ethnocultural elements of south asia and hindi- urdu language
Procedia PDF Downloads 77818 Modeling of Crack Propagation Path in Concrete with Coarse Trapezoidal Aggregates by Boundary Element Method
Authors: Chong Wang, Alexandre Urbano Hoffmann
Abstract:
Interaction between a crack and a trapezoidal aggregate in a single edge notched concrete beam is simulated using boundary element method with an automatic crack extension program. The stress intensity factors of the growing crack are obtained from the J-integral. Three crack extension paths: deflecting around the particulate, growing along the interface and penetrating into the particulate are achieved in terms of the mismatch state of mechanical characteristics of matrix and the particulate. The toughening is also given by the ratio of stress intensity factors. The results reveal that as stress shielding occurs, toughening is obtained when the crack is approaching to a stiff and strong aggregate weakly bonded to a relatively soft matrix. The present work intends to help for the design of aggregate reinforced concretes.Keywords: aggregate concrete, boundary element method, two-phase composite, crack extension path, crack/particulate interaction
Procedia PDF Downloads 426817 Influence of HIV Testing on Knowledge of HIV/AIDS Prevention Practices and Transmission among Undergraduate Youths in North-West University, Mafikeng
Authors: Paul Bigala, Samuel Oladipo, Steven Adebowale
Abstract:
This study examines factors influencing knowledge of HIV/AIDS Prevention Practices and Transmission (KHAPPT) among young undergraduate students (15-24 years). Knowledge composite index was computed for 820 randomly selected students. Chi-square, ANOVA, and multinomial logistic regression were used for the analyses (α=.05). The overall mean knowledge score was 16.5±3.4 out of a possible score of 28. About 83% of the students have undergone HIV test, 21.0% have high KHAPPT, 18% said there is cure for the disease, 23% believed that asking for condom is embarrassing and 11.7% said it is safe to share unsterilized sharp objects with friends or family members. The likelihood of high KHAPPT was higher among students who have had HIV test (OR=3.314; C.I=1.787-6.145, p<0.001) even when other variables were used as control. The identified predictors of high KHAPPT were; ever had HIV test, faculty, and ever used any HIV/AIDS prevention services. North-West University Mafikeng should intensify efforts on the HIV/AIDS awareness program on the campus.Keywords: HIV/AIDS knowledge, undergraduate students, HIV testing, Mafikeng
Procedia PDF Downloads 443