Search results for: actuarial modeling
2238 Optimism and Entrepreneurial Intentions: The Mediating Role of Emotional Intelligence
Authors: Neta Kela Madar, Tali Teeni-Harari, Tamar Icekson, Yaron Sela
Abstract:
This paper proposes and empirically tests a theoretical model positing relationships between dispositional optimism, emotional intelligence, and entrepreneurial intention. To author's best knowledge, this study examined for the first time the role of dispositional optimism together with emotional intelligence as predictors of entrepreneurial intentions. The study findings suggest that optimism may increase entrepreneurial intentions indirectly by enhancing emotional intelligence/ model formulation is based on a random survey of students (N= 227). Model parameter estimation was supported by Structural Equation Modeling (SEM). Results indicate that students’ optimism and emotional intelligence are associated with increased levels of entrepreneurial intention. Additionally, the present study argues that emotional intelligence mediates the positive relationship between optimism and entrepreneurial intention. Theoretical and practical implications of this model are discussed.Keywords: entrepreneurial intentions, emotional intelligence, optimism, dispositional optimism
Procedia PDF Downloads 2272237 Potentials and Influencing Factors of Dynamic Pricing in Business: Empirical Insights of European Experts
Authors: Christopher Reichstein, Ralf-Christian Härting, Martina Häußler
Abstract:
With a continuously increasing speed of information exchange on the World Wide Web, retailers in the E-Commerce sector are faced with immense possibilities regarding different online purchase processes like dynamic price settings. By use of Dynamic Pricing, retailers are able to set short time price changes in order to optimize producer surplus. The empirical research illustrates the basics of Dynamic Pricing and identifies six influencing factors of Dynamic Pricing. The results of a structural equation modeling approach show five main drivers increasing the potential of dynamic price settings in the E-Commerce. Influencing factors are the knowledge of customers’ individual willingness to pay, rising sales, the possibility of customization, the data volume and the information about competitors’ pricing strategy.Keywords: e-commerce, empirical research, experts, dynamic pricing (DP), influencing factors, potentials
Procedia PDF Downloads 2622236 Molecular Docking Study of Quinazoline and Quinoline Derivatives against EGFR
Authors: Asli Faiza, Khamouli Saida
Abstract:
With the development of computer tools over the past 20 years. Molecular modeling and, more precisely, molecular docking has very quickly entered field of pharmaceutical research. EGFR enzyme involved in cancer disease.Our work consists of studying the inhibition of EGFR (1M17) with deferent inhibitors derived from quinazoline and quinoline by molecular docking. The values of ligands L148 and L177 are the best ligands for inhibit the activity of 1M17 since it forms a stable complex with this enzyme by better binding to the active site. The results obtained show that the ligands L148 and L177 give weak interactions with the active site residues EGFR (1M17), which stabilize the complexes formed of this ligands, which gives a better binding at the level of the active site, and an RMSD of L148 [1,9563 Å] and of L177 [ 1,2483 Å]. [1, 9563, 1.2483] ÅKeywords: docking, EGFR, quinazoline, quinoliène, MOE
Procedia PDF Downloads 682235 Dynamic Analysis of Double Deck Tunnel
Authors: C. W. Kwak, I. J. Park, D. I. Jang
Abstract:
The importance of cost-wise effective application and construction is getting increase due to the surge of traffic volume in the metropolitan cities. Accordingly, the necessity of the tunnel has large section becomes more critical. Double deck tunnel can be one of the most appropriate solutions to the necessity. The dynamic stability of double deck tunnel is essential against seismic load since it has large section and connection between perimeter lining and interim slab. In this study, 3-dimensional dynamic numerical analysis was conducted based on the Finite Difference Method to investigate the seismic behavior of double deck tunnel. Seismic joint for dynamic stability and the mitigation of seismic impact on the lining was considered in the modeling and analysis. Consequently, the mitigation of acceleration, lining displacement and stress were verified successfully.Keywords: double deck tunnel, interim slab, 3-dimensional dynamic numerical analysis, seismic joint
Procedia PDF Downloads 3822234 In Silico Modeling of Drugs Milk/Plasma Ratio in Human Breast Milk Using Structures Descriptors
Authors: Navid Kaboudi, Ali Shayanfar
Abstract:
Introduction: Feeding infants with safe milk from the beginning of their life is an important issue. Drugs which are used by mothers can affect the composition of milk in a way that is not only unsuitable, but also toxic for infants. Consuming permeable drugs during that sensitive period by mother could lead to serious side effects to the infant. Due to the ethical restrictions of drug testing on humans, especially women, during their lactation period, computational approaches based on structural parameters could be useful. The aim of this study is to develop mechanistic models to predict the M/P ratio of drugs during breastfeeding period based on their structural descriptors. Methods: Two hundred and nine different chemicals with their M/P ratio were used in this study. All drugs were categorized into two groups based on their M/P value as Malone classification: 1: Drugs with M/P>1, which are considered as high risk 2: Drugs with M/P>1, which are considered as low risk Thirty eight chemical descriptors were calculated by ACD/labs 6.00 and Data warrior software in order to assess the penetration during breastfeeding period. Later on, four specific models based on the number of hydrogen bond acceptors, polar surface area, total surface area, and number of acidic oxygen were established for the prediction. The mentioned descriptors can predict the penetration with an acceptable accuracy. For the remaining compounds (N= 147, 158, 160, and 174 for models 1 to 4, respectively) of each model binary regression with SPSS 21 was done in order to give us a model to predict the penetration ratio of compounds. Only structural descriptors with p-value<0.1 remained in the final model. Results and discussion: Four different models based on the number of hydrogen bond acceptors, polar surface area, and total surface area were obtained in order to predict the penetration of drugs into human milk during breastfeeding period About 3-4% of milk consists of lipids, and the amount of lipid after parturition increases. Lipid soluble drugs diffuse alongside with fats from plasma to mammary glands. lipophilicity plays a vital role in predicting the penetration class of drugs during lactation period. It was shown in the logistic regression models that compounds with number of hydrogen bond acceptors, PSA and TSA above 5, 90 and 25 respectively, are less permeable to milk because they are less soluble in the amount of fats in milk. The pH of milk is acidic and due to that, basic compounds tend to be concentrated in milk than plasma while acidic compounds may consist lower concentrations in milk than plasma. Conclusion: In this study, we developed four regression-based models to predict the penetration class of drugs during the lactation period. The obtained models can lead to a higher speed in drug development process, saving energy, and costs. Milk/plasma ratio assessment of drugs requires multiple steps of animal testing, which has its own ethical issues. QSAR modeling could help scientist to reduce the amount of animal testing, and our models are also eligible to do that.Keywords: logistic regression, breastfeeding, descriptors, penetration
Procedia PDF Downloads 722233 Patient-Specific Modeling Algorithm for Medical Data Based on AUC
Authors: Guilherme Ribeiro, Alexandre Oliveira, Antonio Ferreira, Shyam Visweswaran, Gregory Cooper
Abstract:
Patient-specific models are instance-based learning algorithms that take advantage of the particular features of the patient case at hand to predict an outcome. We introduce two patient-specific algorithms based on decision tree paradigm that use AUC as a metric to select an attribute. We apply the patient specific algorithms to predict outcomes in several datasets, including medical datasets. Compared to the patient-specific decision path (PSDP) entropy-based and CART methods, the AUC-based patient-specific decision path models performed equivalently on area under the ROC curve (AUC). Our results provide support for patient-specific methods being a promising approach for making clinical predictions.Keywords: approach instance-based, area under the ROC curve, patient-specific decision path, clinical predictions
Procedia PDF Downloads 4792232 Controller Design for Active Suspension System of 1/4 Car with Unknown Mass and Time-Delay
Authors: Ali Al-Zughaibi
Abstract:
The purpose of this paper is to present a modeling and control of the quarter car active suspension system with unknown mass, unknown time-delay and road disturbance. The objective of designing the controller by deriving a control law to achieve stability of the system and convergence that can considerably improve the ride comfort and road disturbance handling. Thus is accomplished by using Routh-Herwitz criterion and based on some assumptions. A mathematical proof is given to show the ability of the designed controller to ensure stability and convergence of the active suspension system and dispersion oscillation of system with unknown mass, time-delay and road disturbances. Simulations were also performed for controlling quarter car suspension, where the results obtained from these simulations verify the validity of the proposed design.Keywords: active suspension system, time-delay, disturbance rejection, dynamic uncertainty
Procedia PDF Downloads 3192231 Statistic Regression and Open Data Approach for Identifying Economic Indicators That Influence e-Commerce
Authors: Apollinaire Barme, Simon Tamayo, Arthur Gaudron
Abstract:
This paper presents a statistical approach to identify explanatory variables linearly related to e-commerce sales. The proposed methodology allows specifying a regression model in order to quantify the relevance between openly available data (economic and demographic) and national e-commerce sales. The proposed methodology consists in collecting data, preselecting input variables, performing regressions for choosing variables and models, testing and validating. The usefulness of the proposed approach is twofold: on the one hand, it allows identifying the variables that influence e- commerce sales with an accessible approach. And on the other hand, it can be used to model future sales from the input variables. Results show that e-commerce is linearly dependent on 11 economic and demographic indicators.Keywords: e-commerce, statistical modeling, regression, empirical research
Procedia PDF Downloads 2262230 What Factors Contributed to the Adaptation Gap during School Transition in Japan?
Authors: Tadaaki Tomiie, Hiroki Shinkawa
Abstract:
The present study was aimed to examine the structure of children’s adaptation during school transition and to identify a commonality and dissimilarity at the elementary and junior high school. 1,983 students in the 6th grade and 2,051 students in the 7th grade were extracted by stratified two-stage random sampling and completed the ASSESS that evaluated the school adaptation from the view point of ‘general satisfaction’, ‘teachers’ support’, ‘friends’ support’, ‘anti-bullying relationship’, ‘prosocial skills’, and ‘academic adaptation’. The 7th graders tend to be worse adaptation than the 6th graders. A structural equation modeling showed the goodness of fit for each grades. Both models were very similar but the 7th graders’ model showed a lower coefficient at the pass from ‘teachers’ support’ to ‘friends’ support’. The role of ‘teachers’ support’ was decreased to keep a good relation in junior high school. We also discussed how we provide a continuous assistance for prevention of the 7th graders’ gap.Keywords: school transition, social support, psychological adaptation, K-12
Procedia PDF Downloads 3852229 Analyzing the Characteristics and Shifting Patterns of Creative Hubs in Bandung
Authors: Fajar Ajie Setiawan, Ratu Azima Mayangsari, Bunga Aprilia
Abstract:
The emergence of creative hubs around the world, including in Bandung, was primarily driven by the needs of collaborative-innovative spaces for creative industry activities such as the Maker Movement and the Coworking Movement. These activities pose challenges for identification and formulation of sets of indicators for modeling creative hubs in Bandung to help stakeholders in formulating strategies. This study intends to identify their characteristics. This research was conducted using a qualitative approach comparing three concepts of creative hub categorization and integrating them into a single instrument to analyze 12 selected creative hubs. Our results showed three new functions of creative hubs in Bandung: (1) cultural, (2) retail business, and (3) community network. Results also suggest that creative hubs in Bandung are commonly established for networking and community activities. Another result shows that there was a shifting pattern of creative hubs before the 2000s and after the 2000s, which also creates a hybrid group of creative hubs.Keywords: creative industry, creative hubs, Ngariung, Bandung
Procedia PDF Downloads 1772228 Mapping of Potential Areas for Groundwater Storage in the Sais Plateau and Its Middle Atlas Borders, Morocco
Authors: Abdelghani Qadem, Zohair Qadem, Mohamed Lasri
Abstract:
At the level of the Moroccan Sais Plateau, groundwater constitutes strategic natural resources for agricultural, industrial, and domestic use. Today, due to climate change and population growth, the pressure on groundwater has increased considerably. This contribution aims to delineate and map potential areas for groundwater storage in the area in question using GIS and remote sensing. The methodology adopted is based on the identification of the thematic layers used to assess the potential recharge of the aquifer. The mapping of potential areas for groundwater storage is developed through the method of modeling and weighted overlay using the spatial analysis tool on the Geographic Information System. The results obtained can be used for the planning of future artificial recharge projects in the study area in order to ensure the good sustainable use of this underground gift.Keywords: Morocco, climate change, groundwater, mapping, recharge
Procedia PDF Downloads 832227 Assessment of Taiwan Railway Occurrences Investigations Using Causal Factor Analysis System and Bayesian Network Modeling Method
Authors: Lee Yan Nian
Abstract:
Safety investigation is different from an administrative investigation in that the former is conducted by an independent agency and the purpose of such investigation is to prevent accidents in the future and not to apportion blame or determine liability. Before October 2018, Taiwan railway occurrences were investigated by local supervisory authority. Characteristics of this kind of investigation are that enforcement actions, such as administrative penalty, are usually imposed on those persons or units involved in occurrence. On October 21, 2018, due to a Taiwan Railway accident, which caused 18 fatalities and injured another 267, establishing an agency to independently investigate this catastrophic railway accident was quickly decided. The Taiwan Transportation Safety Board (TTSB) was then established on August 1, 2019 to take charge of investigating major aviation, marine, railway and highway occurrences. The objective of this study is to assess the effectiveness of safety investigations conducted by the TTSB. In this study, the major railway occurrence investigation reports published by the TTSB are used for modeling and analysis. According to the classification of railway occurrences investigated by the TTSB, accident types of Taiwan railway occurrences can be categorized into: derailment, fire, Signal Passed at Danger and others. A Causal Factor Analysis System (CFAS) developed by the TTSB is used to identify the influencing causal factors and their causal relationships in the investigation reports. All terminologies used in the CFAS are equivalent to the Human Factors Analysis and Classification System (HFACS) terminologies, except for “Technical Events” which was added to classify causal factors resulting from mechanical failure. Accordingly, the Bayesian network structure of each occurrence category is established based on the identified causal factors in the CFAS. In the Bayesian networks, the prior probabilities of identified causal factors are obtained from the number of times in the investigation reports. Conditional Probability Table of each parent node is determined from domain experts’ experience and judgement. The resulting networks are quantitatively assessed under different scenarios to evaluate their forward predictions and backward diagnostic capabilities. Finally, the established Bayesian network of derailment is assessed using investigation reports of the same accident which was investigated by the TTSB and the local supervisory authority respectively. Based on the assessment results, findings of the administrative investigation is more closely tied to errors of front line personnel than to organizational related factors. Safety investigation can identify not only unsafe acts of individual but also in-depth causal factors of organizational influences. The results show that the proposed methodology can identify differences between safety investigation and administrative investigation. Therefore, effective intervention strategies in associated areas can be better addressed for safety improvement and future accident prevention through safety investigation.Keywords: administrative investigation, bayesian network, causal factor analysis system, safety investigation
Procedia PDF Downloads 1232226 A Knowledge-As-A-Service Support Framework for Ambient Learning in Kenya
Authors: Lucy W. Mburu, Richard Karanja, Simon N. Mwendia
Abstract:
Over recent years, learners have experienced a constant need to access on demand knowledge that is fully aligned with the paradigm of cloud computing. As motivated by the global sustainable development goal to ensure inclusive and equitable learning opportunities, this research has developed a framework hinged on the knowledge-as-a-service architecture that utilizes knowledge from ambient learning systems. Through statistical analysis and decision tree modeling, the study discovers influential variables for ambient learning among university students. The main aim is to generate a platform for disseminating and exploiting the available knowledge to aid the learning process and, thus, to improve educational support on the ambient learning system. The research further explores how collaborative effort can be used to form a knowledge network that allows access to heterogeneous sources of knowledge, which benefits knowledge consumers, such as the developers of ambient learning systems.Keywords: actionable knowledge, ambient learning, cloud computing, decision trees, knowledge as a service
Procedia PDF Downloads 1602225 A Time-Varying and Non-Stationary Convolution Spectral Mixture Kernel for Gaussian Process
Authors: Kai Chen, Shuguang Cui, Feng Yin
Abstract:
Gaussian process (GP) with spectral mixture (SM) kernel demonstrates flexible non-parametric Bayesian learning ability in modeling unknown function. In this work a novel time-varying and non-stationary convolution spectral mixture (TN-CSM) kernel with a significant enhancing of interpretability by using process convolution is introduced. A way decomposing the SM component into an auto-convolution of base SM component and parameterizing it to be input dependent is outlined. Smoothly, performing a convolution between two base SM component yields a novel structure of non-stationary SM component with much better generalized expression and interpretation. The TN-CSM perfectly allows compatibility with the stationary SM kernel in terms of kernel form and spectral base ignored and confused by previous non-stationary kernels. On synthetic and real-world datatsets, experiments show the time-varying characteristics of hyper-parameters in TN-CSM and compare the learning performance of TN-CSM with popular and representative non-stationary GP.Keywords: Gaussian process, spectral mixture, non-stationary, convolution
Procedia PDF Downloads 1962224 Analysis of Electricity Demand at Household Level Using Leap Model in Balochistan, Pakistan
Authors: Sheikh Saeed Ahmad
Abstract:
Electricity is vital for any state’s development that needs policy for planning the power network extension. This study is about simulation modeling for electricity in Balochistan province. Baseline data of electricity consumption was used of year 2004 and projected with the help of LEAP model up to subsequent 30 years. Three scenarios were created to run software. One scenario was baseline and other two were alternative or green scenarios i.e. solar and wind energy scenarios. Present study revealed that Balochistan has much greater potential for solar and wind energy for electricity production. By adopting these alternative energy forms, Balochistan can save energy in future nearly 23 and 48% by incorporating solar and wind power respectively. Thus, the study suggests to government planners, an aspect of integrating renewable sources in power system for ensuring sustainable development and growth.Keywords: demand and supply, LEAP, solar energy, wind energy, households
Procedia PDF Downloads 4272223 Modelling the Indonesian Goverment Securities Yield Curve Using Nelson-Siegel-Svensson and Support Vector Regression
Authors: Jamilatuzzahro, Rezzy Eko Caraka
Abstract:
The yield curve is the plot of the yield to maturity of zero-coupon bonds against maturity. In practice, the yield curve is not observed but must be extracted from observed bond prices for a set of (usually) incomplete maturities. There exist many methodologies and theory to analyze of yield curve. We use two methods (the Nelson-Siegel Method, the Svensson Method, and the SVR method) in order to construct and compare our zero-coupon yield curves. The objectives of this research were: (i) to study the adequacy of NSS model and SVR to Indonesian government bonds data, (ii) to choose the best optimization or estimation method for NSS model and SVR. To obtain that objective, this research was done by the following steps: data preparation, cleaning or filtering data, modeling, and model evaluation.Keywords: support vector regression, Nelson-Siegel-Svensson, yield curve, Indonesian government
Procedia PDF Downloads 2442222 Temperature Effect on Sound Propagation in an Elastic Pipe with Viscoelastic Liquid
Authors: S. Levitsky, R. Bergman
Abstract:
Fluid rheology may have essential impact on sound propagation in a liquid-filled pipe, especially, in a low frequency range. Rheological parameters of liquid are temperature-sensitive, which ultimately results in a temperature dependence of the wave speed and attenuation in the waveguide. The study is devoted to modeling of this effect at sound propagation in an elastic pipe with polymeric liquid, described by generalized Maxwell model with non-zero high-frequency viscosity. It is assumed that relaxation spectrum is distributed according to the Spriggs law; temperature impact on the liquid rheology is described on the basis of the temperature-superposition principle and activation theory. The dispersion equation for the waveguide, considered as a thin-walled tube with polymeric solution, is obtained within a quasi-one-dimensional formulation. Results of the study illustrate the influence of temperature on sound propagation in the system.Keywords: elastic tube, sound propagation, temperature effect, viscoelastic liquid
Procedia PDF Downloads 4202221 A Heuristic Approach for the General Flowshop Scheduling Problem to Minimize the Makespan
Authors: Mohsen Ziaee
Abstract:
Almost all existing researches on the flowshop scheduling problems focus on the permutation schedules and there is insufficient study dedicated to the general flowshop scheduling problems in the literature, since the modeling and solving of the general flowshop scheduling problems are more difficult than the permutation ones, especially for the large-size problem instances. This paper considers the general flowshop scheduling problem with the objective function of the makespan (F//Cmax). We first find the optimal solution of the problem by solving a mixed integer linear programming model. An efficient heuristic method is then presented to solve the problem. An ant colony optimization algorithm is also proposed for the problem. In order to evaluate the performance of the methods, computational experiments are designed and performed. Numerical results show that the heuristic algorithm can result in reasonable solutions with low computational effort and even achieve optimal solutions in some cases.Keywords: scheduling, general flow shop scheduling problem, makespan, heuristic
Procedia PDF Downloads 2072220 Compressible Flow Modeling in Pipes and Porous Media during Blowdown Experiment
Authors: Thomas Paris, Vincent Bruyere, Patrick Namy
Abstract:
A numerical model is developed to simulate gas blowdowns through a thin tube and a filter (porous media), separating a high pressure gas filled reservoir to low pressure ones. Based on a previous work, a one-dimensional approach is developed by using the finite element method to solve the transient compressible flow and to predict the pressure and temperature evolution in space and time. Mass, momentum, and energy conservation equations are solved in a fully coupled way in the reservoirs, the pipes and the porous media. Numerical results, such as pressure and temperature evolutions, are firstly compared with experimental data to validate the model for different configurations. Couplings between porous media and pipe flow are then validated by checking mass balance. The influence of the porous media and the nature of the gas is then studied for different initial high pressure values.Keywords: compressible flow, fluid mechanics, heat transfer, porous media
Procedia PDF Downloads 4062219 Radar Signal Detection Using Neural Networks in Log-Normal Clutter for Multiple Targets Situations
Authors: Boudemagh Naime
Abstract:
Automatic radar detection requires some methods of adapting to variations in the background clutter in order to control their false alarm rate. The problem becomes more complicated in non-Gaussian environment. In fact, the conventional approach in real time applications requires a complex statistical modeling and much computational operations. To overcome these constraints, we propose another approach based on artificial neural network (ANN-CMLD-CFAR) using a Back Propagation (BP) training algorithm. The considered environment follows a log-normal distribution in the presence of multiple Rayleigh-targets. To evaluate the performances of the considered detector, several situations, such as scale parameter and the number of interferes targets, have been investigated. The simulation results show that the ANN-CMLD-CFAR processor outperforms the conventional statistical one.Keywords: radat detection, ANN-CMLD-CFAR, log-normal clutter, statistical modelling
Procedia PDF Downloads 3642218 Steel Concrete Composite Bridge: Modelling Approach and Analysis
Authors: Kaviyarasan D., Satish Kumar S. R.
Abstract:
India being vast in area and population with great scope of international business, roadways and railways network connection within the country is expected to have a big growth. There are numerous rail-cum-road bridges constructed across many major rivers in India and few are getting very old. So there is more possibility of repairing or coming up with such new bridges in India. Analysis and design of such bridges are practiced through conventional procedure and end up with heavy and uneconomical sections. Such heavy class steel bridges when subjected to high seismic shaking has more chance to fail by stability because the members are too much rigid and stocky rather than being flexible to dissipate the energy. This work is the collective study of the researches done in the truss bridge and steel concrete composite truss bridges presenting the method of analysis, tools for numerical and analytical modeling which evaluates its seismic behaviour and collapse mechanisms. To ascertain the inelastic and nonlinear behaviour of the structure, generally at research level static pushover analysis is adopted. Though the static pushover analysis is now extensively used for the framed steel and concrete buildings to study its lateral action behaviour, those findings by pushover analysis done for the buildings cannot directly be used for the bridges as such, because the bridges have completely a different performance requirement, behaviour and typology as compared to that of the buildings. Long span steel bridges are mostly the truss bridges. Truss bridges being formed by many members and connections, the failure of the system does not happen suddenly with single event or failure of one member. Failure usually initiates from one member and progresses gradually to the next member and so on when subjected to further loading. This kind of progressive collapse of the truss bridge structure is dependent on many factors, in which the live load distribution and span to length ratio are most significant. The ultimate collapse is anyhow by the buckling of the compression members only. For regular bridges, single step pushover analysis gives results closer to that of the non-linear dynamic analysis. But for a complicated bridge like heavy class steel bridge or the skewed bridges or complicated dynamic behaviour bridges, nonlinear analysis capturing the progressive yielding and collapse pattern is mandatory. With the knowledge of the postelastic behaviour of the bridge and advancements in the computational facility, the current level of analysis and design of bridges has moved to state of ascertaining the performance levels of the bridges based on the damage caused by seismic shaking. This is because the buildings performance levels deals much with the life safety and collapse prevention levels, whereas the bridges mostly deal with the extent damages and how quick it can be repaired with or without disturbing the traffic after a strong earthquake event. The paper would compile the wide spectrum of modeling to analysis of the steel concrete composite truss bridges in general.Keywords: bridge engineering, performance based design of steel truss bridge, seismic design of composite bridge, steel-concrete composite bridge
Procedia PDF Downloads 1852217 Application of Unstructured Mesh Modeling in Evolving SGE of an Airport at the Confluence of Multiple Rivers in a Macro Tidal Region
Authors: A. A. Purohit, M. M. Vaidya, M. D. Kudale
Abstract:
Among the various developing countries in the world like China, Malaysia, Korea etc., India is also developing its infrastructures in the form of Road/Rail/Airports and Waterborne facilities at an exponential rate. Mumbai, the financial epicenter of India is overcrowded and to relieve the pressure of congestion, Navi Mumbai suburb is being developed on the east bank of Thane creek near Mumbai. The government due to limited space at existing Mumbai Airports (domestic and international) to cater for the future demand of airborne traffic, proposes to build a new international airport near Panvel at Navi Mumbai. Considering the precedence of extreme rainfall on 26th July 2005 and nearby townships being in a low-lying area, wherein new airport is proposed, it is inevitable to study this complex confluence area from a hydrodynamic consideration under both tidal and extreme events (predicted discharge hydrographs), to avoid inundation of the surrounding due to the proposed airport reclamation (1160 hectares) and to determine the safe grade elevation (SGE). The model studies conducted using the application of unstructured mesh to simulate the Panvel estuarine area (93 km2), calibration, validation of a model for hydraulic field measurements and determine the maxima water levels around the airport for various extreme hydrodynamic events, namely the simultaneous occurrence of highest tide from the Arabian Sea and peak flood discharges (Probable Maximum Precipitation and 26th July 2005) from five rivers, the Gadhi, Kalundri, Taloja, Kasadi and Ulwe, meeting at the proposed airport area revealed that: (a) The Ulwe River flowing beneath the proposed airport needs to be diverted. The 120m wide proposed Ulwe diversion channel having a wider base width of 200 m at SH-54 Bridge on the Ulwe River along with the removal of the existing bund in Moha Creek is inevitable to keep the SGE of the airport to a minimum. (b) The clear waterway of 80 m at SH-54 Bridge (Ulwe River) and 120 m at Amra Marg Bridge near Moha Creek is also essential for the Ulwe diversion and (c) The river bank protection works on the right bank of Gadhi River between the NH-4B and SH-54 bridges as well as upstream of the Ulwe River diversion channel are essential to avoid inundation of low lying areas. The maxima water levels predicted around the airport keeps SGE to a minimum of 11m with respect to Chart datum of Ulwe Bundar and thus development is not only technologically-economically feasible but also sustainable. The unstructured mesh modeling is a promising tool to simulate complex extreme hydrodynamic events and provides a reliable solution to evolve optimal SGE of airport.Keywords: airport, hydrodynamics, safe grade elevation, tides
Procedia PDF Downloads 2612216 Automatic Queuing Model Applications
Authors: Fahad Suleiman
Abstract:
Queuing, in medical system is the process of moving patients in a specific sequence to a specific service according to the patients’ nature of illness. The term scheduling stands for the process of computing a schedule. This may be done by a queuing based scheduler. This paper focuses on the medical consultancy system, the different queuing algorithms that are used in healthcare system to serve the patients, and the average waiting time. The aim of this paper is to build automatic queuing system for organizing the medical queuing system that can analyses the queue status and take decision which patient to serve. The new queuing architecture model can switch between different scheduling algorithms according to the testing results and the factor of the average waiting time. The main innovation of this work concerns the modeling of the average waiting time is taken into processing, in addition with the process of switching to the scheduling algorithm that gives the best average waiting time.Keywords: queuing systems, queuing system models, scheduling algorithms, patients
Procedia PDF Downloads 3542215 [Keynote Talk]: Formal Specification and Description Language and Message Sequence Chart to Model and Validate Session Initiation Protocol Services
Authors: Sa’ed Abed, Mohammad H. Al Shayeji, Ovais Ahmed, Sahel Alouneh
Abstract:
Session Initiation Protocol (SIP) is a signaling layer protocol for building, adjusting and ending sessions among participants including Internet conferences, telephone calls and multimedia distribution. SIP facilitates user movement by proxying and forwarding requests to the present location of the user. In this paper, we provide a formal Specification and Description Language (SDL) and Message Sequence Chart (MSC) to model and define the Internet Engineering Task Force (IETF) SIP protocol and its sample services resulted from informal SIP specification. We create an “Abstract User Interface” using case analysis so that can be applied to identify SIP services more explicitly. The issued sample SIP features are then used as case scenarios; they are revised in MSCs format and validated to their corresponding SDL models.Keywords: modeling, MSC, SDL, SIP, validating
Procedia PDF Downloads 2102214 Adsorption Studies of Methane on Zeolite NaX, LiX, KX at High Pressures
Authors: El Hadi Zouaoui, Djamel Nibou, Mohamed Haddouche, Wan Azlina Wan Ab Karim Ghani, Samira Amokrane
Abstract:
In this study, CH₄ adsorption isotherms on NaX or Faujasite X and exchanged zeolites with Li⁺(LiX), and K⁺(KX) at different temperatures (298, 308, 323 and 353 K) has been investigated, using high pressure (3 MPa (30 bar)) thermo-gravimetric analyser. The experimental results were then validated using several isothermal kinetics models, namely Langmuir, Toth, and Marczewski-Jaroniec, followed by a calculation of the error coefficients between the experimental and theoretical results. It was found that the CH₄ adsorption isotherms are characterized by a strong increase in adsorption at low pressure and a tendency towards a high pressure limit value Qₘₐₓ. The size and position of the exchanged cations, the spherical shape of methane, the specific surface, and the volume of the pores revealed the most important influence parameters for this study. These results revealed that the experimentation and the modeling, well correlated with Marczewski-Jaroniec, Toth, and gave the best results whatever the temperature and the material used.Keywords: CH₄ adsorption, exchange cations, exchanged zeolite, isotherm study, NaX zeolite
Procedia PDF Downloads 2492213 Flexible Design of Triboelectric Nanogenerators for Efficient Vibration Energy Harvesting
Authors: Meriam Khelifa
Abstract:
In recent years, many studies have focused on the harvesting of the vibrations energy to produce electrical energy using contact separation (CS) triboelectric nanogenerators (TENG). The simplest design for a TENG consists of a capacitor comprising a single moving electrode. The conversion efficiency of vibration energy into electrical energy can, in principle, reach 100%. But to actually achieve this objective, it is necessary to optimize the parameters of the TENG, such as the dielectric constant and the thickness of the insulator, the load resistance, etc. In particular, the use of a switch which is actioned at optimal times within the TENG cycle is essential. Using numerical modeling and experimental design, we applied a methodology to find the TENG parameters which optimize the energy transfer efficiency (ETE) to almost 100% for any vibration frequency and amplitude. The rather simple design of a TENG is promising as an environment friendly device. It opens the doors for harvesting acoustic vibrations from the environment and to design effective protection against environmental noise.Keywords: vibrations, CS TENG, efficiency, design of experiments
Procedia PDF Downloads 902212 Improving Sales through Inventory Reduction: A Retail Chain Case Study
Authors: M. G. Mattos, J. E. Pécora Jr, T. A. Briso
Abstract:
Today's challenging business environment, with unpredictable demand and volatility, requires a supply chain strategy that handles uncertainty and risks in the right way. Even though inventory models have been previously explored, this paper seeks to apply these concepts on a practical situation. This study involves the inventory replenishment problem, applying techniques that are mainly based on mathematical assumptions and modeling. The primary goal is to improve the retailer’s supply chain processes taking store differences when setting the various target stock levels. Through inventory review policy, picking piece implementation and minimum exposure definition, we were able not only to promote the inventory reduction as well as improve sales results. The inventory management theory from literature review was then tested on a single case study regarding a particular department in one of the largest Latam retail chains.Keywords: inventory, distribution, retail, risk, safety stock, sales, uncertainty
Procedia PDF Downloads 2682211 Effect of Elastic Modulus Varieties on Helical Pile Behavior in Sand
Authors: Javad Shamsi Soosahab, Reza Ziaie Moayed
Abstract:
The compressive and tensile bearing capacity of helical piles in sand is investigated by means of numerical modeling. The analyses are carried out using two-dimensional finite-element software, Optum G2. The load–displacement behavior under compression and tension is compared in different relative densities for constant and various elastic modulus. The criterion used to find the ultimate axial load is the load corresponding to 5% of the helical diameter. The results show that relative density of sand plays an essential role in the response of ultimate capacities towards various condition. Increase in elastic modulus with depth is found to play a relatively more significant role to the increase in ultimate compressive load capacities, however tension bearing capacity decreases.Keywords: helical piles, Optum G2, relative density, constant and various elastic modulus
Procedia PDF Downloads 1512210 Ground Motion Modeling Using the Least Absolute Shrinkage and Selection Operator
Authors: Yildiz Stella Dak, Jale Tezcan
Abstract:
Ground motion models that relate a strong motion parameter of interest to a set of predictive seismological variables describing the earthquake source, the propagation path of the seismic wave, and the local site conditions constitute a critical component of seismic hazard analyses. When a sufficient number of strong motion records are available, ground motion relations are developed using statistical analysis of the recorded ground motion data. In regions lacking a sufficient number of recordings, a synthetic database is developed using stochastic, theoretical or hybrid approaches. Regardless of the manner the database was developed, ground motion relations are developed using regression analysis. Development of a ground motion relation is a challenging process which inevitably requires the modeler to make subjective decisions regarding the inclusion criteria of the recordings, the functional form of the model and the set of seismological variables to be included in the model. Because these decisions are critically important to the validity and the applicability of the model, there is a continuous interest on procedures that will facilitate the development of ground motion models. This paper proposes the use of the Least Absolute Shrinkage and Selection Operator (LASSO) in selecting the set predictive seismological variables to be used in developing a ground motion relation. The LASSO can be described as a penalized regression technique with a built-in capability of variable selection. Similar to the ridge regression, the LASSO is based on the idea of shrinking the regression coefficients to reduce the variance of the model. Unlike ridge regression, where the coefficients are shrunk but never set equal to zero, the LASSO sets some of the coefficients exactly to zero, effectively performing variable selection. Given a set of candidate input variables and the output variable of interest, LASSO allows ranking the input variables in terms of their relative importance, thereby facilitating the selection of the set of variables to be included in the model. Because the risk of overfitting increases as the ratio of the number of predictors to the number of recordings increases, selection of a compact set of variables is important in cases where a small number of recordings are available. In addition, identification of a small set of variables can improve the interpretability of the resulting model, especially when there is a large number of candidate predictors. A practical application of the proposed approach is presented, using more than 600 recordings from the National Geospatial-Intelligence Agency (NGA) database, where the effect of a set of seismological predictors on the 5% damped maximum direction spectral acceleration is investigated. The set of candidate predictors considered are Magnitude, Rrup, Vs30. Using LASSO, the relative importance of the candidate predictors has been ranked. Regression models with increasing levels of complexity were constructed using one, two, three, and four best predictors, and the models’ ability to explain the observed variance in the target variable have been compared. The bias-variance trade-off in the context of model selection is discussed.Keywords: ground motion modeling, least absolute shrinkage and selection operator, penalized regression, variable selection
Procedia PDF Downloads 3302209 Design and Burnback Analysis of Three Dimensional Modified Star Grain
Authors: Almostafa Abdelaziz, Liang Guozhu, Anwer Elsayed
Abstract:
The determination of grain geometry is an important and critical step in the design of solid propellant rocket motor. In this study, the design process involved parametric geometry modeling in CAD, MATLAB coding of performance prediction and 2D star grain ignition experiment. The 2D star grain burnback achieved by creating new surface via each web increment and calculating geometrical properties at each step. The 2D star grain is further modified to burn as a tapered 3D star grain. Zero dimensional method used to calculate the internal ballistic performance. Experimental and theoretical results were compared in order to validate the performance prediction of the solid rocket motor. The results show that the usage of 3D grain geometry will decrease the pressure inside the combustion chamber and enhance the volumetric loading ratio.Keywords: burnback analysis, rocket motor, star grain, three dimensional grains
Procedia PDF Downloads 245