Search results for: WEKA data mining tool
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28613

Search results for: WEKA data mining tool

26903 Employee Engagement: Tool for Success of Higher Education in Thailand

Authors: Pooree Sakot, Marndarath Suksanga

Abstract:

Organizations are under increasing pressure to improve performance and maximize the contribution of every employee. Employee engagement has become an attractive business proposition. The triple bottom line consists of three Ps: profit, people and planet. It aims to measure the financial, social and environmental performance of the corporation over a period of time. People are the most important asset of every organization. Most of the studies suggest that employee engagement improves the bottom line in almost every instance and it is well worth all organizational efforts to actively engage employees. Engaged employees have an impact on productivity and financial performance. Efficient leadership and effective management can take place if emerging paradigm like employee engagement is appropriately understood and put into practice. Employee engagement starts at the first step i.e. recruitment of an employee to the last step i.e. retirement .The HR Practices of an organization play the most major role in helping the employees walk the extra mile. Effective employee engagement is the key component for improved organizational performance.

Keywords: employee engagement, higher education, tool, success

Procedia PDF Downloads 335
26902 Data Poisoning Attacks on Federated Learning and Preventive Measures

Authors: Beulah Rani Inbanathan

Abstract:

In the present era, it is vivid from the numerous outcomes that data privacy is being compromised in various ways. Machine learning is one technology that uses the centralized server, and then data is given as input which is being analyzed by the algorithms present on this mentioned server, and hence outputs are predicted. However, each time the data must be sent by the user as the algorithm will analyze the input data in order to predict the output, which is prone to threats. The solution to overcome this issue is federated learning, where the models alone get updated while the data resides on the local machine and does not get exchanged with the other local models. Nevertheless, even on these local models, there are chances of data poisoning, and it is crystal clear from various experiments done by many people. This paper delves into many ways where data poisoning occurs and the many methods through which it is prevalent that data poisoning still exists. It includes the poisoning attacks on IoT devices, Edge devices, Autoregressive model, and also, on Industrial IoT systems and also, few points on how these could be evadible in order to protect our data which is personal, or sensitive, or harmful when exposed.

Keywords: data poisoning, federated learning, Internet of Things, edge computing

Procedia PDF Downloads 87
26901 The Career Success for Female Managers: A Case Study of The Primary Education Department, Thailand

Authors: Nipon Sasithornsaowapa

Abstract:

The purposes of this research was to study the female management career success of the primary education department of Thailand. The independent variable was human capital which included three factors: family status, personality, and knowledge-skill-experience, while the important dependent variable was the career success. The population of this study included 2,179 female management officials in the department of primary education. A total of 400 female managers were interviewed and utilized as a sample group. A questionnaire was developed and used as a main tool for collecting data. Content analysis was performed to get the quantitative data. Descriptive statistics in this research was done by SPSS program. The findings revealed that family and personality factors had a high influence on the human capital and, in turn, influenced the career success of female managers. On the other hand, knowledge-skill-experience had an insignificant influence to the human capital and the female career success. In addition, the findings from the in-depth interview revealed that the majority of respondents defined career success as the satisfaction in job duties, not money and position.

Keywords: career, female managers, primary education

Procedia PDF Downloads 300
26900 Approaches to Estimating the Radiation and Socio-Economic Consequences of the Fukushima Daiichi Nuclear Power Plant Accident Using the Data Available in the Public Domain

Authors: Dmitry Aron

Abstract:

Major radiation accidents carry not only the potential risks of negative consequences for public health due to exposure but also because of large-scale emergency measures were taken by authorities to protect the population, which can lead to unreasonable social and economic damage. It is technically difficult, as a rule, to assess the possible costs and damages from decisions on evacuation or resettlement of residents in the shortest possible time, since it requires specially prepared information systems containing relevant information on demographic, economic parameters and incoming data on radiation conditions. Foreign observers also face the difficulties in assessing the consequences of an accident in a foreign territory, since they usually do not have official and detailed statistical data on the territory of foreign state beforehand. Also, they can suppose the application of unofficial data from open Internet sources is an unreliable and overly labor-consuming procedure. This paper describes an approach to prompt creation of relational database that contains detailed actual data on economics, demographics and radiation situation at the Fukushima Prefecture during the Fukushima Daiichi NPP accident, received by the author from open Internet sources. This database was developed and used to assess the number of evacuated population, radiation doses, expected financial losses and other parameters of the affected areas. The costs for the areas with temporarily evacuated and long-term resettled population were investigated, and the radiological and economic effectiveness of the measures taken to protect the population was estimated. Some of the results are presented in the article. The study showed that such a tool for analyzing the consequences of radiation accidents can be prepared in a short space of time for the entire territory of Japan, and it can serve for the modeling of social and economic consequences for hypothetical accidents for any nuclear power plant in its territory.

Keywords: Fukushima, radiation accident, emergency measures, database

Procedia PDF Downloads 191
26899 The Clash between Environmental and Heritage Laws: An Australian Case Study

Authors: Andrew R. Beatty

Abstract:

The exploitation of Australia’s vast mineral wealth is regulated by a matrix of planning, environment and heritage legislation, and despite the desire for a ‘balance’ between economic, environmental and heritage values, Aboriginal objects and places are often detrimentally impacted by mining approvals. The Australian experience is not novel. There are other cases of clashes between the rights of traditional landowners and businesses seeking to exploit mineral or other resources on or beneath those lands, including in the United States, Canada, and Brazil. How one reconciles the rights of traditional owners with those of resource companies is an ongoing legal problem of general interest. In Australia, planning and environmental approvals for resource projects are ordinarily issued by State or Territory governments. Federal legislation such as the Aboriginal and Torres Strait Islander Heritage Protection Act 1984 (Cth) is intended to act as a safety net when State or Territory legislation is incapable of protecting Indigenous objects or places in the context of approvals for resource projects. This paper will analyse the context and effectiveness of legislation enacted to protect Indigenous heritage in the planning process. In particular, the paper will analyse how the statutory objects of such legislation need to be weighed against the statutory objects of competing legislation designed to facilitate and control resource exploitation. Using a current claim in the Federal Court of Australia for the protection of a culturally significant landscape as a case study, this paper will examine the challenges faced in ascribing value to cultural heritage within the wider context of environmental and planning laws. Our findings will reveal that there is an inherent difficulty in defining and weighing competing economic, environmental and heritage considerations. An alternative framework will be proposed to guide regulators towards making decisions that result in better protection of Indigenous heritage in the context of resource management.

Keywords: environmental law, heritage law, indigenous rights, mining

Procedia PDF Downloads 96
26898 A Step Magnitude Haptic Feedback Device and Platform for Better Way to Review Kinesthetic Vibrotactile 3D Design in Professional Training

Authors: Biki Sarmah, Priyanko Raj Mudiar

Abstract:

In the modern world of remotely interactive virtual reality-based learning and teaching, including professional skill-building training and acquisition practices, as well as data acquisition and robotic systems, the revolutionary application or implementation of field-programmable neurostimulator aids and first-hand interactive sensitisation techniques into 3D holographic audio-visual platforms have been a coveted dream of many scholars, professionals, scientists, and students. Integration of 'kinaesthetic vibrotactile haptic perception' along with an actuated step magnitude contact profiloscopy in augmented reality-based learning platforms and professional training can be implemented by using an extremely calculated and well-coordinated image telemetry including remote data mining and control technique. A real-time, computer-aided (PLC-SCADA) field calibration based algorithm must be designed for the purpose. But most importantly, in order to actually realise, as well as to 'interact' with some 3D holographic models displayed over a remote screen using remote laser image telemetry and control, all spatio-physical parameters like cardinal alignment, gyroscopic compensation, as well as surface profile and thermal compositions, must be implemented using zero-order type 1 actuators (or transducers) because they provide zero hystereses, zero backlashes, low deadtime as well as providing a linear, absolutely controllable, intrinsically observable and smooth performance with the least amount of error compensation while ensuring the best ergonomic comfort ever possible for the users.

Keywords: haptic feedback, kinaesthetic vibrotactile 3D design, medical simulation training, piezo diaphragm based actuator

Procedia PDF Downloads 166
26897 Building a Composite Approach to Employees' Motivational Needs by Combining Cognitive Needs

Authors: Alexis Akinyemi, Laurene Houtin

Abstract:

Measures of employee motivation at work are often based on the theory of self-determined motivation, which implies that human resources departments and managers seek to motivate employees in the most self-determined way possible and use strategies to achieve this goal. In practice, they often tend to assess employee motivation and then adapt management to the most important source of motivation for their employees, for example by financially rewarding an employee who is extrinsically motivated, and by rewarding an intrinsically motivated employee with congratulations and recognition. Thus, the use of motivation measures contradicts theoretical positioning: theory does not provide for the promotion of extrinsically motivated behaviour. In addition, a corpus of social psychology linked to fundamental needs makes it possible to personally address a person’s different sources of motivation (need for cognition, need for uniqueness, need for effects and need for closure). By developing a composite measure of motivation based on these needs, we provide human resources professionals, and in particular occupational psychologists, with a tool that complements the assessment of self-determined motivation, making it possible to precisely address the objective of adapting work not to the self-determination of behaviours, but to the motivational traits of employees. To develop such a model, we gathered the French versions of the cognitive needs scales (need for cognition, need for uniqueness, need for effects, need for closure) and conducted a study with 645 employees of several French companies. On the basis of the data collected, we conducted a confirmatory factor analysis to validate the model, studied the correlations between the various needs, and highlighted the different reference groups that could be used to use these needs as a basis for interviews with employees (career, recruitment, etc.). The results showed a coherent model and the expected links between the different needs. Taken together, these results make it possible to propose a valid and theoretically adjusted tool to managers who wish to adapt their management to their employees’ current motivations, whether or not these motivations are self-determined.

Keywords: motivation, personality, work commitment, cognitive needs

Procedia PDF Downloads 123
26896 The International Classification of Functioning, Disability and Health (ICF) as a Problem-Solving Tool in Disability Rehabilitation and Education Alliance in Metabolic Disorders (DREAM) at Sultan Bin Abdul Aziz Humanitarian City:A Prototype for Reh

Authors: Hamzeh Awad

Abstract:

Disability is considered to be a worldwide complex phenomenon which rising at a phenomenal rate and caused by many different factors. Chronic diseases such as cardiovascular disease and diabetes can lead to mobility disability in particular and disability in general. The ICF is an integrative bio-psycho-social model of functioning and disability and considered by the World Health Organization (WHO) to be a reference for disability classification using its categories and core set to classify disorder’s functional limitations. Specialist programs at Sultan Bin Abdul Aziz Humanitarian City (SBAHC) are providing both inpatient and outpatient services have started to implement the ICF and use it as a problem solving tool in Rehab. Diabetes is leading contributing factor for disability and considered epidemic in several Gulf countries including the Kingdom of Saudi Arabia (KSA), where its prevalence continues to increase dramatically. Metabolic disorders, mainly diabetes are not well covered in Rehab field. The purpose of this study is present to research and clinical rehabilitation field of DREAM and ICF as a framework in clinical and research setting in Rehab service. Also, shed the light on using the ICF as problem solving tool at SBAHC. There are synergies between disability causes and wider public health priorities in relation to both chronic disease and disability prevention. Therefore, there is a need for strong advocacy and understanding of the role of ICF as a reference in Rehab settings in Middle East if we wish to seize the opportunity to reverse current trends of acquired disability in the region.

Keywords: international classification of functioning, disability and health (ICF), prototype, rehabilitation and diabetes

Procedia PDF Downloads 351
26895 Trend Analysis of Rainfall: A Climate Change Paradigm

Authors: Shyamli Singh, Ishupinder Kaur, Vinod K. Sharma

Abstract:

Climate Change refers to the change in climate for extended period of time. Climate is changing from the past history of earth but anthropogenic activities accelerate this rate of change and which is now being a global issue. Increase in greenhouse gas emissions is causing global warming and climate change related issues at an alarming rate. Increasing temperature results in climate variability across the globe. Changes in rainfall patterns, intensity and extreme events are some of the impacts of climate change. Rainfall variability refers to the degree to which rainfall patterns varies over a region (spatial) or through time period (temporal). Temporal rainfall variability can be directly or indirectly linked to climate change. Such variability in rainfall increases the vulnerability of communities towards climate change. Increasing urbanization and unplanned developmental activities, the air quality is deteriorating. This paper mainly focuses on the rainfall variability due to increasing level of greenhouse gases. Rainfall data of 65 years (1951-2015) of Safdarjung station of Delhi was collected from Indian Meteorological Department and analyzed using Mann-Kendall test for time-series data analysis. Mann-Kendall test is a statistical tool helps in analysis of trend in the given data sets. The slope of the trend can be measured through Sen’s slope estimator. Data was analyzed monthly, seasonally and yearly across the period of 65 years. The monthly rainfall data for the said period do not follow any increasing or decreasing trend. Monsoon season shows no increasing trend but here was an increasing trend in the pre-monsoon season. Hence, the actual rainfall differs from the normal trend of the rainfall. Through this analysis, it can be projected that there will be an increase in pre-monsoon rainfall than the actual monsoon season. Pre-monsoon rainfall causes cooling effect and results in drier monsoon season. This will increase the vulnerability of communities towards climate change and also effect related developmental activities.

Keywords: greenhouse gases, Mann-Kendall test, rainfall variability, Sen's slope

Procedia PDF Downloads 208
26894 Application of Hydrologic Engineering Centers and River Analysis System Model for Hydrodynamic Analysis of Arial Khan River

Authors: Najeeb Hassan, Mahmudur Rahman

Abstract:

Arial Khan River is one of the main south-eastward outlets of the River Padma. This river maintains a meander channel through its course and is erosional in nature. The specific objective of the research is to study and evaluate the hydrological characteristics in the form of assessing changes of cross-sections, discharge, water level and velocity profile in different stations and to create a hydrodynamic model of the Arial Khan River. Necessary data have been collected from Bangladesh Water Development Board (BWDB) and Center for Environment and Geographic Information Services (CEGIS). Satellite images have been observed from Google earth. In this study, hydrodynamic model of Arial Khan River has been developed using well known steady open channel flow code Hydrologic Engineering Centers and River Analysis System (HEC-RAS) using field surveyed geometric data. Cross-section properties at 22 locations of River Arial Khan for the years 2011, 2013 and 2015 were also analysed. 1-D HEC-RAS model has been developed using the cross sectional data of 2015 and appropriate boundary condition is being used to run the model. This Arial Khan River model is calibrated using the pick discharge of 2015. The applicable value of Mannings roughness coefficient (n) is adjusted through the process of calibration. The value of water level which ties with the observed data to an acceptable accuracy is taken as calibrated model. The 1-D HEC-RAS model then validated by using the pick discharges from 2009-2018. Variation in observed water level in the model and collected water level data is being compared to validate the model. It is observed that due to seasonal variation, discharge of the river changes rapidly and Mannings roughness coefficient (n) also changes due to the vegetation growth along the river banks. This river model may act as a tool to measure flood area in future. By considering the past pick flow discharge, it is strongly recommended to improve the carrying capacity of Arial Khan River to protect the surrounding areas from flash flood.

Keywords: BWDB, CEGIS, HEC-RAS

Procedia PDF Downloads 183
26893 Integrating Wound Location Data with Deep Learning for Improved Wound Classification

Authors: Mouli Banga, Chaya Ravindra

Abstract:

Wound classification is a crucial step in wound diagnosis. An effective classifier can aid wound specialists in identifying wound types with reduced financial and time investments, facilitating the determination of optimal treatment procedures. This study presents a deep neural network-based classifier that leverages wound images and their corresponding locations to categorize wounds into various classes, such as diabetic, pressure, surgical, and venous ulcers. By incorporating a developed body map, the process of tagging wound locations is significantly enhanced, providing healthcare specialists with a more efficient tool for wound analysis. We conducted a comparative analysis between two prominent convolutional neural network models, ResNet50 and MobileNetV2, utilizing a dataset of 730 images. Our findings reveal that the RestNet50 outperforms MovileNetV2, achieving an accuracy of approximately 90%, compared to MobileNetV2’s 83%. This disparity highlights the superior capability of ResNet50 in the context of this dataset. The results underscore the potential of integrating deep learning with spatial data to improve the precision and efficiency of wound diagnosis, ultimately contributing to better patient outcomes and reducing healthcare costs.

Keywords: wound classification, MobileNetV2, ResNet50, multimodel

Procedia PDF Downloads 32
26892 A Critical Discourse Analysis of Jamaican and Trinidadian News Articles about D/Deafness

Authors: Melissa Angus Baboun

Abstract:

Utilizing a Critical Discourse Analysis (CDA) methodology and a theoretical framework based on disability studies, how Jamaican and Trinidadian newspapers discussed issues relating to the Deaf community were examined. The term deaf was inputted into the search engine tool of the online website for the Jamaica Observer and the Trinidad & Tobago Guardian. All 27 articles that contained the term deaf in its content and were written between August 1, 2017 and November 15, 2017 were chosen for the study. The data analysis was divided into three steps: (1) listing and analysis instances of metaphorical deafness (e.g. fall on deaf ears), (2) categorization of the content of the articles into the models of disability discourse (the medical, socio-cultural, and superscrip models of disability narratives), and (3) the analysis of any additional data found. A total of 42% of the articles pulled for this study did not deal with the Deaf community in any capacity, but rather instances of the use of idiomatic expressions that use deafness as a metaphor for a non-physical, undesirable trait. The most common idiomatic expression found was fall on deaf ears. Regarding the models of disability discourse, eight articles were found to follow the socio-cultural model, two were found to follow the medical model, and two were found to follow the superscrip model. The additional data found in these articles include two instances of the term deaf and mute, an overwhelming use of lower case d for the term deaf, and the misuse of the term translator (to mean interpreter).

Keywords: deafness, disability, news coverage, Caribbean newspapers

Procedia PDF Downloads 233
26891 Sentiment Analysis on University Students’ Evaluation of Teaching and Their Emotional Engagement

Authors: Elisa Santana-Monagas, Juan L. Núñez, Jaime León, Samuel Falcón, Celia Fernández, Rocío P. Solís

Abstract:

Teaching practices have been widely studied in relation to students' outcomes, positioning themselves as one of their strongest catalysts and influencing students' emotional experiences. In the higher education context, teachers become even more crucial as many students ground their decisions on which courses to enroll in based on opinions and ratings of teachers from other students. Unfortunately, sometimes universities do not provide the personal, social, and academic stimulation students demand to be actively engaged. To evaluate their teachers, universities often rely on students' evaluations of teaching (SET) collected via Likert scale surveys. Despite its usefulness, such a method has been questioned in terms of validity and reliability. Alternatively, researchers can rely on qualitative answers to open-ended questions. However, the unstructured nature of the answers and a large amount of information obtained requires an overwhelming amount of work. The present work presents an alternative approach to analyse such data: sentiment analysis. To the best of our knowledge, no research before has included results from SA into an explanatory model to test how students' sentiments affect their emotional engagement in class. The sample of the present study included a total of 225 university students (Mean age = 26.16, SD = 7.4, 78.7 % women) from the Educational Sciences faculty of a public university in Spain. Data collection took place during the academic year 2021-2022. Students accessed an online questionnaire using a QR code. They were asked to answer the following open-ended question: "If you had to explain to a peer who doesn't know your teacher how he or she communicates in class, what would you tell them?". Sentiment analysis was performed using Microsoft's pre-trained model. The reliability of the measure was estimated between the tool and one of the researchers who coded all answers independently. The Cohen's kappa and the average pairwise percent agreement were estimated with ReCal2. Cohen's kappa was .68, and the agreement reached was 90.8%, both considered satisfactory. To test the hypothesis relations among SA and students' emotional engagement, a structural equation model (SEM) was estimated. Results demonstrated a good fit of the data: RMSEA = .04, SRMR = .03, TLI = .99, CFI = .99. Specifically, the results showed that student’s sentiment regarding their teachers’ teaching positively predicted their emotional engagement (β == .16 [.02, -.30]). In other words, when students' opinion toward their instructors' teaching practices is positive, it is more likely for students to engage emotionally in the subject. Altogether, the results show a promising future for sentiment analysis techniques in the field of education. They suggest the usefulness of this tool when evaluating relations among teaching practices and student outcomes.

Keywords: sentiment analysis, students' evaluation of teaching, structural-equation modelling, emotional engagement

Procedia PDF Downloads 85
26890 Calculate Product Carbon Footprint through the Internet of Things from Network Science

Authors: Jing Zhang

Abstract:

To reduce the carbon footprint of mankind and become more sustainable is one of the major challenges in our era. Internet of Things (IoT) mainly resolves three problems: Things to Things (T2T), Human to Things, H2T), and Human to Human (H2H). Borrowing the classification of IoT, we can find carbon prints of industries also can be divided in these three ways. Therefore, monitoring the routes of generation and circulation of products may help calculate product carbon print. This paper does not consider any technique used by IoT itself, but the ideas of it look at the connection of products. Carbon prints are like a gene or mark of a product from raw materials to the final products, which never leave the products. The contribution of this paper is to combine the characteristics of IoT and the methodology of network science to find a way to calculate the product's carbon footprint. Life cycle assessment, LCA is a traditional and main tool to calculate the carbon print of products. LCA is a traditional but main tool, which includes three kinds.

Keywords: product carbon footprint, Internet of Things, network science, life cycle assessment

Procedia PDF Downloads 116
26889 Numerical Modelling of 3-D Fracture Propagation and Damage Evolution of an Isotropic Heterogeneous Rock with a Pre-Existing Surface Flaw under Uniaxial Compression

Authors: S. Mondal, L. M. Olsen-Kettle, L. Gross

Abstract:

Fracture propagation and damage evolution are extremely important for many industrial applications including mining industry, composite materials, earthquake simulations, hydraulic fracturing. The influence of pre-existing flaws and rock heterogeneity on the processes and mechanisms of rock fracture has important ramifications in many mining and reservoir engineering applications. We simulate the damage evolution and fracture propagation in an isotropic sandstone specimen containing a pre-existing 3-D surface flaw in different configurations under uniaxial compression. We apply a damage model based on the unified strength theory and solve the solid deformation and damage evolution equations using the Finite Element Method (FEM) with tetrahedron elements on unstructured meshes through the simulation software, eScript. Unstructured meshes provide higher geometrical flexibility and allow a more accurate way to model the varying flaw depth, angle, and length through locally adapted FEM meshes. The heterogeneity of rock is considered by initializing material properties using a Weibull distribution sampled over a cubic grid. In our model, we introduce a length scale related to the rock heterogeneity which is independent of the mesh size. We investigate the effect of parameters including the heterogeneity of the elastic moduli and geometry of the single flaw in the stress strain response. The generation of three typical surface cracking patterns, called wing cracks, anti-wing cracks and far-field cracks were identified, and these depend on the geometry of the pre-existing surface flaw. This model results help to advance our understanding of fracture and damage growth in heterogeneous rock with the aim to develop fracture simulators for different industry applications.

Keywords: finite element method, heterogeneity, isotropic damage, uniaxial compression

Procedia PDF Downloads 218
26888 Slope Stability Assessment in Metasedimentary Deposit of an Opencast Mine: The Case of the Dikuluwe-Mashamba (DIMA) Mine in the DR Congo

Authors: Dina Kon Mushid, Sage Ngoie, Tshimbalanga Madiba, Kabutakapua Kakanda

Abstract:

Slope stability assessment is still the biggest challenge in mining activities and civil engineering structures. The slope in an opencast mine frequently reaches multiple weak layers that lead to the instability of the pit. Faults and soft layers throughout the rock would increase weathering and erosion rates. Therefore, it is essential to investigate the stability of the complex strata to figure out how stable they are. In the Dikuluwe-Mashamba (DIMA) area, the lithology of the stratum is a set of metamorphic rocks whose parent rocks are sedimentary rocks with a low degree of metamorphism. Thus, due to the composition and metamorphism of the parent rock, the rock formation is different in hardness and softness, which means that when the content of dolomitic and siliceous is high, the rock is hard. It is softer when the content of argillaceous and sandy is high. Therefore, from the vertical direction, it appears as a weak and hard layer, and from the horizontal direction, it seems like a smooth and hard layer in the same rock layer. From the structural point of view, the main structures in the mining area are the Dikuluwe dipping syncline and the Mashamba dipping anticline, and the occurrence of rock formations varies greatly. During the folding process of the rock formation, the stress will concentrate on the soft layer, causing the weak layer to be broken. At the same time, the phenomenon of interlayer dislocation occurs. This article aimed to evaluate the stability of metasedimentary rocks of the Dikuluwe-Mashamba (DIMA) open-pit mine using limit equilibrium and stereographic methods Based on the presence of statistical structural planes, the stereographic projection was used to study the slope's stability and examine the discontinuity orientation data to identify failure zones along the mine. The results revealed that the slope angle is too steep, and it is easy to induce landslides. The numerical method's sensitivity analysis showed that the slope angle and groundwater significantly impact the slope safety factor. The increase in the groundwater level substantially reduces the stability of the slope. Among the factors affecting the variation in the rate of the safety factor, the bulk density of soil is greater than that of rock mass, the cohesion of soil mass is smaller than that of rock mass, and the friction angle in the rock mass is much larger than that in the soil mass. The analysis showed that the rock mass structure types are mostly scattered and fragmented; the stratum changes considerably, and the variation of rock and soil mechanics parameters is significant.

Keywords: slope stability, weak layer, safety factor, limit equilibrium method, stereography method

Procedia PDF Downloads 262
26887 Simulation and Hardware Implementation of Data Communication Between CAN Controllers for Automotive Applications

Authors: R. M. Kalayappan, N. Kathiravan

Abstract:

In automobile industries, Controller Area Network (CAN) is widely used to reduce the system complexity and inter-task communication. Therefore, this paper proposes the hardware implementation of data frame communication between one controller to other. The CAN data frames and protocols will be explained deeply, here. The data frames are transferred without any collision or corruption. The simulation is made in the KEIL vision software to display the data transfer between transmitter and receiver in CAN. ARM7 micro-controller is used to transfer data’s between the controllers in real time. Data transfer is verified using the CRO.

Keywords: control area network (CAN), automotive electronic control unit, CAN 2.0, industry

Procedia PDF Downloads 398
26886 Blended Learning in a Mathematics Classroom: A Focus in Khan Academy

Authors: Sibawu Witness Siyepu

Abstract:

This study explores the effects of instructional design using blended learning in the learning of radian measures among Engineering students. Blended learning is an education programme that combines online digital media with traditional classroom methods. It requires the physical presence of both lecturer and student in a mathematics computer laboratory. Blended learning provides element of class control over time, place, path or pace. The focus was on the use of Khan Academy to supplement traditional classroom interactions. Khan Academy is a non-profit educational organisation created by educator Salman Khan with a goal of creating an accessible place for students to learn through watching videos in a computer assisted computer. The researcher who is an also lecturer in mathematics support programme collected data through instructing students to watch Khan Academy videos on radian measures, and by supplying students with traditional classroom activities. Classroom activities entails radian measure activities extracted from the Internet. Students were given an opportunity to engage in class discussions, social interactions and collaborations. These activities necessitated students to write formative assessments tests. The purpose of formative assessments tests was to find out about the students’ understanding of radian measures, including errors and misconceptions they displayed in their calculations. Identification of errors and misconceptions serve as pointers of students’ weaknesses and strengths in their learning of radian measures. At the end of data collection, semi-structure interviews were administered to a purposefully sampled group to explore their perceptions and feedback regarding the use of blended learning approach in teaching and learning of radian measures. The study employed Algebraic Insight Framework to analyse data collected. Algebraic Insight Framework is a subset of symbol sense which allows a student to correctly enter expressions into a computer assisted systems efficiently. This study offers students opportunities to enter topics and subtopics on radian measures into a computer through the lens of Khan Academy. Khan academy demonstrates procedures followed to reach solutions of mathematical problems. The researcher performed the task of explaining mathematical concepts and facilitated the process of reinvention of rules and formulae in the learning of radian measures. Lastly, activities that reinforce students’ understanding of radian were distributed. Results showed that this study enthused the students in their learning of radian measures. Learning through videos prompted the students to ask questions which brought about clarity and sense making to the classroom discussions. Data revealed that sense making through reinvention of rules and formulae assisted the students in enhancing their learning of radian measures. This study recommends the use of Khan Academy in blended learning to be introduced as a socialisation programme to all first year students. This will prepare students that are computer illiterate to become conversant with the use of Khan Academy as a powerful tool in the learning of mathematics. Khan Academy is a key technological tool that is pivotal for the development of students’ autonomy in the learning of mathematics and that promotes collaboration with lecturers and peers.

Keywords: algebraic insight framework, blended learning, Khan Academy, radian measures

Procedia PDF Downloads 310
26885 Improving the Statistics Nature in Research Information System

Authors: Rajbir Cheema

Abstract:

In order to introduce an integrated research information system, this will provide scientific institutions with the necessary information on research activities and research results in assured quality. Since data collection, duplication, missing values, incorrect formatting, inconsistencies, etc. can arise in the collection of research data in different research information systems, which can have a wide range of negative effects on data quality, the subject of data quality should be treated with better results. This paper examines the data quality problems in research information systems and presents the new techniques that enable organizations to improve their quality of research information.

Keywords: Research information systems (RIS), research information, heterogeneous sources, data quality, data cleansing, science system, standardization

Procedia PDF Downloads 157
26884 Service Business Model Canvas: A Boundary Object Operating as a Business Development Tool

Authors: Taru Hakanen, Mervi Murtonen

Abstract:

This study aims to increase understanding of the transition of business models in servitization. The significance of service in all business has increased dramatically during the past decades. Service-dominant logic (SDL) describes this change in the economy and questions the goods-dominant logic on which business has primarily been based in the past. A business model canvas is one of the most cited and used tools in defining end developing business models. The starting point of this paper lies in the notion that the traditional business model canvas is inherently goods-oriented and best suits for product-based business. However, the basic differences between goods and services necessitate changes in business model representations when proceeding in servitization. Therefore, new knowledge is needed on how the conception of business model and the business model canvas as its representation should be altered in servitized firms in order to better serve business developers and inter-firm co-creation. That is to say, compared to products, services are intangible and they are co-produced between the supplier and the customer. Value is always co-created in interaction between a supplier and a customer, and customer experience primarily depends on how well the interaction succeeds between the actors. The role of service experience is even stronger in service business compared to product business, as services are co-produced with the customer. This paper provides business model developers with a service business model canvas, which takes into account the intangible, interactive, and relational nature of service. The study employs a design science approach that contributes to theory development via design artifacts. This study utilizes qualitative data gathered in workshops with ten companies from various industries. In particular, key differences between Goods-dominant logic (GDL) and SDL-based business models are identified when an industrial firm proceeds in servitization. As the result of the study, an updated version of the business model canvas is provided based on service-dominant logic. The service business model canvas ensures a stronger customer focus and includes aspects salient for services, such as interaction between companies, service co-production, and customer experience. It can be used for the analysis and development of a current service business model of a company or for designing a new business model. It facilitates customer-focused new service design and service development. It aids in the identification of development needs, and facilitates the creation of a common view of the business model. Therefore, the service business model canvas can be regarded as a boundary object, which facilitates the creation of a common understanding of the business model between several actors involved. The study contributes to the business model and service business development disciplines by providing a managerial tool for practitioners in service development. It also provides research insight into how servitization challenges companies’ business models.

Keywords: boundary object, business model canvas, managerial tool, service-dominant logic

Procedia PDF Downloads 366
26883 Development and Evaluation of a Cognitive Behavioural Therapy Based Smartphone App for Low Moods and Anxiety

Authors: David Bakker, Nikki Rickard

Abstract:

Smartphone apps hold immense potential as mental health and wellbeing tools. Support can be made easily accessible and can be used in real-time while users are experiencing distress. Furthermore, data can be collected to enable machine learning and automated tailoring of support to users. While many apps have been developed for mental health purposes, few have adhered to evidence-based recommendations and even fewer have pursued experimental validation. This paper details the development and experimental evaluation of an app, MoodMission, that aims to provide support for low moods and anxiety, help prevent clinical depression and anxiety disorders, and serve as an adjunct to professional clinical supports. MoodMission was designed to deliver cognitive behavioural therapy for specifically reported problems in real-time, momentary interactions. Users report their low moods or anxious feelings to the app along with a subjective units of distress scale (SUDS) rating. MoodMission then provides a choice of 5-10 short, evidence-based mental health strategies called Missions. Users choose a Mission, complete it, and report their distress again. Automated tailoring, gamification, and in-built data collection for analysis of effectiveness was also included in the app’s design. The development process involved construction of an evidence-based behavioural plan, designing of the app, building and testing procedures, feedback-informed changes, and a public launch. A randomized controlled trial (RCT) was conducted comparing MoodMission to two other apps and a waitlist control condition. Participants completed measures of anxiety, depression, well-being, emotional self-awareness, coping self-efficacy and mental health literacy at the start of their app use and 30 days later. At the time of submission (November 2016) over 300 participants have participated in the RCT. Data analysis will begin in January 2017. At the time of this submission, MoodMission has over 4000 users. A repeated-measures ANOVA of 1390 completed Missions reveals that SUDS (0-10) ratings were significantly reduced between pre-Mission ratings (M=6.20, SD=2.39) and post-Mission ratings (M=4.93, SD=2.25), F(1,1389)=585.86, p < .001, np2=.30. This effect was consistent across both low moods and anxiety. Preliminary analyses of the data from the outcome measures surveys reveal improvements across mental health and wellbeing measures as a result of using the app over 30 days. This includes a significant increase in coping self-efficacy, F(1,22)=5.91, p=.024, np2=.21. Complete results from the RCT in which MoodMission was evaluated will be presented. Results will also be presented from the continuous outcome data being recorded by MoodMission. MoodMission was successfully developed and launched, and preliminary analysis suggest that it is an effective mental health and wellbeing tool. In addition to the clinical applications of MoodMission, the app holds promise as a research tool to conduct component analysis of psychological therapies and overcome restraints of laboratory based studies. The support provided by the app is discrete, tailored, evidence-based, and transcends barriers of stigma, geographic isolation, financial limitations, and low health literacy.

Keywords: anxiety, app, CBT, cognitive behavioural therapy, depression, eHealth, mission, mobile, mood, MoodMission

Procedia PDF Downloads 271
26882 Fractional, Component and Morphological Composition of Ambient Air Dust in the Areas of Mining Industry

Authors: S.V. Kleyn, S.Yu. Zagorodnov, А.А. Kokoulina

Abstract:

Technogenic emissions of the mining and processing complex are characterized by a high content of chemical components and solid dust particles. However, each industrial enterprise and the surrounding area have features that require refinement and parameterization. Numerous studies have shown the negative impact of fine dust PM10 and PM2.5 on the health, as well as the possibility of toxic components absorption, including heavy metals by dust particles. The target of the study was the quantitative assessment of the fractional and particle size composition of ambient air dust in the area of impact by primary magnesium production complex. Also, we tried to describe the morphology features of dust particles. Study methods. To identify the dust emission sources, the analysis of the production process has been carried out. The particulate composition of the emissions was measured using laser particle analyzer Microtrac S3500 (covered range of particle size is 20 nm to 2000 km). Particle morphology and the component composition were established by electron microscopy by scanning microscope of high resolution (magnification rate - 5 to 300 000 times) with X-ray fluorescence device S3400N ‘HITACHI’. The chemical composition was identified by X-ray analysis of the samples using an X-ray diffractometer XRD-700 ‘Shimadzu’. Determination of the dust pollution level was carried out using model calculations of emissions in the atmosphere dispersion. The calculations were verified by instrumental studies. Results of the study. The results demonstrated that the dust emissions of different technical processes are heterogeneous and fractional structure is complicated. The percentage of particle sizes up to 2.5 micrometres inclusive was ranged from 0.00 to 56.70%; particle sizes less than 10 microns inclusive – 0.00 - 85.60%; particle sizes greater than 10 microns - 14.40% -100.00%. During microscopy, the presence of nanoscale size particles has been detected. Studied dust particles are round, irregular, cubic and integral shapes. The composition of the dust includes magnesium, sodium, potassium, calcium, iron, chlorine. On the base of obtained results, it was performed the model calculations of dust emissions dispersion and establishment of the areas of fine dust РМ 10 and РМ 2.5 distribution. It was found that the dust emissions of fine powder fractions PM10 and PM2.5 are dispersed over large distances and beyond the border of the industrial site of the enterprise. The population living near the enterprise is exposed to the risk of diseases associated with dust exposure. Data are transferred to the economic entity to make decisions on the measures to minimize the risks. Exposure and risks indicators on the health are used to provide named patient health and preventive care to the citizens living in the area of negative impact of the facility.

Keywords: dust emissions, еxposure assessment, PM 10, PM 2.5

Procedia PDF Downloads 261
26881 Transformation of Positron Emission Tomography Raw Data into Images for Classification Using Convolutional Neural Network

Authors: Paweł Konieczka, Lech Raczyński, Wojciech Wiślicki, Oleksandr Fedoruk, Konrad Klimaszewski, Przemysław Kopka, Wojciech Krzemień, Roman Shopa, Jakub Baran, Aurélien Coussat, Neha Chug, Catalina Curceanu, Eryk Czerwiński, Meysam Dadgar, Kamil Dulski, Aleksander Gajos, Beatrix C. Hiesmayr, Krzysztof Kacprzak, łukasz Kapłon, Grzegorz Korcyl, Tomasz Kozik, Deepak Kumar, Szymon Niedźwiecki, Dominik Panek, Szymon Parzych, Elena Pérez Del Río, Sushil Sharma, Shivani Shivani, Magdalena Skurzok, Ewa łucja Stępień, Faranak Tayefi, Paweł Moskal

Abstract:

This paper develops the transformation of non-image data into 2-dimensional matrices, as a preparation stage for classification based on convolutional neural networks (CNNs). In positron emission tomography (PET) studies, CNN may be applied directly to the reconstructed distribution of radioactive tracers injected into the patient's body, as a pattern recognition tool. Nonetheless, much PET data still exists in non-image format and this fact opens a question on whether they can be used for training CNN. In this contribution, the main focus of this paper is the problem of processing vectors with a small number of features in comparison to the number of pixels in the output images. The proposed methodology was applied to the classification of PET coincidence events.

Keywords: convolutional neural network, kernel principal component analysis, medical imaging, positron emission tomography

Procedia PDF Downloads 144
26880 A Method of Detecting the Difference in Two States of Brain Using Statistical Analysis of EEG Raw Data

Authors: Digvijaysingh S. Bana, Kiran R. Trivedi

Abstract:

This paper introduces various methods for the alpha wave to detect the difference between two states of brain. One healthy subject participated in the experiment. EEG was measured on the forehead above the eye (FP1 Position) with reference and ground electrode are on the ear clip. The data samples are obtained in the form of EEG raw data. The time duration of reading is of one minute. Various test are being performed on the alpha band EEG raw data.The readings are performed in different time duration of the entire day. The statistical analysis is being carried out on the EEG sample data in the form of various tests.

Keywords: electroencephalogram(EEG), biometrics, authentication, EEG raw data

Procedia PDF Downloads 464
26879 GIS Pavement Maintenance Selection Strategy

Authors: Mekdelawit Teferi Alamirew

Abstract:

As a practical tool, the Geographical information system (GIS) was used for data integration, collection, management, analysis, and output presentation in pavement mangement systems . There are many GIS techniques to improve the maintenance activities like Dynamic segmentation and weighted overlay analysis which considers Multi Criteria Decision Making process. The results indicated that the developed MPI model works sufficiently and yields adequate output for providing accurate decisions. Hence considering multi criteria to prioritize the pavement sections for maintenance, as a result of the fact that GIS maps can express position, extent, and severity of pavement distress features more effectively than manual approaches, lastly the paper also offers digitized distress maps that can help agencies in their decision-making processes.

Keywords: pavement, flexible, maintenance, index

Procedia PDF Downloads 62
26878 A Recognition Method for Spatio-Temporal Background in Korean Historical Novels

Authors: Seo-Hee Kim, Kee-Won Kim, Seung-Hoon Kim

Abstract:

The most important elements of a novel are the characters, events and background. The background represents the time, place and situation that character appears, and conveys event and atmosphere more realistically. If readers have the proper knowledge about background of novels, it may be helpful for understanding the atmosphere of a novel and choosing a novel that readers want to read. In this paper, we are targeting Korean historical novels because spatio-temporal background especially performs an important role in historical novels among the genre of Korean novels. To the best of our knowledge, we could not find previous study that was aimed at Korean novels. In this paper, we build a Korean historical national dictionary. Our dictionary has historical places and temple names of kings over many generations as well as currently existing spatial words or temporal words in Korean history. We also present a method for recognizing spatio-temporal background based on patterns of phrasal words in Korean sentences. Our rules utilize postposition for spatial background recognition and temple names for temporal background recognition. The knowledge of the recognized background can help readers to understand the flow of events and atmosphere, and can use to visualize the elements of novels.

Keywords: data mining, Korean historical novels, Korean linguistic feature, spatio-temporal background

Procedia PDF Downloads 277
26877 Geochemistry of Natural Radionuclides Associated with Acid Mine Drainage (AMD) in a Coal Mining Area in Southern Brazil

Authors: Juliana A. Galhardi, Daniel M. Bonotto

Abstract:

Coal is an important non-renewable energy source of and can be associated with radioactive elements. In Figueira city, Paraná state, Brazil, it was recorded high uranium activity near the coal mine that supplies a local thermoelectric power plant. In this context, the radon activity (Rn-222, produced by the Ra-226 decay in the U-238 natural series) was evaluated in groundwater, river water and effluents produced from the acid mine drainage in the coal reject dumps. The samples were collected in August 2013 and in February 2014 and analyzed at LABIDRO (Laboratory of Isotope and Hydrochemistry), UNESP, Rio Claro city, Brazil, using an alpha spectrometer (AlphaGuard) adjusted to evaluate the mean radon activity concentration in five cycles of 10 minutes. No radon activity concentration above 100 Bq.L-1, which was a previous critic value established by the World Health Organization. The average radon activity concentration in groundwater was higher than in surface water and in effluent samples, possibly due to the accumulation of uranium and radium in the aquifer layers that favors the radon trapping. The lower value in the river waters can indicate dilution and the intermediate value in the effluents may indicate radon absorption in the coal particles of the reject dumps. The results also indicate that the radon activities in the effluents increase with the sample acidification, possibly due to the higher radium leaching and the subsequent radon transport to the drainage flow. The water samples of Laranjinha River and Ribeirão das Pedras stream, which, respectively, supply Figueira city and receive the mining effluent, exhibited higher pH values upstream the mine, reflecting the acid mine drainage discharge. The radionuclides transport indicates the importance of monitoring their activity concentration in natural waters due to the risks that the radioactivity can represent to human health.

Keywords: radon, radium, acid mine drainage, coal

Procedia PDF Downloads 432
26876 Traffic Congestions Modeling and Predictions by Social Networks

Authors: Bojan Najdenov, Danco Davcev

Abstract:

Reduction of traffic congestions and the effects of pollution and waste of resources that come with them has been a big challenge in the past decades. Having reliable systems to facilitate the process of modeling and prediction of traffic conditions would not only reduce the environmental pollution, but will also save people time and money. Social networks play big role of people’s lives nowadays providing them means of communicating and sharing thoughts and ideas, that way generating huge knowledge bases by crowdsourcing. In addition to that, crowdsourcing as a concept provides mechanisms for fast and relatively reliable data generation and also many services are being used on regular basis because they are mainly powered by the public as main content providers. In this paper we present the Social-NETS-Traffic-Control System (SNTCS) that should serve as a facilitator in the process of modeling and prediction of traffic congestions. The main contribution of our system is to integrate data from social networks as Twitter and also implements a custom created crowdsourcing subsystem with which users report traffic conditions using an android application. Our first experience of the usage of the system confirms that the integrated approach allows easy extension of the system with other social networks and represents a very useful tool for traffic control.

Keywords: traffic, congestion reduction, crowdsource, social networks, twitter, android

Procedia PDF Downloads 482
26875 A Study on Big Data Analytics, Applications and Challenges

Authors: Chhavi Rana

Abstract:

The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, Healthcare, and business intelligence contain voluminous and incremental data, which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organization's decision-making strategy can be enhanced using big data analytics and applying different machine learning techniques and statistical tools on such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates on various frameworks in the process of Analysis using different machine-learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.

Keywords: big data, big data analytics, machine learning, review

Procedia PDF Downloads 83
26874 A Study on Big Data Analytics, Applications, and Challenges

Authors: Chhavi Rana

Abstract:

The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, healthcare, and business intelligence contain voluminous and incremental data which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organisation decision-making strategy can be enhanced by using big data analytics and applying different machine learning techniques and statistical tools to such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates various frameworks in the process of analysis using different machine learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.

Keywords: big data, big data analytics, machine learning, review

Procedia PDF Downloads 95