Search results for: business process re-engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17434

Search results for: business process re-engineering

214 Librarian Liaisons: Facilitating Multi-Disciplinary Research for Academic Advancement

Authors: Tracey Woods

Abstract:

In the ever-evolving landscape of academia, the traditional role of the librarian has undergone a remarkable transformation. Once considered as custodians of books and gatekeepers of information, librarians have the potential to take on the vital role of facilitators of cross and inter-disciplinary projects. This shift is driven by the growing recognition of the value of interdisciplinary collaboration in addressing complex research questions in pursuit of novel solutions to real-world problems. This paper shall explore the potential of the academic librarian’s role in facilitating innovative, multi-disciplinary projects, both recognising and validating the vital role that the librarian plays in a somewhat underplayed profession. Academic libraries support teaching, the strengthening of knowledge discourse, and, potentially, the development of innovative practices. As the role of the library gradually morphs from a quiet repository of books to a community-based information hub, a potential opportunity arises. The academic librarian’s role is to build knowledge across a wide span of topics, from the advancement of AI to subject-specific information, and, whilst librarians are generally not offered the research opportunities and funding that the traditional academic disciplines enjoy, they are often invited to help build research in support of the academic. This identifies that one of the primary skills of any 21st-century librarian must be the ability to collaborate and facilitate multi-disciplinary projects. In universities seeking to develop research diversity and academic performance, there is an increasing awareness of the need for collaboration between faculties to enable novel directions and advancements. This idea has been documented and discussed by several researchers; however, there is not a great deal of literature available from recent studies. Having a team based in the library that is adept at creating effective collaborative partnerships is valuable for any academic institution. This paper outlines the development of such a project, initiated within and around an identified library-specific need: the replication of fragile special collections for object-based learning. The research was developed as a multi-disciplinary project involving the faculties of engineering (digital twins lab), architecture, design, and education. Centred around methods for developing a fragile archive into a series of tactile objects furthers knowledge and understanding in both the role of the library as a facilitator of projects, chairing and supporting, alongside contributing to the research process and innovating ideas through the bank of knowledge found amongst the staff and their liaising capabilities. This paper shall present the method of project development from the initiation of ideas to the development of prototypes and dissemination of the objects to teaching departments for analysis. The exact replication of artefacts is also balanced with the adaptation and evolutionary speculations initiated by the design team when adapted as a teaching studio method. The dynamic response required from the library to generate and facilitate these multi-disciplinary projects highlights the information expertise and liaison skills that the librarian possesses. As academia embraces this evolution, the potential for groundbreaking discoveries and innovative solutions across disciplines becomes increasingly attainable.

Keywords: Liaison librarian, multi-disciplinary collaborations, library innovations, librarian stakeholders

Procedia PDF Downloads 68
213 SPARK: An Open-Source Knowledge Discovery Platform That Leverages Non-Relational Databases and Massively Parallel Computational Power for Heterogeneous Genomic Datasets

Authors: Thilina Ranaweera, Enes Makalic, John L. Hopper, Adrian Bickerstaffe

Abstract:

Data are the primary asset of biomedical researchers, and the engine for both discovery and research translation. As the volume and complexity of research datasets increase, especially with new technologies such as large single nucleotide polymorphism (SNP) chips, so too does the requirement for software to manage, process and analyze the data. Researchers often need to execute complicated queries and conduct complex analyzes of large-scale datasets. Existing tools to analyze such data, and other types of high-dimensional data, unfortunately suffer from one or more major problems. They typically require a high level of computing expertise, are too simplistic (i.e., do not fit realistic models that allow for complex interactions), are limited by computing power, do not exploit the computing power of large-scale parallel architectures (e.g. supercomputers, GPU clusters etc.), or are limited in the types of analysis available, compounded by the fact that integrating new analysis methods is not straightforward. Solutions to these problems, such as those developed and implemented on parallel architectures, are currently available to only a relatively small portion of medical researchers with access and know-how. The past decade has seen a rapid expansion of data management systems for the medical domain. Much attention has been given to systems that manage phenotype datasets generated by medical studies. The introduction of heterogeneous genomic data for research subjects that reside in these systems has highlighted the need for substantial improvements in software architecture. To address this problem, we have developed SPARK, an enabling and translational system for medical research, leveraging existing high performance computing resources, and analysis techniques currently available or being developed. It builds these into The Ark, an open-source web-based system designed to manage medical data. SPARK provides a next-generation biomedical data management solution that is based upon a novel Micro-Service architecture and Big Data technologies. The system serves to demonstrate the applicability of Micro-Service architectures for the development of high performance computing applications. When applied to high-dimensional medical datasets such as genomic data, relational data management approaches with normalized data structures suffer from unfeasibly high execution times for basic operations such as insert (i.e. importing a GWAS dataset) and the queries that are typical of the genomics research domain. SPARK resolves these problems by incorporating non-relational NoSQL databases that have been driven by the emergence of Big Data. SPARK provides researchers across the world with user-friendly access to state-of-the-art data management and analysis tools while eliminating the need for high-level informatics and programming skills. The system will benefit health and medical research by eliminating the burden of large-scale data management, querying, cleaning, and analysis. SPARK represents a major advancement in genome research technologies, vastly reducing the burden of working with genomic datasets, and enabling cutting edge analysis approaches that have previously been out of reach for many medical researchers.

Keywords: biomedical research, genomics, information systems, software

Procedia PDF Downloads 269
212 Decoding Kinematic Characteristics of Finger Movement from Electrocorticography Using Classical Methods and Deep Convolutional Neural Networks

Authors: Ksenia Volkova, Artur Petrosyan, Ignatii Dubyshkin, Alexei Ossadtchi

Abstract:

Brain-computer interfaces are a growing research field producing many implementations that find use in different fields and are used for research and practical purposes. Despite the popularity of the implementations using non-invasive neuroimaging methods, radical improvement of the state channel bandwidth and, thus, decoding accuracy is only possible by using invasive techniques. Electrocorticography (ECoG) is a minimally invasive neuroimaging method that provides highly informative brain activity signals, effective analysis of which requires the use of machine learning methods that are able to learn representations of complex patterns. Deep learning is a family of machine learning algorithms that allow learning representations of data with multiple levels of abstraction. This study explores the potential of deep learning approaches for ECoG processing, decoding movement intentions and the perception of proprioceptive information. To obtain synchronous recording of kinematic movement characteristics and corresponding electrical brain activity, a series of experiments were carried out, during which subjects performed finger movements at their own pace. Finger movements were recorded with a three-axis accelerometer, while ECoG was synchronously registered from the electrode strips that were implanted over the contralateral sensorimotor cortex. Then, multichannel ECoG signals were used to track finger movement trajectory characterized by accelerometer signal. This process was carried out both causally and non-causally, using different position of the ECoG data segment with respect to the accelerometer data stream. The recorded data was split into training and testing sets, containing continuous non-overlapping fragments of the multichannel ECoG. A deep convolutional neural network was implemented and trained, using 1-second segments of ECoG data from the training dataset as input. To assess the decoding accuracy, correlation coefficient r between the output of the model and the accelerometer readings was computed. After optimization of hyperparameters and training, the deep learning model allowed reasonably accurate causal decoding of finger movement with correlation coefficient r = 0.8. In contrast, the classical Wiener-filter like approach was able to achieve only 0.56 in the causal decoding mode. In the noncausal case, the traditional approach reached the accuracy of r = 0.69, which may be due to the presence of additional proprioceptive information. This result demonstrates that the deep neural network was able to effectively find a representation of the complex top-down information related to the actual movement rather than proprioception. The sensitivity analysis shows physiologically plausible pictures of the extent to which individual features (channel, wavelet subband) are utilized during the decoding procedure. In conclusion, the results of this study have demonstrated that a combination of a minimally invasive neuroimaging technique such as ECoG and advanced machine learning approaches allows decoding motion with high accuracy. Such setup provides means for control of devices with a large number of degrees of freedom as well as exploratory studies of the complex neural processes underlying movement execution.

Keywords: brain-computer interface, deep learning, ECoG, movement decoding, sensorimotor cortex

Procedia PDF Downloads 176
211 Phage Therapy of Staphylococcal Pyoderma in Dogs

Authors: Jiri Nepereny, Vladimir Vrzal

Abstract:

Staphylococcus intermedius/pseudintermedius bacteria are commonly found on the skin of healthy dogs and can cause pruritic skin diseases under certain circumstances (trauma, allergy, immunodeficiency, ectoparasitosis, endocrinological diseases, glucocorticoid therapy, etc.). These can develop into complicated superficial or deep pyoderma, which represent a large group of problematic skin diseases in dogs. These are predominantly inflammations of a secondary nature, associated with the occurrence of coagulase-positive Staphylococcus spp. A major problem is increased itching, which greatly complicates the healing process. The aim of this work is to verify the efficacy of the developed preparation Bacteriophage SI (Staphylococcus intermedius). The tested preparation contains a lysate of bacterial cells of S. intermedius host culture including culture medium and live virions of specific phage. Sodium Merthiolate is added as a preservative in a safe concentration. Validation of the efficacy of the product was demonstrated by monitoring the therapeutic effect after application to indicated cases from clinical practice. The indication for inclusion of the patient into the trial was an adequate history and clinical examination accompanied by sample collection for bacteriological examination and isolation of the specific causative agent. Isolate identification was performed by API BioMérieux identification system (API ID 32 STAPH) and rep-PCR typing. The suitability of therapy for a specific case was confirmed by in vitro testing of the lytic ability of the bacteriophage to lyse the specific isolate = formation of specific plaques on the culture isolate on the surface of the solid culture medium. So far, a total of 32 dogs of different sexes, ages and breed affiliations with different symptoms of staphylococcal dermatitis have been included in the testing. Their previous therapy consisted of more or less successful systemic or local application of broad-spectrum antibiotics. The presence of S. intermedius/pseudintermedius has been demonstrated in 26 cases. The isolates were identified as a S. pseudintermedius, in all cases. Contaminant bacterial microflora was always present in the examined samples. The test product was applied subcutaneously in gradually increasing doses over a period of 1 month. After improvement in health status, maintenance therapy was followed by application of the product once a week for 3 months. Adverse effects associated with the administration of the product (swelling at the site of application) occurred in only 2 cases. In all cases, there was a significant reduction in clinical signs (healing of skin lesions and reduction of inflammation) after therapy and an improvement in the well-being of the treated animals. A major problem in the treatment of pyoderma is the frequent resistance of the causative agents to antibiotics, especially the increasing frequency of multidrug-resistant and methicillin-resistant S. pseudintermedius (MRSP) strains. Specific phagolysate using for the therapy of these diseases could solve this problem and to some extent replace or reduce the use of antibiotics, whose frequent and widespread application often leads to the emergence of resistance. The advantage of the therapeutic use of bacteriophages is their bactericidal effect, high specificity and safety. This work was supported by Project FV40213 from Ministry of Industry and Trade, Czech Republic.

Keywords: bacteriophage, pyoderma, staphylococcus spp, therapy

Procedia PDF Downloads 170
210 A Computational Framework for Load Mediated Patellar Ligaments Damage at the Tropocollagen Level

Authors: Fadi Al Khatib, Raouf Mbarki, Malek Adouni

Abstract:

In various sport and recreational activities, the patellofemoral joint undergoes large forces and moments while accommodating the significant knee joint movement. In doing so, this joint is commonly the source of anterior knee pain related to instability in normal patellar tracking and excessive pressure syndrome. One well-observed explanation of the instability of the normal patellar tracking is the patellofemoral ligaments and patellar tendon damage. Improved knowledge of the damage mechanism mediating ligaments and tendon injuries can be a great help not only in rehabilitation and prevention procedures but also in the design of better reconstruction systems in the management of knee joint disorders. This damage mechanism, specifically due to excessive mechanical loading, has been linked to the micro level of the fibred structure precisely to the tropocollagen molecules and their connection density. We argue defining a clear frame starting from the bottom (micro level) to up (macro level) in the hierarchies of the soft tissue may elucidate the essential underpinning on the state of the ligaments damage. To do so, in this study a multiscale fibril reinforced hyper elastoplastic Finite Element model that accounts for the synergy between molecular and continuum syntheses was developed to determine the short-term stresses/strains patellofemoral ligaments and tendon response. The plasticity of the proposed model is associated only with the uniaxial deformation of the collagen fibril. The yield strength of the fibril is a function of the cross-link density between tropocollagen molecules, defined here by a density function. This function obtained through a Coarse-graining procedure linking nanoscale collagen features and the tissue level materials properties using molecular dynamics simulations. The hierarchies of the soft tissues were implemented using the rule of mixtures. Thereafter, the model was calibrated using a statistical calibration procedure. The model then implemented into a real structure of patellofemoral ligaments and patellar tendon (OpenKnee) and simulated under realistic loading conditions. With the calibrated material parameters the calculated axial stress lies well with the experimental measurement with a coefficient of determination (R2) equal to 0.91 and 0.92 for the patellofemoral ligaments and the patellar tendon respectively. The ‘best’ prediction of the yielding strength and strain as compared with the reported experimental data yielded when the cross-link density between the tropocollagen molecule of the fibril equal to 5.5 ± 0.5 (patellofemoral ligaments) and 12 (patellar tendon). Damage initiation of the patellofemoral ligaments was located at the femoral insertions while the damage of the patellar tendon happened in the middle of the structure. These predicted finding showed a meaningful correlation between the cross-link density of the tropocollagen molecules and the stiffness of the connective tissues of the extensor mechanism. Also, damage initiation and propagation were documented with this model, which were in satisfactory agreement with earlier observation. To the best of our knowledge, this is the first attempt to model ligaments from the bottom up, predicted depending to the tropocollagen cross-link density. This approach appears more meaningful towards a realistic simulation of a damaging process or repair attempt compared with certain published studies.

Keywords: tropocollagen, multiscale model, fibrils, knee ligaments

Procedia PDF Downloads 127
209 Female Subjectivity in William Faulkner's Light in August

Authors: Azza Zagouani

Abstract:

Introduction: In the work of William Faulkner, characters often evade the boundaries and categories of patriarchal standards of order. Female characters like Lena Grove and Joanna Burden cross thresholds in attempts to gain liberation, while others fail to do so. They stand as non-conformists and refuse established patterns of feminine behavior, such as marriage and motherhood after. They refute submissiveness, domesticity and abstinence to reshape their own identities. The presence of independent and creative women represents new, unconventional images of female subjectivity. This paper will examine the structures of submission and oppression faced by Lena and Joanna, and will show how, in the end, they reshape themselves and their identities, and disrupt or even destroy patriarchal structures. Objectives: Participants will understand through the examples of Lena Grove and Joanna Burden that female subjectivities are constructions, and are constantly subject to change. Approaches: Two approaches will be used in the analysis of the subjectivity formation of Lena Grove and Joanna Burden. Following the arguments propounded by Judith Butler, We explore the ways in which Lena Grove maneuvers around the restrictions and the limitations imposed on her without any physical or psychological violence. She does this by properly performing the roles prescribed to her gendered body. Her repetitious performances of these roles are both the ones that are constructed to confine women and the vehicle for her travel. Her performance parodies the prescriptive roles and thereby reveals that they are cultural constructions. Second, We will explore the argument propounded by Kristeva that subjectivity is always in a state of development because we are always changing in context with changing circumstances. For example, in Light in August, Lena Grove changes the way she defines herself in light of the events of the novel. Also, Kristeva talks about stages of development: the semiotic stage and the symbolic stage. In Light in August, Joanna shows different levels of subjectivity as time passes. Early in the novel, Joanna is very connected to her upbringing. This suggests Kristeva’s concept of the semiotic, in which the daughter identifies closely to her parents. Kristeva relates the semiotic to a strong daughter/mother connection, but in the novel it is strong daughter/father/grandfather identification instead. Then as Joanna becomes sexually involved with Joe, she breaks off, and seems to go into an identity crisis. To me, this represents Kristeva’s move from the semiotic to the symbolic. When Joanna returns to a religious fanaticism, she is returning to a semiotic state. Detailed outline: At the outset of this paper, We will investigate the subjugation of women: social constraints, and the formation of the feminine identity in Light in August. Then, through the examples of Lena Grove’s attempt to cross the boundaries of community moralities and Joanna Burden’s refusal to submit to the standards of submissiveness, domesticity, and obstinance, We will reveal the tension between progressive conceptions of individual freedom and social constraints that limit this freedom. In the second part of the paper, We will underscore the rhetoric of femininity in Light in August: subjugation through naming. The implications of both female’s names offer a powerful contrast between the two different forms of subjectivity. Conclusion: Through Faulkner’s novel, We demonstrate that female subjectivity is an open-ended issue. The spiral shaping of its form maintains its characteristics as a process changing according to different circumstances.

Keywords: female subjectivity, Faulkner’s light August, gender, sexuality, diversity

Procedia PDF Downloads 395
208 Diffusion MRI: Clinical Application in Radiotherapy Planning of Intracranial Pathology

Authors: Pomozova Kseniia, Gorlachev Gennadiy, Chernyaev Aleksandr, Golanov Andrey

Abstract:

In clinical practice, and especially in stereotactic radiosurgery planning, the significance of diffusion-weighted imaging (DWI) is growing. This makes the existence of software capable of quickly processing and reliably visualizing diffusion data, as well as equipped with tools for their analysis in terms of different tasks. We are developing the «MRDiffusionImaging» software on the standard C++ language. The subject part has been moved to separate class libraries and can be used on various platforms. The user interface is Windows WPF (Windows Presentation Foundation), which is a technology for managing Windows applications with access to all components of the .NET 5 or .NET Framework platform ecosystem. One of the important features is the use of a declarative markup language, XAML (eXtensible Application Markup Language), with which you can conveniently create, initialize and set properties of objects with hierarchical relationships. Graphics are generated using the DirectX environment. The MRDiffusionImaging software package has been implemented for processing diffusion magnetic resonance imaging (dMRI), which allows loading and viewing images sorted by series. An algorithm for "masking" dMRI series based on T2-weighted images was developed using a deformable surface model to exclude tissues that are not related to the area of interest from the analysis. An algorithm of distortion correction using deformable image registration based on autocorrelation of local structure has been developed. Maximum voxel dimension was 1,03 ± 0,12 mm. In an elementary brain's volume, the diffusion tensor is geometrically interpreted using an ellipsoid, which is an isosurface of the probability density of a molecule's diffusion. For the first time, non-parametric intensity distributions, neighborhood correlations, and inhomogeneities are combined in one segmentation of white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF) algorithm. A tool for calculating the coefficient of average diffusion and fractional anisotropy has been created, on the basis of which it is possible to build quantitative maps for solving various clinical problems. Functionality has been created that allows clustering and segmenting images to individualize the clinical volume of radiation treatment and further assess the response (Median Dice Score = 0.963 ± 0,137). White matter tracts of the brain were visualized using two algorithms: deterministic (fiber assignment by continuous tracking) and probabilistic using the Hough transform. The proposed algorithms test candidate curves in the voxel, assigning to each one a score computed from the diffusion data, and then selects the curves with the highest scores as the potential anatomical connections. White matter fibers were visualized using a Hough transform tractography algorithm. In the context of functional radiosurgery, it is possible to reduce the irradiation volume of the internal capsule receiving 12 Gy from 0,402 cc to 0,254 cc. The «MRDiffusionImaging» will improve the efficiency and accuracy of diagnostics and stereotactic radiotherapy of intracranial pathology. We develop software with integrated, intuitive support for processing, analysis, and inclusion in the process of radiotherapy planning and evaluating its results.

Keywords: diffusion-weighted imaging, medical imaging, stereotactic radiosurgery, tractography

Procedia PDF Downloads 84
207 Hyperspectral Imagery for Tree Speciation and Carbon Mass Estimates

Authors: Jennifer Buz, Alvin Spivey

Abstract:

The most common greenhouse gas emitted through human activities, carbon dioxide (CO2), is naturally consumed by plants during photosynthesis. This process is actively being monetized by companies wishing to offset their carbon dioxide emissions. For example, companies are now able to purchase protections for vegetated land due-to-be clear cut or purchase barren land for reforestation. Therefore, by actively preventing the destruction/decay of plant matter or by introducing more plant matter (reforestation), a company can theoretically offset some of their emissions. One of the biggest issues in the carbon credit market is validating and verifying carbon offsets. There is a need for a system that can accurately and frequently ensure that the areas sold for carbon credits have the vegetation mass (and therefore for carbon offset capability) they claim. Traditional techniques for measuring vegetation mass and determining health are costly and require many person-hours. Orbital Sidekick offers an alternative approach that accurately quantifies carbon mass and assesses vegetation health through satellite hyperspectral imagery, a technique which enables us to remotely identify material composition (including plant species) and condition (e.g., health and growth stage). How much carbon a plant is capable of storing ultimately is tied to many factors, including material density (primarily species-dependent), plant size, and health (trees that are actively decaying are not effectively storing carbon). All of these factors are capable of being observed through satellite hyperspectral imagery. This abstract focuses on speciation. To build a species classification model, we matched pixels in our remote sensing imagery to plants on the ground for which we know the species. To accomplish this, we collaborated with the researchers at the Teakettle Experimental Forest. Our remote sensing data comes from our airborne “Kato” sensor, which flew over the study area and acquired hyperspectral imagery (400-2500 nm, 472 bands) at ~0.5 m/pixel resolution. Coverage of the entire teakettle experimental forest required capturing dozens of individual hyperspectral images. In order to combine these images into a mosaic, we accounted for potential variations of atmospheric conditions throughout the data collection. To do this, we ran an open source atmospheric correction routine called ISOFIT1 (Imaging Spectrometer Optiman FITting), which converted all of our remote sensing data from radiance to reflectance. A database of reflectance spectra for each of the tree species within the study area was acquired using the Teakettle stem map and the geo-referenced hyperspectral images. We found that a wide variety of machine learning classifiers were able to identify the species within our images with high (>95%) accuracy. For the most robust quantification of carbon mass and the best assessment of the health of a vegetated area, speciation is critical. Through the use of high resolution hyperspectral data, ground-truth databases, and complex analytical techniques, we are able to determine the species present within a pixel to a high degree of accuracy. These species identifications will feed directly into our carbon mass model.

Keywords: hyperspectral, satellite, carbon, imagery, python, machine learning, speciation

Procedia PDF Downloads 124
206 Illness-Related PTSD Among Type 1 Diabetes Patients

Authors: Omer Zvi Shaked, Amir Tirosh

Abstract:

Type 1 Diabetes (T1DM) is an incurable chronic illness with no known preventive measures. Excess to insulin therapy can lead to hypoglycemia with neuro-glycogenic symptoms such as shakiness, nausea, sweating, irritability, fatigue, excessive thirst or hunger, weakness, seizure, and coma. Severe Hypoglycemia (SH) is also considered a most aversive event since it may put patients at risk for injury and death, which matches the criteria of a traumatic event. SH has a ranging prevalence of 20%, which makes it a primary medical Issue. One of the results of SH is an intense emotional fear reaction resembling the form of post-traumatic stress symptoms (PTS), causing many patients to avoid insulin therapy and social activities in order to avoid the possibility of hypoglycemia. As a result, they are at risk for irreversible health deterioration and medical complications. Fear of Hypoglycemia (FOH) is, therefore, a major disturbance for T1DM patients. FOH differs from prevalent post-traumatic stress reactions to other forms of traumatic events since the threat to life continuously exists in the patient's body. That is, it is highly probable that orthodox interventions may not be sufficient for helping patients after SH to regain healthy social function and proper medical treatment. Accordingly, the current presentation will demonstrate the results of a study conducted among T1DM patients after SH. The study was designed in two stages. First, a preliminary qualitative phenomenological study among ten patients after SH was conducted. Analysis revealed that after SH, patients confuse between stress symptoms and Hypoglycemia symptoms, divide life before and after the event, report a constant sense of fear, a loss of freedom, a significant decrease in social functioning, a catastrophic thinking pattern, a dichotomous split between the self and the body, and internalization of illness identity, a loss of internal locus of control, a damaged self-representation, and severe loneliness for never being understood by others. The second stage was a two steps study of intervention among five patients after SH. The first part of the intervention included three months of therapeutic 3rd wave CBT therapy. The contents of the therapeutic process were: acceptance of fear and tolerance to stress; cognitive de-fusion combined with emotional self-regulation; the adoption of an active position relying on personal values; and self-compassion. Then, the intervention included a one-week practical real-time 24/7 support by trained medical personnel, alongside a gradual exposure to increased insulin therapy in a protected environment. The results of the intervention are a decrease in stress symptoms, increased social functioning, increased well-being, and decreased avoidance of medical treatment. The presentation will discuss the unique emotional state of T1DM patients after SH. Then, the presentation will discuss the effectiveness of the intervention for patients with chronic conditions after a traumatic event. The presentation will make evident the unique situation of illness-related PTSD. The presentation will also demonstrate the requirement for multi-professional collaboration between social work and medical care for populations with chronic medical conditions. Limitations of the study and recommendations for further research will be discussed.

Keywords: type 1 diabetes, chronic illness, post-traumatic stress, illness-related PTSD

Procedia PDF Downloads 176
205 Analysis of Potential Associations of Single Nucleotide Polymorphisms in Patients with Schizophrenia Spectrum Disorders

Authors: Tatiana Butkova, Nikolai Kibrik, Kristina Malsagova, Alexander Izotov, Alexander Stepanov, Anna Kaysheva

Abstract:

Relevance. The genetic risk of developing schizophrenia is determined by two factors: single nucleotide polymorphisms and gene copy number variations. The search for serological markers for early diagnosis of schizophrenia is driven by the fact that the first five years of the disease are accompanied by significant biological, psychological, and social changes. It is during this period that pathological processes are most amenable to correction. The aim of this study was to analyze single nucleotide polymorphisms (SNPs) that are hypothesized to potentially influence the onset and development of the endogenous process. Materials and Methods It was analyzed 73 single nucleotide polymorphism variants. The study included 48 patients undergoing inpatient treatment at "Psychiatric Clinical Hospital No. 1" in Moscow, comprising 23 females and 25 males. Inclusion criteria: - Patients aged 18 and above. - Diagnosis according to ICD-10: F20.0, F20.2, F20.8, F21.8, F25.1, F25.2. - Voluntary informed consent from patients. Exclusion criteria included: - The presence of concurrent somatic or neurological pathology, neuroinfections, epilepsy, organic central nervous system damage of any etiology, and regular use of medication. - Substance abuse and alcohol dependence. - Women who were pregnant or breastfeeding. Clinical and psychopathological assessment was complemented by psychometric evaluation using the PANSS scale at the beginning and end of treatment. The duration of observation during therapy was 4-6 weeks. Total DNA extraction was performed using QIAamp DNA. Blood samples were processed on Illumina HiScan and genotyped for 652,297 markers on the Infinium Global Chips Screening Array-24v2.0 using the IMPUTE2 program with parameters Ne=20,000 and k=90. Additional filtration was performed based on INFO>0.5 and genotype probability>0.5. Quality control of the obtained DNA was conducted using agarose gel electrophoresis, with each tested sample having a volume of 100 µL. Results. It was observed that several SNPs exhibited gender dependence. We identified groups of single nucleotide polymorphisms with a membership of 80% or more in either the female or male gender. These SNPs included rs2661319, rs2842030, rs4606, rs11868035, rs518147, rs5993883, and rs6269.Another noteworthy finding was the limited combination of SNPs sufficient to manifest clinical symptoms leading to hospitalization. Among all 48 patients, each of whom was analyzed for deviations in 73 SNPs, it was discovered that the combination of involved SNPs in the manifestation of pronounced clinical symptoms of schizophrenia was 19±3 out of 73 possible. In study, the frequency of occurrence of single nucleotide polymorphisms also varied. The most frequently observed SNPs were rs4849127 (in 90% of cases), rs1150226 (86%), rs1414334 (75%), rs10170310 (73%), rs2857657, and rs4436578 (71%). Conclusion. Thus, the results of this study provide additional evidence that these genes may be associated with the development of schizophrenia spectrum disorders. However, it's impossible cannot rule out the hypothesis that these polymorphisms may be in linkage disequilibrium with other functionally significant polymorphisms that may actually be involved in schizophrenia spectrum disorders. It has been shown that missense SNPs by themselves are likely not causative of the disease but are in strong linkage disequilibrium with non-functional SNPs that may indeed contribute to disease predisposition.

Keywords: gene polymorphisms, genotyping, single nucleotide polymorphisms, schizophrenia.

Procedia PDF Downloads 78
204 Dietary Diversification and Nutritional Education: A Strategy to Improve Child Food Security Status in the Rural Mozambique

Authors: Rodriguez Diego, Del Valle Martin, Hargreaves Matias, Riveros Jose Luis

Abstract:

Nutrient deficiencies due to a diet low in quantitative and qualitative terms, are prevalent throughout the developing world, especially in sub-Saharan Africa. Children and women of childbearing age are especially vulnerable. Limited availability, access and intake of animal foods at home and lack of knowledge about their value in the diet and the role they play in health, contribute to poor diet quality. Poor bioavailability of micronutrients in diets based on foods high in fiber and phytates, the low content of some micronutrients in these foods are further factors to consider. Goats are deeply embedded in almost every Sub-Saharan African rural culture, generally kept for their milk, meat, hair or leather. Goats have played an important role in African social life, especially in food security. Goat meat has good properties for human wellbeing, with a special role in lower income households. It has a high-quality protein (20 protein g/100 meat g) including all essential amino acids, good unsaturated/satured fatty acids relationship, and it is an important B-vitamin source with high micronutrients bioavailability. Mozambique has major food security problems, with poor food access and utilization, undiversified diets, chronic poverty and child malnutrition. Our objective was to design a nutritional intervention based on a dietary diversification, nutritional education, cultural beliefs and local resources, aimed to strengthen food security of children at Barrio Broma village (15°43'58.78"S; 32°46'7.27"E) in Chitima, Mozambique. Two surveys were conducted first of socio-productive local databases and then to 100 rural households about livelihoods, food diversity and anthropometric measurements in children under 5 years. Our results indicate that the main economic activity is goat production, based on a native breed with two deliveries per year in the absence of any management. Adult goats weighted 27.2±10.5 kg and raised a height of 63.5±3.8 cm. Data showed high levels of poverty, with a food diversity score of 2.3 (0-12 points), where only 30% of households consume protein and 13% iron, zinc, and B12 vitamin. The main constraints to food security were poor access to water and low income to buy food. Our dietary intervention was based on improving diet quality by increasing the access to dried goat meat, fresh vegetables, and legumes, and its utilization by a nutritional education program. This proposal was based on local culture and living conditions characterized by the absence of electricity power and drinkable water. The drying process proposed would secure the food maintenance under local conditions guaranteeing food safety for a longer period. Additionally, an ancient local drying technique was rescued and used. Moreover, this kind of dietary intervention would be the most efficient way to improve the infant nutrition by delivering macro and micronutrients on time to these vulnerable populations.

Keywords: child malnutrition, dietary diversification, food security, goat meat

Procedia PDF Downloads 301
203 Optimization and Coordination of Organic Product Supply Chains under Competition: An Analytical Modeling Perspective

Authors: Mohammadreza Nematollahi, Bahareh Mosadegh Sedghy, Alireza Tajbakhsh

Abstract:

The last two decades have witnessed substantial attention to organic and sustainable agricultural supply chains. Motivated by real-world practices, this paper aims to address two main challenges observed in organic product supply chains: decentralized decision-making process between farmers and their retailers, and competition between organic products and their conventional counterparts. To this aim, an agricultural supply chain consisting of two farmers, a conventional farmer and an organic farmer who offers an organic version of the same product, is considered. Both farmers distribute their products through a single retailer, where there exists competition between the organic and the conventional product. The retailer, as the market leader, sets the wholesale price, and afterward, the farmers set their production quantity decisions. This paper first models the demand functions of the conventional and organic products by incorporating the effect of asymmetric brand equity, which captures the fact that consumers usually pay a premium for organic due to positive perceptions regarding their health and environmental benefits. Then, profit functions with consideration of some characteristics of organic farming, including crop yield gap and organic cost factor, are modeled. Our research also considers both economies and diseconomies of scale in farming production as well as the effects of organic subsidy paid by the government to support organic farming. This paper explores the investigated supply chain in three scenarios: decentralized, centralized, and coordinated decision-making structures. In the decentralized scenario, the conventional and organic farmers and the retailer maximize their own profits individually. In this case, the interaction between the farmers is modeled under the Bertrand competition, while analyzing the interaction between the retailer and farmers under the Stackelberg game structure. In the centralized model, the optimal production strategies are obtained from the entire supply chain perspective. Analytical models are developed to derive closed-form optimal solutions. Moreover, analytical sensitivity analyses are conducted to explore the effects of main parameters like the crop yield gap, organic cost factor, organic subsidy, and percent price premium of the organic product on the farmers’ and retailer’s optimal strategies. Afterward, a coordination scenario is proposed to convince the three supply chain members to shift from the decentralized to centralized decision-making structure. The results indicate that the proposed coordination scenario provides a win-win-win situation for all three members compared to the decentralized model. Moreover, our paper demonstrates that the coordinated model respectively increases and decreases the production and price of organic produce, which in turn motivates the consumption of organic products in the market. Moreover, the proposed coordination model helps the organic farmer better handle the challenges of organic farming, including the additional cost and crop yield gap. Last but not least, our results highlight the active role of the organic subsidy paid by the government as a means of promoting sustainable organic product supply chains. Our paper shows that although the amount of organic subsidy plays a significant role in the production and sales price of organic products, the allocation method of subsidy between the organic farmer and retailer is not of that importance.

Keywords: analytical game-theoretic model, product competition, supply chain coordination, sustainable organic supply chain

Procedia PDF Downloads 109
202 Small Scale Mobile Robot Auto-Parking Using Deep Learning, Image Processing, and Kinematics-Based Target Prediction

Authors: Mingxin Li, Liya Ni

Abstract:

Autonomous parking is a valuable feature applicable to many robotics applications such as tour guide robots, UV sanitizing robots, food delivery robots, and warehouse robots. With auto-parking, the robot will be able to park at the charging zone and charge itself without human intervention. As compared to self-driving vehicles, auto-parking is more challenging for a small-scale mobile robot only equipped with a front camera due to the camera view limited by the robot’s height and the narrow Field of View (FOV) of the inexpensive camera. In this research, auto-parking of a small-scale mobile robot with a front camera only was achieved in a four-step process: Firstly, transfer learning was performed on the AlexNet, a popular pre-trained convolutional neural network (CNN). It was trained with 150 pictures of empty parking slots and 150 pictures of occupied parking slots from the view angle of a small-scale robot. The dataset of images was divided into a group of 70% images for training and the remaining 30% images for validation. An average success rate of 95% was achieved. Secondly, the image of detected empty parking space was processed with edge detection followed by the computation of parametric representations of the boundary lines using the Hough Transform algorithm. Thirdly, the positions of the entrance point and center of available parking space were predicted based on the robot kinematic model as the robot was driving closer to the parking space because the boundary lines disappeared partially or completely from its camera view due to the height and FOV limitations. The robot used its wheel speeds to compute the positions of the parking space with respect to its changing local frame as it moved along, based on its kinematic model. Lastly, the predicted entrance point of the parking space was used as the reference for the motion control of the robot until it was replaced by the actual center when it became visible again by the robot. The linear and angular velocities of the robot chassis center were computed based on the error between the current chassis center and the reference point. Then the left and right wheel speeds were obtained using inverse kinematics and sent to the motor driver. The above-mentioned four subtasks were all successfully accomplished, with the transformed learning, image processing, and target prediction performed in MATLAB, while the motion control and image capture conducted on a self-built small scale differential drive mobile robot. The small-scale robot employs a Raspberry Pi board, a Pi camera, an L298N dual H-bridge motor driver, a USB power module, a power bank, four wheels, and a chassis. Future research includes three areas: the integration of all four subsystems into one hardware/software platform with the upgrade to an Nvidia Jetson Nano board that provides superior performance for deep learning and image processing; more testing and validation on the identification of available parking space and its boundary lines; improvement of performance after the hardware/software integration is completed.

Keywords: autonomous parking, convolutional neural network, image processing, kinematics-based prediction, transfer learning

Procedia PDF Downloads 131
201 Challenges and Proposals for Public Policies Aimed At Increasing Energy Efficiency in Low-Income Communities in Brazil: A Multi-Criteria Approach

Authors: Anna Carolina De Paula Sermarini, Rodrigo Flora Calili

Abstract:

Energy Efficiency (EE) needs investments, new technologies, greater awareness and management on the side of citizens and organizations, and more planning. However, this issue is usually remembered and discussed only in moments of energy crises, and opportunities are missed to take better advantage of the potential of EE in the various sectors of the economy. In addition, there is little concern about the subject among the less favored classes, especially in low-income communities. Accordingly, this article presents suggestions for public policies that aim to increase EE for low-income housing and communities based on international and national experiences. After reviewing the literature, eight policies were listed, and to evaluate them; a multicriteria decision model was developed using the AHP (Analytical Hierarchy Process) and TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) methods, combined with fuzzy logic. Nine experts analyzed the policies according to 9 criteria: economic impact, social impact, environmental impact, previous experience, the difficulty of implementation, possibility/ease of monitoring and evaluating the policies, expected impact, political risks, and public governance and sustainability of the sector. The results found in order of preference are (i) Incentive program for equipment replacement; (ii) Community awareness program; (iii) EE Program with a greater focus on low income; (iv) Staggered and compulsory certification of social interest buildings; (v) Programs for the expansion of smart metering, energy monitoring and digitalization; (vi) Financing program for construction and retrofitting of houses with the emphasis on EE; (vii) Income tax deduction for investment in EE projects in low-income households made by companies; (viii) White certificates of energy for low-income. First, the policy of equipment substitution has been employed in Brazil and the world and has proven effective in promoting EE. For implementation, efforts are needed from the federal and state governments, which can encourage companies to reduce prices, and provide some type of aid for the purchase of such equipment. In second place is the community awareness program, promoting socio-educational actions on EE concepts and with energy conservation tips. This policy is simple to implement and has already been used by many distribution utilities in Brazil. It can be carried out through bids defined by the government in specific areas, being executed by third sector companies with public and private resources. Third on the list is the proposal to continue the Energy Efficiency Program (which obliges electric energy companies to allocate resources for research in the area) by suggesting the return of the mandatory investment of 60% of the resources in projects for low income. It is also relatively simple to implement, requiring efforts by the federal government to make it mandatory, and on the part of the distributors, compliance is needed. The success of the suggestions depends on changes in the established rules and efforts from the interested parties. For future work, we suggest the development of pilot projects in low-income communities in Brazil and the application of other multicriteria decision support methods to compare the results obtained in this study.

Keywords: energy efficiency, low-income community, public policy, multicriteria decision making

Procedia PDF Downloads 116
200 Superhydrophobic Materials: A Promising Way to Enhance Resilience of Electric System

Authors: M. Balordi, G. Santucci de Magistris, F. Pini, P. Marcacci

Abstract:

The increasing of extreme meteorological events represents the most important causes of damages and blackouts of the whole electric system. In particular, the icing on ground-wires and overheads lines, due to snowstorms or harsh winter conditions, very often gives rise to the collapse of cables and towers both in cold and warm climates. On the other hand, the high concentration of contaminants in the air, due to natural and/or antropic causes, is reflected in high levels of pollutants layered on glass and ceramic insulators, causing frequent and unpredictable flashover events. Overheads line and insulator failures lead to blackouts, dangerous and expensive maintenances and serious inefficiencies in the distribution service. Inducing superhydrophobic (SHP) properties to conductors, ground-wires and insulators, is one of the ways to face all these problems. Indeed, in some cases, the SHP surface can delay the ice nucleation time and decrease the ice nucleation temperature, preventing ice formation. Besides, thanks to the low surface energy, the adhesion force between ice and a superhydrophobic material are low and the ice can be easily detached from the surface. Moreover, it is well known that superhydrophobic surfaces can have self-cleaning properties: these hinder the deposition of pollution and decrease the probability of flashover phenomena. Here this study presents three different studies to impart superhydrophobicity to aluminum, zinc and glass specimens, which represent the main constituent materials of conductors, ground-wires and insulators, respectively. The route to impart the superhydrophobicity to the metallic surfaces can be summarized in a three-step process: 1) sandblasting treatment, 2) chemical-hydrothermal treatment and 3) coating deposition. The first step is required to create a micro-roughness. In the chemical-hydrothermal treatment a nano-scale metallic oxide (Al or Zn) is grown and, together with the sandblasting treatment, bring about a hierarchical micro-nano structure. By coating an alchilated or fluorinated siloxane coating, the surface energy decreases and gives rise to superhydrophobic surfaces. In order to functionalize the glass, different superhydrophobic powders, obtained by a sol-gel synthesis, were prepared. Further, the specimens were covered with a commercial primer and the powders were deposed on them. All the resulting metallic and glass surfaces showed a noticeable superhydrophobic behavior with a very high water contact angles (>150°) and a very low roll-off angles (<5°). The three optimized processes are fast, cheap and safe, and can be easily replicated on industrial scales. The anti-icing and self-cleaning properties of the surfaces were assessed with several indoor lab-tests that evidenced remarkable anti-icing properties and self-cleaning behavior with respect to the bare materials. Finally, to evaluate the anti-snow properties of the samples, some SHP specimens were exposed under real snow-fall events in the RSE outdoor test-facility located in Vinadio, western Alps: the coated samples delay the formation of the snow-sleeves and facilitate the detachment of the snow. The good results for both indoor and outdoor tests make these materials promising for further development in large scale applications.

Keywords: superhydrophobic coatings, anti-icing, self-cleaning, anti-snow, overheads lines

Procedia PDF Downloads 182
199 Impact of Water Interventions under WASH Program in the South-west Coastal Region of Bangladesh

Authors: S. M. Ashikur Elahee, Md. Zahidur Rahman, Md. Shofiqur Rahman

Abstract:

This study evaluated the impact of different water interventions under WASH program on access of household's to safe drinking water. Following survey method, the study was carried out in two Upazila of South-west coastal region of Bangladesh namely Koyra from Khulna and Shymnagar from Satkhira district. Being an explanatory study, a total of 200 household's selected applying random sampling technique were interviewed using a structured interview schedule. The predicted probability suggests that around 62 percent household's are out of year-round access to safe drinking water whereby, only 25 percent household's have access at SPHERE standard (913 Liters/per person/per year). Besides, majority (78 percent) of the household's have not accessed at both indicators simultaneously. The distance from household residence to the water source varies from 0 to 25 kilometer with an average distance of 2.03 kilometers. The study also reveals that the increase in monthly income around BDT 1,000 leads to additional 11 liters (coefficient 0.01 at p < 0.1) consumption of safe drinking water for a person/year. As expected, lining up time has significant negative relationship with dependent variables i.e., for higher lining up time, the probability of getting access for both SPHERE standard and year round access variables becomes lower. According to ordinary least square (OLS) regression results, water consumption decreases at 93 liters for per person/year of a household if one member is added to that household. Regarding water consumption intensity, ordered logistic regression (OLR) model shows that one-minute increase of lining up time for water collection tends to reduce water consumption intensity. On the other hand, as per OLS regression results, for one-minute increase of lining up time, the water consumption decreases by around 8 liters. Considering access to Deep Tube Well (DTW) as a reference dummy, in OLR, the household under Pond Sand Filter (PSF), Shallow Tube Well (STW), Reverse Osmosis (RO) and Rainwater Harvester System (RWHS) are respectively 37 percent, 29 percent, 61 percent and 27 percent less likely to ensure year round access of water consumption. In line of health impact, different type of water born diseases like diarrhea, cholera, and typhoid are common among the coastal community caused by microbial impurities i.e., Bacteria, Protozoa. High turbidity and TDS in pond water caused by reduction of water depth, presence of suspended particle and inorganic salt stimulate the growth of bacteria, protozoa, and algae causes affecting health hazard. Meanwhile, excessive growth of Algae in pond water caused by excessive nitrate in drinking water adversely effects on child health. In lieu of ensuring access at SPHERE standard, we need to increase the number of water interventions at reasonable distance, preferably a half kilometer away from the dwelling place, ensuring community peoples involved with its installation process where collectively owned water intervention is found more effective than privately owned. In addition, a demand-responsive approach to supply of piped water should be adopted to allow consumer demand to guide investment in domestic water supply in future.

Keywords: access, impact, safe drinking water, Sphere standard, water interventions

Procedia PDF Downloads 218
198 Optimized Processing of Neural Sensory Information with Unwanted Artifacts

Authors: John Lachapelle

Abstract:

Introduction: Neural stimulation is increasingly targeted toward treatment of back pain, PTSD, Parkinson’s disease, and for sensory perception. Sensory recording during stimulation is important in order to examine neural response to stimulation. Most neural amplifiers (headstages) focus on noise efficiency factor (NEF). Conversely, neural headstages need to handle artifacts from several sources including power lines, movement (EMG), and neural stimulation itself. In this work a layered approach to artifact rejection is used to reduce corruption of the neural ENG signal by 60dBv, resulting in recovery of sensory signals in rats and primates that would previously not be possible. Methods: The approach combines analog techniques to reduce and handle unwanted signal amplitudes. The methods include optimized (1) sensory electrode placement, (2) amplifier configuration, and (3) artifact blanking when necessary. The techniques together are like concentric moats protecting a castle; only the wanted neural signal can penetrate. There are two conditions in which the headstage operates: unwanted artifact < 50mV, linear operation, and artifact > 50mV, fast-settle gain reduction signal limiting (covered in more detail in a separate paper). Unwanted Signals at the headstage input: Consider: (a) EMG signals are by nature < 10mV. (b) 60 Hz power line signals may be > 50mV with poor electrode cable conditions; with careful routing much of the signal is common to both reference and active electrode and rejected in the differential amplifier with <50mV remaining. (c) An unwanted (to the neural recorder) stimulation signal is attenuated from stimulation to sensory electrode. The voltage seen at the sensory electrode can be modeled Φ_m=I_o/4πσr. For a 1 mA stimulation signal, with 1 cm spacing between electrodes, the signal is <20mV at the headstage. Headstage ASIC design: The front end ASIC design is designed to produce < 1% THD at 50mV input; 50 times higher than typical headstage ASICs, with no increase in noise floor. This requires careful balance of amplifier stages in the headstage ASIC, as well as consideration of the electrodes effect on noise. The ASIC is designed to allow extremely small signal extraction on low impedance (< 10kohm) electrodes with configuration of the headstage ASIC noise floor to < 700nV/rt-Hz. Smaller high impedance electrodes (> 100kohm) are typically located closer to neural sources and transduce higher amplitude signals (> 10uV); the ASIC low-power mode conserves power with 2uV/rt-Hz noise. Findings: The enhanced neural processing ASIC has been compared with a commercial neural recording amplifier IC. Chronically implanted primates at MGH demonstrated the presence of commercial neural amplifier saturation as a result of large environmental artifacts. The enhanced artifact suppression headstage ASIC, in the same setup, was able to recover and process the wanted neural signal separately from the suppressed unwanted artifacts. Separately, the enhanced artifact suppression headstage ASIC was able to separate sensory neural signals from unwanted artifacts in mouse-implanted peripheral intrafascicular electrodes. Conclusion: Optimizing headstage ASICs allow observation of neural signals in the presence of large artifacts that will be present in real-life implanted applications, and are targeted toward human implantation in the DARPA HAPTIX program.

Keywords: ASIC, biosensors, biomedical signal processing, biomedical sensors

Procedia PDF Downloads 327
197 Azolla Pinnata as Promising Source for Animal Feed in India: An Experimental Study to Evaluate the Nutrient Enhancement Result of Feed

Authors: Roshni Raha, Karthikeyan S.

Abstract:

The world's largest livestock population resides in India. Existing strategies must be modified to increase the production of livestock and their by-products in order to meet the demands of the growing human population. Even though India leads the world in both milk production and the number of cows, average production is not very healthy and productive. This may be due to the animals' poor nutrition caused by a chronic under-availability of high-quality fodder and feed. This article explores Azolla pinnata to be a promising source to produce high-quality unconventional feed and fodder for effective livestock production and good quality breeding in India. This article is an exploratory study using a literature survey and experimentation analysis. In the realm of agri-biotechnology, azolla sp gained attention for helping farmers achieve sustainability, having minimal land requirements, and serving as a feed element that doesn't compete with human food sources. It has high methionine content, which is a good source of protein. It can be easily digested as the lignin content is low. It has high antioxidants and vitamins like beta carotene, vitamin A, and vitamin B12. Using this concept, the paper aims to investigate and develop a model of using azolla plants as a novel, high-potential feed source to combat the problems of low production and poor quality of animals in India. A representative sample of animal feed is collected where azolla is added. The sample is ground into a fine powder using mortar. PITC (phenylisothiocyanate) is added to derivatize the amino acids. The sample is analyzed using HPLC (High-Performance Liquid Chromatography) to measure the amino acids and monitor the protein content of the sample feed. The amino acid measurements from HPLC are converted to milligrams per gram of protein using the method of amino acid profiling via a set of calculations. The amino acid profile data is then obtained to validate the proximate results of nutrient enhancement of the composition of azolla in the sample. Based on the proximate composition of azolla meal, the enhancement results shown were higher compared to the standard values of normal fodder supplements indicating the feed to be much richer and denser in nutrient supply. Thus azolla fed sample proved to be a promising source for animal fodder. This would in turn lead to higher production and a good breed of animals that would help to meet the economic demands of the growing Indian population. Azolla plants have no side effects and can be considered as safe and effective to be immersed in the animal feed. One area of future research could begin with the upstream scaling strategy of azolla plants in India. This could involve introducing several bioreactor types for its commercial production. Since azolla sp has been proved in this paper as a promising source for high quality animal feed and fodder, large scale production of azolla plants will help to make the process much quicker, more efficient and easily accessible. Labor expenses will also be reduced by employing bioreactors for large-scale manufacturing.

Keywords: azolla, fodder, nutrient, protein

Procedia PDF Downloads 53
196 Book Exchange System with a Hybrid Recommendation Engine

Authors: Nilki Upathissa, Torin Wirasinghe

Abstract:

This solution addresses the challenges faced by traditional bookstores and the limitations of digital media, striking a balance between the tactile experience of printed books and the convenience of modern technology. The book exchange system offers a sustainable alternative, empowering users to access a diverse range of books while promoting community engagement. The user-friendly interfaces incorporated into the book exchange system ensure a seamless and enjoyable experience for users. Intuitive features for book management, search, and messaging facilitate effortless exchanges and interactions between users. By streamlining the process, the system encourages readers to explore new books aligned with their interests, enhancing the overall reading experience. Central to the system's success is the hybrid recommendation engine, which leverages advanced technologies such as Long Short-Term Memory (LSTM) models. By analyzing user input, the engine accurately predicts genre preferences, enabling personalized book recommendations. The hybrid approach integrates multiple technologies, including user interfaces, machine learning models, and recommendation algorithms, to ensure the accuracy and diversity of the recommendations. The evaluation of the book exchange system with the hybrid recommendation engine demonstrated exceptional performance across key metrics. The high accuracy score of 0.97 highlights the system's ability to provide relevant recommendations, enhancing users' chances of discovering books that resonate with their interests. The commendable precision, recall, and F1score scores further validate the system's efficacy in offering appropriate book suggestions. Additionally, the curve classifications substantiate the system's effectiveness in distinguishing positive and negative recommendations. This metric provides confidence in the system's ability to navigate the vast landscape of book choices and deliver recommendations that align with users' preferences. Furthermore, the implementation of this book exchange system with a hybrid recommendation engine has the potential to revolutionize the way readers interact with printed books. By facilitating book exchanges and providing personalized recommendations, the system encourages a sense of community and exploration within the reading community. Moreover, the emphasis on sustainability aligns with the growing global consciousness towards eco-friendly practices. With its robust technical approach and promising evaluation results, this solution paves the way for a more inclusive, accessible, and enjoyable reading experience for book lovers worldwide. In conclusion, the developed book exchange system with a hybrid recommendation engine represents a progressive solution to the challenges faced by traditional bookstores and the limitations of digital media. By promoting sustainability, widening access to printed books, and fostering engagement with reading, this system addresses the evolving needs of book enthusiasts. The integration of user-friendly interfaces, advanced machine learning models, and recommendation algorithms ensure accurate and diverse book recommendations, enriching the reading experience for users.

Keywords: recommendation systems, hybrid recommendation systems, machine learning, data science, long short-term memory, recurrent neural network

Procedia PDF Downloads 92
195 Sentinel-2 Based Burn Area Severity Assessment Tool in Google Earth Engine

Authors: D. Madhushanka, Y. Liu, H. C. Fernando

Abstract:

Fires are one of the foremost factors of land surface disturbance in diverse ecosystems, causing soil erosion and land-cover changes and atmospheric effects affecting people's lives and properties. Generally, the severity of the fire is calculated as the Normalized Burn Ratio (NBR) index. This is performed manually by comparing two images obtained afterward. Then by using the bitemporal difference of the preprocessed satellite images, the dNBR is calculated. The burnt area is then classified as either unburnt (dNBR<0.1) or burnt (dNBR>= 0.1). Furthermore, Wildfire Severity Assessment (WSA) classifies burnt areas and unburnt areas using classification levels proposed by USGS and comprises seven classes. This procedure generates a burn severity report for the area chosen by the user manually. This study is carried out with the objective of producing an automated tool for the above-mentioned process, namely the World Wildfire Severity Assessment Tool (WWSAT). It is implemented in Google Earth Engine (GEE), which is a free cloud-computing platform for satellite data processing, with several data catalogs at different resolutions (notably Landsat, Sentinel-2, and MODIS) and planetary-scale analysis capabilities. Sentinel-2 MSI is chosen to obtain regular processes related to burnt area severity mapping using a medium spatial resolution sensor (15m). This tool uses machine learning classification techniques to identify burnt areas using NBR and to classify their severity over the user-selected extent and period automatically. Cloud coverage is one of the biggest concerns when fire severity mapping is performed. In WWSAT based on GEE, we present a fully automatic workflow to aggregate cloud-free Sentinel-2 images for both pre-fire and post-fire image compositing. The parallel processing capabilities and preloaded geospatial datasets of GEE facilitated the production of this tool. This tool consists of a Graphical User Interface (GUI) to make it user-friendly. The advantage of this tool is the ability to obtain burn area severity over a large extent and more extended temporal periods. Two case studies were carried out to demonstrate the performance of this tool. The Blue Mountain national park forest affected by the Australian fire season between 2019 and 2020 is used to describe the workflow of the WWSAT. This site detected more than 7809 km2, using Sentinel-2 data, giving an error below 6.5% when compared with the area detected on the field. Furthermore, 86.77% of the detected area was recognized as fully burnt out, of which high severity (17.29%), moderate-high severity (19.63%), moderate-low severity (22.35%), and low severity (27.51%). The Arapaho and Roosevelt National Forest Park, California, the USA, which is affected by the Cameron peak fire in 2020, is chosen for the second case study. It was found that around 983 km2 had burned out, of which high severity (2.73%), moderate-high severity (1.57%), moderate-low severity (1.18%), and low severity (5.45%). These spots also can be detected through the visual inspection made possible by cloud-free images generated by WWSAT. This tool is cost-effective in calculating the burnt area since satellite images are free and the cost of field surveys is avoided.

Keywords: burnt area, burnt severity, fires, google earth engine (GEE), sentinel-2

Procedia PDF Downloads 233
194 The Return of the Rejected Kings: A Comparative Study of Governance and Procedures of Standards Development Organizations under the Theory of Private Ordering

Authors: Olia Kanevskaia

Abstract:

Standardization has been in the limelight of numerous academic studies. Typically described as ‘any set of technical specifications that either provides or is intended to provide a common design for a product or process’, standards do not only set quality benchmarks for products and services, but also spur competition and innovation, resulting in advantages for manufacturers and consumers. Their contribution to globalization and technology advancement is especially crucial in the Information and Communication Technology (ICT) and telecommunications sector, which is also characterized by a weaker state-regulation and expert-based rule-making. Most of the standards developed in that area are interoperability standards, which allow technological devices to establish ‘invisible communications’ and to ensure their compatibility and proper functioning. This type of standard supports a large share of our daily activities, ranging from traffic coordination by traffic lights to the connection to Wi-Fi networks, transmission of data via Bluetooth or USB and building the network architecture for the Internet of Things (IoT). A large share of ICT standards is developed in the specialized voluntary platforms, commonly referred to as Standards Development Organizations (SDOs), which gather experts from various industry sectors, private enterprises, governmental agencies and academia. The institutional architecture of these bodies can vary from semi-public bodies, such as European Telecommunications Standards Institute (ETSI), to industry-driven consortia, such as the Internet Engineering Task Force (IETF). The past decades witnessed a significant shift of standard setting to those institutions: while operating independently from the states regulation, they offer a rather informal setting, which enables fast-paced standardization and places technical supremacy and flexibility of standards above other considerations. Although technical norms and specifications developed by such nongovernmental platforms are not binding, they appear to create significant regulatory impact. In the United States (US), private voluntary standards can be used by regulators to achieve their policy objectives; in the European Union (EU), compliance with harmonized standards developed by voluntary European Standards Organizations (ESOs) can grant a product a free-movement pass. Moreover, standards can de facto manage the functioning of the market when other regulative alternatives are not available. Hence, by establishing (potentially) mandatory norms, SDOs assume regulatory functions commonly exercised by States and shape their own legal order. The purpose of this paper is threefold: First, it attempts to shed some light on SDOs’ institutional architecture, focusing on private, industry-driven platforms and comparing their regulatory frameworks with those of formal organizations. Drawing upon the relevant scholarship, the paper then discusses the extent to which the formulation of technological standards within SDOs constitutes a private legal order, operating in the shadow of governmental regulation. Ultimately, this contribution seeks to advise whether a state-intervention in industry-driven standard setting is desirable, and whether the increasing regulatory importance of SDOs should be addressed in legislation on standardization.

Keywords: private order, standardization, standard-setting organizations, transnational law

Procedia PDF Downloads 163
193 Best Practices and Recommendations for CFD Simulation of Hydraulic Spool Valves

Authors: Jérémy Philippe, Lucien Baldas, Batoul Attar, Jean-Charles Mare

Abstract:

The proposed communication deals with the research and development of a rotary direct-drive servo valve for aerospace applications. A key challenge of the project is to downsize the electromagnetic torque motor by reducing the torque required to drive the rotary spool. It is intended to optimize the spool and the sleeve geometries by combining a Computational Fluid Dynamics (CFD) approach with commercial optimization software. The present communication addresses an important phase of the project, which consists firstly of gaining confidence in the simulation results. It is well known that the force needed to pilot a sliding spool valve comes from several physical effects: hydraulic forces, friction and inertia/mass of the moving assembly. Among them, the flow force is usually a major contributor to the steady-state (or Root Mean Square) driving torque. In recent decades, CFD has gradually become a standard simulation tool for studying fluid-structure interactions. However, in the particular case of high-pressure valve design, the authors have experienced that the calculated overall hydraulic force depends on the parameterization and options used to build and run the CFD model. To solve this issue, the authors have selected the standard case of the linear spool valve, which is addressed in detail in numerous scientific references (analytical models, experiments, CFD simulations). The first CFD simulations run by the authors have shown that the evolution of the equivalent discharge coefficient vs. Reynolds number at the metering orifice corresponds well to the values that can be predicted by the classical analytical models. Oppositely, the simulated flow force was found to be quite different from the value calculated analytically. This drove the authors to investigate minutely the influence of the studied domain and the setting of the CFD simulation. It was firstly shown that the flow recirculates in the inlet and outlet channels if their length is not sufficient regarding their hydraulic diameter. The dead volume on the uncontrolled orifice side also plays a significant role. These examples highlight the influence of the geometry of the fluid domain considered. The second action was to investigate the influence of the type of mesh, the turbulence models and near-wall approaches, and the numerical solver and discretization scheme order. Two approaches were used to determine the overall hydraulic force acting on the moving spool. First, the force was deduced from the momentum balance on a control domain delimited by the valve inlet and outlet and the spool walls. Second, the overall hydraulic force was calculated from the integral of pressure and shear forces acting at the boundaries of the fluid domain. This underlined the significant contribution of the viscous forces acting on the spool between the inlet and outlet orifices, which are generally not considered in the literature. This also emphasized the influence of the choices made for the implementation of CFD calculation and results analysis. With the step-by-step process adopted to increase confidence in the CFD simulations, the authors propose a set of best practices and recommendations for the efficient use of CFD to design high-pressure spool valves.

Keywords: computational fluid dynamics, hydraulic forces, servovalve, rotary servovalve

Procedia PDF Downloads 42
192 Using Participatory Action Research with Episodic Volunteers: Learning from Urban Agriculture Initiatives

Authors: Rebecca Laycock

Abstract:

Many Urban Agriculture (UA) initiatives, including community/allotment gardens, Community Supported Agriculture, and community/social farms, depend on volunteers. However, initiatives supported or run by volunteers are often faced with a high turnover of labour as a result of the involvement of episodic volunteers (a term describing ad hoc, one-time, and seasonal volunteers), leading to challenges with maintaining project continuity and retaining skills/knowledge within the initiative. This is a notable challenge given that food growing is a knowledge intensive activity where the fruits of labour appear months or sometimes years after investment. Participatory Action Research (PAR) is increasingly advocated for in the field of UA as a solution-oriented approach to research, providing concrete results in addition to advancing theory. PAR is a cyclical methodological approach involving researchers and stakeholders collaboratively 'identifying' and 'theorising' an issue, 'planning' an action to address said issue, 'taking action', and 'reflecting' on the process. Through iterative cycles and prolonged engagement, the theory is developed and actions become better tailored to the issue. The demand for PAR in UA research means that understanding how to use PAR with episodic volunteers is of critical importance. The aim of this paper is to explore (1) the challenges of doing PAR in UA initiatives with episodic volunteers, and (2) how PAR can be harnessed to advance sustainable development of UA through theoretically-informed action. A 2.5 year qualitative PAR study on three English case study student-led food growing initiatives took place between 2014 and 2016. University UA initiatives were chosen as exemplars because most of their volunteers were episodic. Data were collected through 13 interviews, 6 workshops, and a research diary. The results were thematically analysed through eclectic coding using Computer-Assisted Qualitative Data Analysis Software (NVivo). It was found that the challenges of doing PAR with transient participants were (1) a superficial understanding of issues by volunteers because of short term engagement, resulting in difficulties ‘identifying’/‘theorising’ issues to research; (2) difficulties implementing ‘actions’ given those involved in the ‘planning’ phase often left by the ‘action’ phase; (3) a lack of capacity of participants to engage in research given the ongoing challenge of maintaining participation; and (4) that the introduction of the researcher acted as an ‘intervention’. The involvement of a long-term stakeholder (the researcher) changed the group dynamics, prompted critical reflections that had not previously taken place, and improved continuity. This posed challenges for providing a genuine understanding the episodic volunteering PAR initiatives, and also challenged the notion of what constitutes an ‘intervention’ or ‘action’ in PAR. It is recommended that researchers working with episodic volunteers using PAR should (1) adopt a first-person approach by inquiring into the researcher’s own experience to enable depth in theoretical analysis to manage the potentially superficial understandings by short-term participants; and (2) establish safety mechanisms to address the potential for the research to impose artificial project continuity and knowledge retention that will end when the research does. Through these means, we can more effectively use PAR to conduct solution-oriented research about UA.

Keywords: community garden, continuity, first-person research, higher education, knowledge retention, project management, transience, university

Procedia PDF Downloads 248
191 Functions and Challenges of New County-Based Regional Plan in Taiwan

Authors: Yu-Hsin Tsai

Abstract:

A new, mandated county regional plan system has been initiated since 2010 nationwide in Taiwan, with its role situated in-between the policy-led cross-county regional plan and the blueprint-led city plan. This new regional plan contain both urban and rural areas in one single plan, which provides a more complete planning territory, i.e., city region within the county’s jurisdiction, and to be executed and managed effectively by the county government. However, the full picture of its functions and characteristics seems still not totally clear, compared with other levels of plans; either are planning goals and issues that can be most appropriately dealt with at this spatial scale. In addition, the extent to which the inclusion of sustainability ideal and measures to cope with climate change are unclear. Based on the above issues, this study aims to clarify the roles of county regional plan, to analyze the extent to which the measures cope with sustainability, climate change, and forecasted declining population, and the success factors and issues faced in the planning process. The methodology applied includes literature review, plan quality evaluation, and interview with officials of the central and local governments and urban planners involved for all the 23 counties in Taiwan. The preliminary research results show, first, growth management related policies have been widely implemented and expected to have effective impact, including incorporating resources capacity to determine maximum population for the city region as a whole, developing overall vision of urban growth boundary for all the whole city region, prioritizing infill development, and use of architectural land within urbanized area over rural area to cope with urban growth. Secondly, planning-oriented zoning is adopted in urban areas, while demand-oriented planning permission is applied in the rural areas with designated plans. Then, public participation has been evolved to the next level to oversee all of government’s planning and review processes due to the decreasing trust in the government, and development of public forum on the internet etc. Next, fertile agricultural land is preserved to maintain food self-supplied goal for national security concern. More adoption-based methods than mitigation-based methods have been applied to cope with global climate change. Finally, better land use and transportation planning in terms of avoiding developing rail transit stations and corridor in rural area is promoted. Even though many promising, prompt measures have been adopted, however, challenges exist to surround: first, overall urban density, likely affecting success of UGB, or use of rural agricultural land, has not been incorporated, possibly due to implementation difficulties. Second, land-use related measures to mitigating climate change seem less clear and hence less employed. Smart decline has not drawn enough attention to cope with predicted population decrease in the next decade. Then, some reluctance from county’s government to implement county regional plan can be observed vaguely possibly since limits have be set on further development on agricultural land and sensitive areas. Finally, resolving issue on existing illegal factories on agricultural land remains the most challenging dilemma.

Keywords: city region plan, sustainability, global climate change, growth management

Procedia PDF Downloads 349
190 Production Factor Coefficients Transition through the Lens of State Space Model

Authors: Kanokwan Chancharoenchai

Abstract:

Economic growth can be considered as an important element of countries’ development process. For developing countries, like Thailand, to ensure the continuous growth of the economy, the Thai government usually implements various policies to stimulate economic growth. They may take the form of fiscal, monetary, trade, and other policies. Because of these different aspects, understanding factors relating to economic growth could allow the government to introduce the proper plan for the future economic stimulating scheme. Consequently, this issue has caught interest of not only policymakers but also academics. This study, therefore, investigates explanatory variables for economic growth in Thailand from 2005 to 2017 with a total of 52 quarters. The findings would contribute to the field of economic growth and become helpful information to policymakers. The investigation is estimated throughout the production function with non-linear Cobb-Douglas equation. The rate of growth is indicated by the change of GDP in the natural logarithmic form. The relevant factors included in the estimation cover three traditional means of production and implicit effects, such as human capital, international activity and technological transfer from developed countries. Besides, this investigation takes the internal and external instabilities into account as proxied by the unobserved inflation estimation and the real effective exchange rate (REER) of the Thai baht, respectively. The unobserved inflation series are obtained from the AR(1)-ARCH(1) model, while the unobserved REER of Thai baht is gathered from naive OLS-GARCH(1,1) model. According to empirical results, the AR(|2|) equation which includes seven significant variables, namely capital stock, labor, the imports of capital goods, trade openness, the REER of Thai baht uncertainty, one previous GDP, and the world financial crisis in 2009 dummy, presents the most suitable model. The autoregressive model is assumed constant estimator that would somehow cause the unbias. However, this is not the case of the recursive coefficient model from the state space model that allows the transition of coefficients. With the powerful state space model, it provides the productivity or effect of each significant factor more in detail. The state coefficients are estimated based on the AR(|2|) with the exception of the one previous GDP and the 2009 world financial crisis dummy. The findings shed the light that those factors seem to be stable through time since the occurrence of the world financial crisis together with the political situation in Thailand. These two events could lower the confidence in the Thai economy. Moreover, state coefficients highlight the sluggish rate of machinery replacement and quite low technology of capital goods imported from abroad. The Thai government should apply proactive policies via taxation and specific credit policy to improve technological advancement, for instance. Another interesting evidence is the issue of trade openness which shows the negative transition effect along the sample period. This could be explained by the loss of price competitiveness to imported goods, especially under the widespread implementation of free trade agreement. The Thai government should carefully handle with regulations and the investment incentive policy by focusing on strengthening small and medium enterprises.

Keywords: autoregressive model, economic growth, state space model, Thailand

Procedia PDF Downloads 147
189 Development and Evaluation of a Cognitive Behavioural Therapy Based Smartphone App for Low Moods and Anxiety

Authors: David Bakker, Nikki Rickard

Abstract:

Smartphone apps hold immense potential as mental health and wellbeing tools. Support can be made easily accessible and can be used in real-time while users are experiencing distress. Furthermore, data can be collected to enable machine learning and automated tailoring of support to users. While many apps have been developed for mental health purposes, few have adhered to evidence-based recommendations and even fewer have pursued experimental validation. This paper details the development and experimental evaluation of an app, MoodMission, that aims to provide support for low moods and anxiety, help prevent clinical depression and anxiety disorders, and serve as an adjunct to professional clinical supports. MoodMission was designed to deliver cognitive behavioural therapy for specifically reported problems in real-time, momentary interactions. Users report their low moods or anxious feelings to the app along with a subjective units of distress scale (SUDS) rating. MoodMission then provides a choice of 5-10 short, evidence-based mental health strategies called Missions. Users choose a Mission, complete it, and report their distress again. Automated tailoring, gamification, and in-built data collection for analysis of effectiveness was also included in the app’s design. The development process involved construction of an evidence-based behavioural plan, designing of the app, building and testing procedures, feedback-informed changes, and a public launch. A randomized controlled trial (RCT) was conducted comparing MoodMission to two other apps and a waitlist control condition. Participants completed measures of anxiety, depression, well-being, emotional self-awareness, coping self-efficacy and mental health literacy at the start of their app use and 30 days later. At the time of submission (November 2016) over 300 participants have participated in the RCT. Data analysis will begin in January 2017. At the time of this submission, MoodMission has over 4000 users. A repeated-measures ANOVA of 1390 completed Missions reveals that SUDS (0-10) ratings were significantly reduced between pre-Mission ratings (M=6.20, SD=2.39) and post-Mission ratings (M=4.93, SD=2.25), F(1,1389)=585.86, p < .001, np2=.30. This effect was consistent across both low moods and anxiety. Preliminary analyses of the data from the outcome measures surveys reveal improvements across mental health and wellbeing measures as a result of using the app over 30 days. This includes a significant increase in coping self-efficacy, F(1,22)=5.91, p=.024, np2=.21. Complete results from the RCT in which MoodMission was evaluated will be presented. Results will also be presented from the continuous outcome data being recorded by MoodMission. MoodMission was successfully developed and launched, and preliminary analysis suggest that it is an effective mental health and wellbeing tool. In addition to the clinical applications of MoodMission, the app holds promise as a research tool to conduct component analysis of psychological therapies and overcome restraints of laboratory based studies. The support provided by the app is discrete, tailored, evidence-based, and transcends barriers of stigma, geographic isolation, financial limitations, and low health literacy.

Keywords: anxiety, app, CBT, cognitive behavioural therapy, depression, eHealth, mission, mobile, mood, MoodMission

Procedia PDF Downloads 271
188 From Intuitive to Constructive Audit Risk Assessment: A Complementary Approach to CAATTs Adoption

Authors: Alon Cohen, Jeffrey Kantor, Shalom Levy

Abstract:

The use of the audit risk model in auditing has faced limitations and difficulties, leading auditors to rely on a conceptual level of its application. The qualitative approach to assessing risks has resulted in different risk assessments, affecting the quality of audits and decision-making on the adoption of CAATTs. This study aims to investigate risk factors impacting the implementation of the audit risk model and propose a complementary risk-based instrument (KRIs) to form substance risk judgments and mitigate against heightened risk of material misstatement (RMM). The study addresses the question of how risk factors impact the implementation of the audit risk model, improve risk judgments, and aid in the adoption of CAATTs. The study uses a three-stage scale development procedure involving a pretest and subsequent study with two independent samples. The pretest involves an exploratory factor analysis, while the subsequent study employs confirmatory factor analysis for construct validation. Additionally, the authors test the ability of the KRIs to predict audit efforts needed to mitigate against heightened RMM. Data was collected through two independent samples involving 767 participants. The collected data was analyzed using exploratory factor analysis and confirmatory factor analysis to assess scale validity and construct validation. The suggested KRIs, comprising two risk components and seventeen risk items, are found to have high predictive power in determining audit efforts needed to reduce RMM. The study validates the suggested KRIs as an effective instrument for risk assessment and decision-making on the adoption of CAATTs. This study contributes to the existing literature by implementing a holistic approach to risk assessment and providing a quantitative expression of assessed risks. It bridges the gap between intuitive risk evaluation and the theoretical domain, clarifying the mechanism of risk assessments. It also helps improve the uniformity and quality of risk assessments, aiding audit standard-setters in issuing updated guidelines on CAATT adoption. A few limitations and recommendations for future research should be mentioned. First, the process of developing the scale was conducted in the Israeli auditing market, which follows the International Standards on Auditing (ISAs). Although ISAs are adopted in European countries, for greater generalization, future studies could focus on other countries that adopt additional or local auditing standards. Second, this study revealed risk factors that have a material impact on the assessed risk. However, there could be additional risk factors that influence the assessment of the RMM. Therefore, future research could investigate other risk segments, such as operational and financial risks, to bring a broader generalizability to our results. Third, although the sample size in this study fits acceptable scale development procedures and enables drawing conclusions from the body of research, future research may develop standardized measures based on larger samples to reduce the generation of equivocal results and suggest an extended risk model.

Keywords: audit risk model, audit efforts, CAATTs adoption, key risk indicators, sustainability

Procedia PDF Downloads 76
187 3D Structuring of Thin Film Solid State Batteries for High Power Demanding Applications

Authors: Alfonso Sepulveda, Brecht Put, Nouha Labyedh, Philippe M. Vereecken

Abstract:

High energy and power density are the main requirements of today’s high demanding applications in consumer electronics. Lithium ion batteries (LIB) have the highest energy density of all known systems and are thus the best choice for rechargeable micro-batteries. Liquid electrolyte LIBs present limitations in safety, size and design, thus thin film all-solid state batteries are predominantly considered to overcome these restrictions in small devices. Although planar all-solid state thin film LIBs are at present commercially available they have low capacity (<1mAh/cm2) which limits their application scenario. By using micro-or nanostructured surfaces (i.e. 3D batteries) and appropriate conformal coating technology (i.e. electrochemical deposition, ALD) the capacity can be increased while still keeping a high rate performance. The main challenges in the introduction of solid-state LIBs are low ionic conductance and limited cycle life time due to mechanical stress and shearing interfaces. Novel materials and innovative nanostructures have to be explored in order to overcome these limitations. Thin film 3D compatible materials need to provide with the necessary requirements for functional and viable thin-film stacks. Thin film electrodes offer shorter Li-diffusion paths and high gravimetric and volumetric energy densities which allow them to be used at ultra-fast charging rates while keeping their complete capacities. Thin film electrolytes with intrinsically high ion conductivity (~10-3 S.cm) do exist, but are not electrochemically stable. On the other hand, electronically insulating electrolytes with a large electrochemical window and good chemical stability are known, but typically have intrinsically low ionic conductivities (<10-6 S cm). In addition, there is the need for conformal deposition techniques which can offer pinhole-free coverage over large surface areas with large aspect ratio features for electrode, electrolyte and buffer layers. To tackle the scaling of electrodes and the conformal deposition requirements on future 3D batteries we study LiMn2O4 (LMO) and Li4Ti5O12 (LTO). These materials are among the most interesting electrode candidates for thin film batteries offering low cost, low toxicity, high voltage and high capacity. LMO and LTO are considered 3D compatible materials since they can be prepared through conformal deposition techniques. Here, we show the scaling effects on rate performance and cycle stability of thin film cathode layers of LMO created by RF-sputtering. Planar LMO thin films below 100 nm have been electrochemically characterized. The thinnest films show the highest volumetric capacity and the best cycling stability. The increased stability of the films below 50 nm allows cycling in both the 4 and 3V potential region, resulting in a high volumetric capacity of 1.2Ah/cm3. Also, the creation of LTO anode layers through a post-lithiation process of TiO2 is demonstrated here. Planar LTO thin films below 100 nm have been electrochemically characterized. A 70 nm film retains 85% of its original capacity after 100 (dis)charging cycles at 10C. These layers can be implemented into a high aspect ratio structures. IMEC develops high aspect Si pillars arrays which is the base for the advance of 3D thin film all-solid state batteries of future technologies.

Keywords: Li-ion rechargeable batteries, thin film, nanostructures, rate performance, 3D batteries, all-solid state

Procedia PDF Downloads 337
186 Delicate Balance between Cardiac Stress and Protection: Role of Mitochondrial Proteins

Authors: Zuzana Tatarkova, Ivana Pilchova, Michal Cibulka, Martin Kolisek, Peter Racay, Peter Kaplan

Abstract:

Introduction: Normal functioning of mitochondria is crucial for cardiac performance. Mitochondria undergo mitophagy and biogenesis, and mitochondrial proteins are subject to extensive post-translational modifications. The state of mitochondrial homeostasis reflects overall cellular fitness and longevity. Perturbed mitochondria produce less ATP, release greater amounts of reactive molecules, and are more prone to apoptosis. Therefore mitochondrial turnover is an integral aspect of quality control in which dysfunctional mitochondria are selectively eliminated through mitophagy. Currently, the progressive deterioration of physiological functions is seen as accumulation of modified/damaged proteins with limiting regenerative ability and disturbance of such affected protein-protein communication throughout aging in myocardial cells. Methodologies: For our study was used immunohistochemistry, biochemical methods: spectrophotometry, western blotting, immunodetection as well as more sophisticated 2D electrophoresis and mass spectrometry for evaluation protein-protein interactions and specific post-translational modification. Results and Discussion: Mitochondrial stress response to reactive species was evaluated as electron transport chain (ETC) complexes, redox-active molecules, and their possible communication. Protein-protein interactions revealed a strong linkage between age and ETC protein subunits. Redox state was strongly affected in senescent mitochondria with shift in favor of more pro-oxidizing condition within cardiomyocytes. Acute myocardial ischemia and ischemia-reperfusion (IR) injury affected ETC complexes I, II and IV with no change in complex III. Ischemia induced decrease in total antioxidant capacity, MnSOD, GSH and catalase activity with recovery in some extent during reperfusion. While MnSOD protein content was higher in IR group, activity returned to 95% of control. Nitric oxide is one of the biological molecules that can out compete MnSOD for superoxide and produce peroxynitrite. This process is faster than dismutation and led to the 10-fold higher production of nitrotyrosine after IR injury in adult with higher protection in senescent ones. 2D protein profiling revealed 140 mitochondrial proteins, 12 of them with significant changes after IR injury and 36 individual nitrotyrosine-modified proteins further identified by mass spectrometry. Linking these two groups, 5 proteins were altered after IR as well as nitrated, but only one showed massive nitration per lowering content of protein after IR injury in adult. Conclusions: Senescent cells have greater proportion of protein content, which might be modulated by several post-translational modifications. If these protein modifications are connected to functional consequences and protein-protein interactions are revealed, link may lead to the solution. Assume all together, dysfunctional proteostasis can play a causative role and restoration of protein homeostasis machinery is protective against aging and possibly age-related disorders. This work was supported by the project VEGA 1/0018/18 and by project 'Competence Center for Research and Development in the field of Diagnostics and Therapy of Oncological diseases', ITMS: 26220220153, co-financed from EU sources.

Keywords: aging heart, mitochondria, proteomics, redox state

Procedia PDF Downloads 166
185 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization

Authors: Soheila Sadeghi

Abstract:

Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.

Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction

Procedia PDF Downloads 55