Search results for: wheat yield prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4870

Search results for: wheat yield prediction

3190 Enhanced CNN for Rice Leaf Disease Classification in Mobile Applications

Authors: Kayne Uriel K. Rodrigo, Jerriane Hillary Heart S. Marcial, Samuel C. Brillo

Abstract:

Rice leaf diseases significantly impact yield production in rice-dependent countries, affecting their agricultural sectors. As part of precision agriculture, early and accurate detection of these diseases is crucial for effective mitigation practices and minimizing crop losses. Hence, this study proposes an enhancement to the Convolutional Neural Network (CNN), a widely-used method for Rice Leaf Disease Image Classification, by incorporating MobileViTV2—a recently advanced architecture that combines CNN and Vision Transformer models while maintaining fewer parameters, making it suitable for broader deployment on edge devices. Our methodology utilizes a publicly available rice disease image dataset from Kaggle, which was validated by a university structural biologist following the guidelines provided by the Philippine Rice Institute (PhilRice). Modifications to the dataset include renaming certain disease categories and augmenting the rice leaf image data through rotation, scaling, and flipping. The enhanced dataset was then used to train the MobileViTV2 model using the Timm library. The results of our approach are as follows: the model achieved notable performance, with 98% accuracy in both training and validation, 6% training and validation loss, and a Receiver Operating Characteristic (ROC) curve ranging from 95% to 100% for each label. Additionally, the F1 score was 97%. These metrics demonstrate a significant improvement compared to a conventional CNN-based approach, which, in a previous 2022 study, achieved only 78% accuracy after using 5 convolutional layers and 2 dense layers. Thus, it can be concluded that MobileViTV2, with its fewer parameters, outperforms traditional CNN models, particularly when applied to Rice Leaf Disease Image Identification. For future work, we recommend extending this model to include datasets validated by international rice experts and broadening the scope to accommodate biotic factors such as rice pest classification, as well as abiotic stressors such as climate, soil quality, and geographic information, which could improve the accuracy of disease prediction.

Keywords: convolutional neural network, MobileViTV2, rice leaf disease, precision agriculture, image classification, vision transformer

Procedia PDF Downloads 21
3189 Designing Web Application to Simulate Agricultural Management for Smart Farmer: Land Development Department’s Integrated Management Farm

Authors: Panasbodee Thachaopas, Duangdorm Gamnerdsap, Waraporn Inthip, Arissara Pungpa

Abstract:

LDD’s IM Farm or Land Development Department’s Integrated Management Farm is the agricultural simulation application developed by Land Development Department relies on actual data in simulation game to grow 12 cash crops which are rice, corn, cassava, sugarcane, soybean, rubber tree, oil palm, pineapple, longan, rambutan, durian, and mangosteen. Launching in simulation game, players could select preferable areas for cropping from base map or Orthophoto map scale 1:4,000. Farm management is simulated from field preparation to harvesting. The system uses soil group, and present land use database to facilitate player to know whether what kind of crop is suitable to grow in each soil groups and integrate LDD’s data with other agencies which are soil types, soil properties, soil problems, climate, cultivation cost, fertilizer use, fertilizer price, socio-economic data, plant diseases, weed, pest, interest rate for taking on loan from Bank for Agriculture and Agricultural Cooperatives (BAAC), labor cost, market prices. These mentioned data affect the cost and yield differently to each crop. After completing, the player will know the yield, income and expense, profit/loss. The player could change to other crops that are more suitable to soil groups for optimal yields and profits.

Keywords: agricultural simulation, smart farmer, web application, factors of agricultural production

Procedia PDF Downloads 197
3188 Effect of Entomopathogenic Fungi on the Food Consumption of Acrididae Species

Authors: S. Kumar, R. Sultana

Abstract:

This study was conducted to evaluate the effect of Aspergillus species on acridid populations which are major agricultural pests of rice, sugarcane, wheat, maize and fodder crops in Pakistan. Three and replicates i.e. Aspergillus flavus, A. fumigatus and A. niger, excluding the control, were held under laboratory conditions. It was observed that consumption faecal production of acridids was significantly reduced after the pathogenic application of Aspergillus. In the control replicate, the mortality ratio for stage (N4-N6) was maximum on day 2nd i.e. [F10.7 = 18.33, P < 0.05] followed by [F4.20 = 07.85, P < 0.05] and [F3.77 = 06.11, P < 0.05] on 4th and 3rd day, respectively. Similarly, it was a minimum i.e. [F0.48 = 84.65, P < 0.05] on the 1st day. It was also noted that faecal production of Acridid nymphs was not significantly affected when treated with conidial concentration in H2O formulation; however, it was significantly reduced after the contamination with conidial concentration in oil. The high morality of acridids after contamination of Aspergillus supports their use as bio-control agent for reducing pest population. The present study recommends that exploration and screening must be conducted to provide additional pathogens for evaluation as potential biological control against grasshoppers and locusts.

Keywords: acridid, agriculture, formulation, grasshoppers

Procedia PDF Downloads 256
3187 Experimental Study on Two-Step Pyrolysis of Automotive Shredder Residue

Authors: Letizia Marchetti, Federica Annunzi, Federico Fiorini, Cristiano Nicolella

Abstract:

Automotive shredder residue (ASR) is a mixture of waste that makes up 20-25% of end-of-life vehicles. For many years, ASR was commonly disposed of in landfills or incinerated, causing serious environmental problems. Nowadays, thermochemical treatments are a promising alternative, although the heterogeneity of ASR still poses some challenges. One of the emerging thermochemical treatments for ASR is pyrolysis, which promotes the decomposition of long polymeric chains by providing heat in the absence of an oxidizing agent. In this way, pyrolysis promotes the conversion of ASR into solid, liquid, and gaseous phases. This work aims to improve the performance of a two-step pyrolysis process. After the characterization of the analysed ASR, the focus is on determining the effects of residence time on product yields and gas composition. A batch experimental setup that reproduces the entire process was used. The setup consists of three sections: the pyrolysis section (made of two reactors), the separation section, and the analysis section. Two different residence times were investigated to find suitable conditions for the first sample of ASR. These first tests showed that the products obtained were more sensitive to residence time in the second reactor. Indeed, slightly increasing residence time in the second reactor managed to raise the yield of gas and carbon residue and decrease the yield of liquid fraction. Then, to test the versatility of the setup, the same conditions were applied to a different sample of ASR coming from a different chemical plant. The comparison between the two ASR samples shows that similar product yields and compositions are obtained using the same setup.

Keywords: automotive shredder residue, experimental tests, heterogeneity, product yields, two-step pyrolysis

Procedia PDF Downloads 124
3186 Design and Evaluation of a Fully-Automated Fluidized Bed Dryer for Complete Drying of Paddy

Authors: R. J. Pontawe, R. C. Martinez, N. T. Asuncion, R. V. Villacorte

Abstract:

Drying of high moisture paddy remains a major problem in the Philippines, especially during inclement weather condition. To alleviate the problem, mechanical dryers were used like a flat bed and recirculating batch-type dryers. However, drying to 14% (wet basis) final moisture content is long which takes 10-12 hours and tedious which is not the ideal for handling high moisture paddy. Fully-automated pilot-scale fluidized bed drying system with 500 kilograms per hour capacity was evaluated using a high moisture paddy. The developed fluidized bed dryer was evaluated using four drying temperatures and two variations in fluidization time at a constant airflow, static pressure and tempering period. Complete drying of paddy with ≥28% (w.b.) initial MC was attained after 2 passes of fluidized-bed drying at 2 minutes exposure to 70 °C drying temperature and 4.9 m/s superficial air velocity, followed by 60 min ambient air tempering period (30 min without ventilation and 30 min with air ventilation) for a total drying time of 2.07 h. Around 82% from normal mechanical drying time was saved at 70 °C drying temperature. The drying cost was calculated to be P0.63 per kilogram of wet paddy. Specific heat energy consumption was only 2.84 MJ/kg of water removed. The Head Rice Yield recovery of the dried paddy passed the Philippine Agricultural Engineering Standards. Sensory evaluation showed that the color and taste of the samples dried in the fluidized bed dryer were comparable to air dried paddy. The optimum drying parameters of using fluidized bed dryer is 70 oC drying temperature at 2 min fluidization time, 4.9 m/s superficial air velocity, 10.16 cm grain depth and 60 min ambient air tempering period.

Keywords: drying, fluidized bed dryer, head rice yield, paddy

Procedia PDF Downloads 323
3185 Soil Wind Erosion, Nutrients, and Crop Yield Response to Conservation Tillage in North China: A Field Study in a Semi-Arid and Wind Erosion Region after 9 Years

Authors: Fahui Jiang, Xinwei Xue, Liyan Zhang, Yanyan Zuo, Hao Zhang, Wei Zheng, Limei Bian, Lingling Hu, Chunlei Hao, Jianghong Du, Yanhua Ci, Ruibao Cheng, Ciren Dawa, Mithun Biswas, Mahbub Ul Islam, Fansheng Meng, Xinhua Peng

Abstract:

Context: Soil erosion is a global issue that poses a significant threat to agricultural sustainability, particular in northern of China, which experiences the most severe wind erosion worldwide. Conservation tillage is vital in arid regions for preserving soil, enhancing water retention, and sustaining agricultural productivity in the face of limited rainfall. However, the long-term impacts of conservation tillage in semi-arid regions, especially its effects on soil health, wind erosion, and crop productivity, are poorly understood. Objective: Assess the impacts of conservation tillage on soil hydrothermal properties, wind erosion rates, nutrient dynamics, and crop yield, as well as elucidating the underlying mechanisms driving these impacts. Methods: A 9-year in-situ study was conducted in Chifeng, Inner Mongolia Province, comparing conventional rotary tillage (CK) with two conservation tillage methods: no-tillage with straw mulching (CT-1) and no-tillage with standing straw (CT-2). Results: Soil bulk density increased significantly under CT-1 and CT-2 in the topsoil layer (0–20 cm) compared with CK. Soil moisture content exhibited a significant increase pattern under CT-1 and CT-2, while soil temperature decreased under CT-1 but increased under CT-2, relative to CK. These variations in soil hydrothermal properties were more pronounced during the early (critical) crop growth stages and higher temperature conditions (afternoon). Soil loss due to wind erosion, accumulated from a height of 0–50 cm on the land surface, was reduced by 31.3 % and 25.5 % under CT-1 and by 51.5 % and 38.2 % under CT-2 in 2021 and 2022, respectively, compared to CK. Furthermore, the proportion of soil finer particles (clay and silt) increased under CT due to reduced wind erosion. Soil organic carbon significantly increased throughout the soil profile (0–60 cm), particularly in the deeper layers (20–40 cm and 40–60 cm), compared to the surface layer (0–20 cm), with corresponding increases of +57.0 % and +0.18 %, +66.2 % and +80.3 %, and +27.1 % and +14.2 % under CT-1 and CT-2, respectively, relative to CK in 2021. The concentrations of soil nutrients such as total nitrogen, available nitrogen, and available phosphorus and potassium, consistently increased under CT-1 and CT-2 compared to CK, with notable enhancements observed in the topsoil layer (0–20 cm) before seedling time, albeit declining after crop harvest. Generally, CT treatments significantly increased dry matter accumulation (+4.8 % to +30.8 %) and grain yield (+2.22 % to +0.44 %) of maize compared to CK in the semi-arid region over the 9-year study period, particularly notable in dry years and with long-term application. Conclusions and implications: Conservation tillage in semi-arid regions enhanced soil properties, reduced soil erosion, and increased soil nutrient dynamics and crop yield, promising sustainable agricultural practices with environmental benefits. Furthermore, our findings suggest that no-tillage with straw mulching is more suitable for dry and wind erosion sensitive regions.

Keywords: no tillage, conventional tillage, soil water, soil temperature, soil physics

Procedia PDF Downloads 4
3184 Modeling of in 738 LC Alloy Mechanical Properties Based on Microstructural Evolution Simulations for Different Heat Treatment Conditions

Authors: M. Tarik Boyraz, M. Bilge Imer

Abstract:

Conventionally cast nickel-based super alloys, such as commercial alloy IN 738 LC, are widely used in manufacturing of industrial gas turbine blades. With carefully designed microstructure and the existence of alloying elements, the blades show improved mechanical properties at high operating temperatures and corrosive environment. The aim of this work is to model and estimate these mechanical properties of IN 738 LC alloy solely based on simulations for projected heat treatment conditions or service conditions. The microstructure (size, fraction and frequency of gamma prime- γ′ and carbide phases in gamma- γ matrix, and grain size) of IN 738 LC needs to be optimized to improve the high temperature mechanical properties by heat treatment process. This process can be performed at different soaking temperature, time and cooling rates. In this work, micro-structural evolution studies were performed experimentally at various heat treatment process conditions, and these findings were used as input for further simulation studies. The operation time, soaking temperature and cooling rate provided by experimental heat treatment procedures were used as micro-structural simulation input. The results of this simulation were compared with the size, fraction and frequency of γ′ and carbide phases, and grain size provided by SEM (EDS module and mapping), EPMA (WDS module) and optical microscope for before and after heat treatment. After iterative comparison of experimental findings and simulations, an offset was determined to fit the real time and theoretical findings. Thereby, it was possible to estimate the final micro-structure without any necessity to carry out the heat treatment experiment. The output of this microstructure simulation based on heat treatment was used as input to estimate yield stress and creep properties. Yield stress was calculated mainly as a function of precipitation, solid solution and grain boundary strengthening contributors in microstructure. Creep rate was calculated as a function of stress, temperature and microstructural factors such as dislocation density, precipitate size, inter-particle spacing of precipitates. The estimated yield stress values were compared with the corresponding experimental hardness and tensile test values. The ability to determine best heat treatment conditions that achieve the desired microstructural and mechanical properties were developed for IN 738 LC based completely on simulations.

Keywords: heat treatment, IN738LC, simulations, super-alloys

Procedia PDF Downloads 247
3183 Numerical Erosion Investigation of Standalone Screen (Wire-Wrapped) Due to the Impact of Sand Particles Entrained in a Single-Phase Flow (Water Flow)

Authors: Ahmed Alghurabi, Mysara Mohyaldinn, Shiferaw Jufar, Obai Younis, Abdullah Abduljabbar

Abstract:

Erosion modeling equations were typically acquired from regulated experimental trials for solid particles entrained in single-phase or multi-phase flows. Evidently, those equations were later employed to predict the erosion damage caused by the continuous impacts of solid particles entrained in streamflow. It is also well-known that the particle impact angle and velocity do not change drastically in gas-sand flow erosion prediction; hence an accurate prediction of erosion can be projected. On the contrary, high-density fluid flows, such as water flow, through complex geometries, such as sand screens, greatly affect the sand particles’ trajectories/tracks and consequently impact the erosion rate predictions. Particle tracking models and erosion equations are frequently applied simultaneously as a method to improve erosion visualization and estimation. In the present work, computational fluid dynamic (CFD)-based erosion modeling was performed using a commercially available software; ANSYS Fluent. The continuous phase (water flow) behavior was simulated using the realizable K-epsilon model, and the secondary phase (solid particles), having a 5% flow concentration, was tracked with the help of the discrete phase model (DPM). To accomplish a successful erosion modeling, three erosion equations from the literature were utilized and introduced to the ANSYS Fluent software to predict the screen wire-slot velocity surge and estimate the maximum erosion rates on the screen surface. Results of turbulent kinetic energy, turbulence intensity, dissipation rate, the total pressure on the screen, screen wall shear stress, and flow velocity vectors were presented and discussed. Moreover, the particle tracks and path-lines were also demonstrated based on their residence time, velocity magnitude, and flow turbulence. On one hand, results from the utilized erosion equations have shown similarities in screen erosion patterns, locations, and DPM concentrations. On the other hand, the model equations estimated slightly different values of maximum erosion rates of the wire-wrapped screen. This is solely based on the fact that the utilized erosion equations were developed with some assumptions that are controlled by the experimental lab conditions.

Keywords: CFD simulation, erosion rate prediction, material loss due to erosion, water-sand flow

Procedia PDF Downloads 162
3182 Prediction of Damage to Cutting Tools in an Earth Pressure Balance Tunnel Boring Machine EPB TBM: A Case Study L3 Guadalajara Metro Line (Mexico)

Authors: Silvia Arrate, Waldo Salud, Eloy París

Abstract:

The wear of cutting tools is one of the most decisive elements when planning tunneling works, programming the maintenance stops and saving the optimum stock of spare parts during the evolution of the excavation. Being able to predict the behavior of cutting tools can give a very competitive advantage in terms of costs and excavation performance, optimized to the needs of the TBM itself. The incredible evolution of data science in recent years gives the option to implement it at the time of analyzing the key and most critical parameters related to machinery with the purpose of knowing how the cutting head is performing in front of the excavated ground. Taking this as a case study, Metro Line 3 of Guadalajara in Mexico will develop the feasibility of using Specific Energy versus data science applied over parameters of Torque, Penetration, and Contact Force, among others, to predict the behavior and status of cutting tools. The results obtained through both techniques are analyzed and verified in the function of the wear and the field situations observed in the excavation in order to determine its effectiveness regarding its predictive capacity. In conclusion, the possibilities and improvements offered by the application of digital tools and the programming of calculation algorithms for the analysis of wear of cutting head elements compared to purely empirical methods allow early detection of possible damage to cutting tools, which is reflected in optimization of excavation performance and a significant improvement in costs and deadlines.

Keywords: cutting tools, data science, prediction, TBM, wear

Procedia PDF Downloads 46
3181 Climate Change Effects on Agriculture

Authors: Abdellatif Chebboub

Abstract:

Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change’s representative concentration pathway with end-of-century radiative forcing of 8.5 W/m2. The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.

Keywords: climate change, agriculture, weather change, danger of climate change

Procedia PDF Downloads 314
3180 Real Estate Trend Prediction with Artificial Intelligence Techniques

Authors: Sophia Liang Zhou

Abstract:

For investors, businesses, consumers, and governments, an accurate assessment of future housing prices is crucial to critical decisions in resource allocation, policy formation, and investment strategies. Previous studies are contradictory about macroeconomic determinants of housing price and largely focused on one or two areas using point prediction. This study aims to develop data-driven models to accurately predict future housing market trends in different markets. This work studied five different metropolitan areas representing different market trends and compared three-time lagging situations: no lag, 6-month lag, and 12-month lag. Linear regression (LR), random forest (RF), and artificial neural network (ANN) were employed to model the real estate price using datasets with S&P/Case-Shiller home price index and 12 demographic and macroeconomic features, such as gross domestic product (GDP), resident population, personal income, etc. in five metropolitan areas: Boston, Dallas, New York, Chicago, and San Francisco. The data from March 2005 to December 2018 were collected from the Federal Reserve Bank, FBI, and Freddie Mac. In the original data, some factors are monthly, some quarterly, and some yearly. Thus, two methods to compensate missing values, backfill or interpolation, were compared. The models were evaluated by accuracy, mean absolute error, and root mean square error. The LR and ANN models outperformed the RF model due to RF’s inherent limitations. Both ANN and LR methods generated predictive models with high accuracy ( > 95%). It was found that personal income, GDP, population, and measures of debt consistently appeared as the most important factors. It also showed that technique to compensate missing values in the dataset and implementation of time lag can have a significant influence on the model performance and require further investigation. The best performing models varied for each area, but the backfilled 12-month lag LR models and the interpolated no lag ANN models showed the best stable performance overall, with accuracies > 95% for each city. This study reveals the influence of input variables in different markets. It also provides evidence to support future studies to identify the optimal time lag and data imputing methods for establishing accurate predictive models.

Keywords: linear regression, random forest, artificial neural network, real estate price prediction

Procedia PDF Downloads 102
3179 Role of HLA Typing in Celiac Disease

Authors: Meriche Hacene

Abstract:

Introduction: Celiac disease (CD) is a chronic immune-mediated enteropathy triggered by gluten found in wheat or oats or rye. Celiac disease is associated with the HLA-DQ2 and HLA-DQ8 susceptibility alleles. This association with the HLA DQ2/DQ8 molecules confirmed the responsibility of genetic factors that intervene in the triggering of the autoimmune process of this condition. Objective: To evaluate the results of HLA DQ2 and HLA DQ8 typing of 40 patients suspected of having CD by PCR-SSP (Polymerase Chain Reaction Sequence Specific Primers). Material and method : 40 patients suspected of celiac disease with IgA transglutaminase serology (-) and duodenal biopsy (+). HLADR/DQ PCR-SSP (fluogen-innotrain) typing was carried out. Results : The average age of adults was 40 years, children: 4 years, the sex ratio was 1M/3F. In our patients the HLA DQ2 allele is found with a frequency of 75%, the DQ8 with a frequency of 25%, 17.5% were HLA-DQ2 homozygous and 15% were HLADQ2/HLADQ8. In our series, HLADQ2, DQ8 are found in almost all patients with a frequency of 95%. 30% of patients in our study had associated positivity of HLA-DRB3, DRB4 or DRB5 alleles. Conclusion : A high prevalence of positivity of HLADQ2 alleles at the expense of HLA DQ8 was found, which is consistent with literature data. These molecules constitute an additional marker for screening and diagnosis of CD.

Keywords: HLA typing, coeliac disease, HLA DQ 2, HLA DQ8

Procedia PDF Downloads 55
3178 Analysis Influence Variation Frequency on Characterization of Nano-Particles in Preteatment Bioetanol Oil Palm Stem (Elaeis guineensis JACQ) Use Sonication Method with Alkaline Peroxide Activators on Improvement of Celullose

Authors: Luristya Nur Mahfut, Nada Mawarda Rilek, Ameiga Cautsarina Putri, Mujaroh Khotimah

Abstract:

The use of bioetanol from lignocellulosic material has begone to be developed. In Indonesia the most abundant lignocellulosic material is stem of palm which contain 32.22% of cellulose. Indonesia produces approximatelly 300.375.000 tons of stem of palm each year. To produce bioetanol from lignocellulosic material, the first process is pretreatment. But, until now the method of lignocellulosic pretretament is uneffective. This is related to the particle size and the method of pretreatment of less than optimal so that led to an overhaul of the lignin insufficient, consequently increased levels of cellulose was not significant resulting in low yield of bioetanol. To solve the problem, this research was implemented by using the process of pretreatment method ultasonifikasi in order to produce higher pulp with nano-sized particles that will obtain higher of yield ethanol from stem of palm. Research methods used in this research is the RAK that is composed of one factor which is the frequency ultrasonic waves with three varians, they are 30 kHz, 40 kHz, 50 kHz, and use constant variable is concentration of NaOH. The analysis conducted in this research is the influence of the frequency of the wave to increase levels of cellulose and change size on the scale of nanometers on pretreatment process by using the PSA methods (Particle Size Analyzer), and a Cheason. For the analysis of the results, data, and best treatment using ANOVA and test BNT with confidence interval 5%. The best treatment was obtained by combination X3 (frequency of sonication 50 kHz) and lignin (19,6%) cellulose (59,49%) and hemicellulose (11,8%) with particle size 385,2nm (18,8%).

Keywords: bioethanol, pretreatment, stem of palm, cellulosa

Procedia PDF Downloads 326
3177 High Titer Cellulosic Ethanol Production Achieved by Fed-Batch Prehydrolysis Simultaneous Enzymatic Saccharification and Fermentation of Sulfite Pretreated Softwood

Authors: Chengyu Dong, Shao-Yuan Leu

Abstract:

Cellulosic ethanol production from lignocellulosic biomass can reduce our reliance on fossil fuel, mitigate climate change, and stimulate rural economic development. The relative low ethanol production (60 g/L) limits the economic viable of lignocellulose-based biorefinery. The ethanol production can be increased up to 80 g/L by removing nearly all the non-cellulosic materials, while the capital of the pretreatment process increased significantly. In this study, a fed-batch prehydrolysis simultaneously saccharification and fermentation process (PSSF) was designed to converse the sulfite pretreated softwood (~30% residual lignin) to high concentrations of ethanol (80 g/L). The liquefaction time of hydrolysis process was shortened down to 24 h by employing the fed-batch strategy. Washing out the spent liquor with water could eliminate the inhibition of the pretreatment spent liquor. However, the ethanol yield of lignocellulose was reduced as the fermentable sugars were also lost during the process. Fed-batch prehydrolyzing the while slurry (i.e. liquid plus solid fraction) pretreated softwood for 24 h followed by simultaneously saccharification and fermentation process at 28 °C can generate 80 g/L ethanol production. Fed-batch strategy is very effectively to eliminate the “solid effect” of the high gravity saccharification, so concentrating the cellulose to nearly 90% by the pretreatment process is not a necessary step to get high ethanol production. Detoxification of the pretreatment spent liquor caused the loss of sugar and reduced the ethanol yield consequently. The tolerance of yeast to inhibitors was better at 28 °C, therefore, reducing the temperature of the following fermentation process is a simple and valid method to produce high ethanol production.

Keywords: cellulosic ethanol, sulfite pretreatment, Fed batch PSSF, temperature

Procedia PDF Downloads 366
3176 Effects of Nut Quality and Yield by Raising Poultry in Chestnut Tree Plantation

Authors: Yunmi Park, Mahn-Jo Kim

Abstract:

The purpose of this research is to find out the effect of raising poultry in environment-friendly producing area to fruit quality and crop within chestnut tree yield. This study was conducted on chestnut tree cultivation sites raising poultry at intervals of five to ten days for three years in the mountainous area which was located in the middle corner of Chungcheongbuk-do province, Korea. The quality of chestnut fruit and the control effects of harmful insects have been investigated between the sites raising poultry and control sites for three years. As a result, the harvest yielded were two to five kilograms higher in the chestnut tree cultivation sites raising poultry compared with the control site without poultry. Also, for the purposes of determining the price when selling, the ratio of the biggest fruit is higher by 3% to 14% in the chestnut tree cultivation sites raising poultry. In order to investigate the effects of pest control through raising poultry, the ratio of harmful insect species to treatment sites was relatively low compared to control site. The appreciable result is that the control effect of larvae of the chestnut leaf-cut weevil was higher in the position where raising the poultry of 4 to 5 weeks compared to the position where raising the poultry of 12 weeks. This study found that the spread of poultry in the cultivation of chestnut trees increased the fruit quality by improving the size of fruits and lowering the dosage of harmful insect, chestnut leaf-cut weevil. Also, the eco-friendly chicken produced by these mountainous regions is expected to contribute to enhancing the incomes of the farmers by differentiating themselves from existing products.

Keywords: chestnut tree, environment-friendly, fruit quality, raising poultry

Procedia PDF Downloads 285
3175 Estimation of Constant Coefficients of Bourgoyne and Young Drilling Rate Model for Drill Bit Wear Prediction

Authors: Ahmed Z. Mazen, Nejat Rahmanian, Iqbal Mujtaba, Ali Hassanpour

Abstract:

In oil and gas well drilling, the drill bit is an important part of the Bottom Hole Assembly (BHA), which is installed and designed to drill and produce a hole by several mechanisms. The efficiency of the bit depends on many drilling parameters such as weight on bit, rotary speed, and mud properties. When the bit is pulled out of the hole, the evaluation of the bit damage must be recorded very carefully to guide engineers in order to select the bits for further planned wells. Having a worn bit for hole drilling may cause severe damage to bit leading to cutter or cone losses in the bottom of hole, where a fishing job will have to take place, and all of these will increase the operating cost. The main factor to reduce the cost of drilling operation is to maximize the rate of penetration by analyzing real-time data to predict the drill bit wear while drilling. There are numerous models in the literature for prediction of the rate of penetration based on drilling parameters, mostly based on empirical approaches. One of the most commonly used approaches is Bourgoyne and Young model, where the rate of penetration can be estimated by the drilling parameters as well as a wear index using an empirical correlation, provided all the constants and coefficients are accurately determined. This paper introduces a new methodology to estimate the eight coefficients for Bourgoyne and Young model using the gPROMS parameters estimation GPE (Version 4.2.0). Real data collected form similar formations (12 ¼’ sections) in two different fields in Libya are used to estimate the coefficients. The estimated coefficients are then used in the equations and applied to nearby wells in the same field to predict the bit wear.

Keywords: Bourgoyne and Young model, bit wear, gPROMS, rate of penetration

Procedia PDF Downloads 152
3174 Hydrodynamics Study on Planing Hull with and without Step Using Numerical Solution

Authors: Koe Han Beng, Khoo Boo Cheong

Abstract:

The rising interest of stepped hull design has been led by the demand of more efficient high-speed boat. At the same time, the need of accurate prediction method for stepped planing hull is getting more important. By understanding the flow at high Froude number is the key in designing a practical step hull, the study surrounding stepped hull has been done mainly in the towing tank which is time-consuming and costly for initial design phase. Here the feasibility of predicting hydrodynamics of high-speed planing hull both with and without step using computational fluid dynamics (CFD) with the volume of fluid (VOF) methodology is studied in this work. First the flow around the prismatic body is analyzed, the force generated and its center of pressure are compared with available experimental and empirical data from the literature. The wake behind the transom on the keel line as well as the quarter beam buttock line are then compared with the available data, this is important since the afterbody flow of stepped hull is subjected from the wake of the forebody. Finally the calm water performance prediction of a conventional planing hull and its stepped version is then analyzed. Overset mesh methodology is employed in solving the dynamic equilibrium of the hull. The resistance, trim, and heave are then compared with the experimental data. The resistance is found to be predicted well and the dynamic equilibrium solved by the numerical method is deemed to be acceptable. This means that computational fluid dynamics will be very useful in further study on the complex flow around stepped hull and its potential usage in the design phase.

Keywords: planing hulls, stepped hulls, wake shape, numerical simulation, hydrodynamics

Procedia PDF Downloads 281
3173 Genome Editing in Sorghum: Advancements and Future Possibilities: A Review

Authors: Micheale Yifter Weldemichael, Hailay Mehari Gebremedhn, Teklehaimanot Hailesslasie

Abstract:

The advancement of target-specific genome editing tools, including clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein9 (Cas9), mega-nucleases, base editing (BE), prime editing (PE), transcription activator-like endonucleases (TALENs), and zinc-finger nucleases (ZFNs), have paved the way for a modern era of gene editing. CRISPR/Cas9, as a versatile, simple, cost-effective and robust system for genome editing, has dominated the genome manipulation field over the last few years. The application of CRISPR/Cas9 in sorghum improvement is particularly vital in the context of ecological, environmental and agricultural challenges, as well as global climate change. In this context, gene editing using CRISPR/Cas9 can improve nutritional value, yield, resistance to pests and disease and tolerance to different abiotic stress. Moreover, CRISPR/Cas9 can potentially perform complex editing to reshape already available elite varieties and new genetic variations. However, existing research is targeted at improving even further the effectiveness of the CRISPR/Cas9 genome editing techniques to fruitfully edit endogenous sorghum genes. These findings suggest that genome editing is a feasible and successful venture in sorghum. Newer improvements and developments of CRISPR/Cas9 techniques have further qualified researchers to modify extra genes in sorghum with improved efficiency. The fruitful application and development of CRISPR techniques for genome editing in sorghum will not only help in gene discovery, creating new, improved traits in sorghum regulating gene expression sorghum functional genomics, but also in making site-specific integration events.

Keywords: CRISPR/Cas9, genome editing, quality, sorghum, stress, yield

Procedia PDF Downloads 57
3172 Synthesis of Highly Efficient Bio-Octane Number Booster Using Nano Au-NiAlZr-Layered Double Hydroxides Catalyst

Authors: Bachir Redouane, Dib Nihel, Bedrane Sumeya, Blanco Ginesa, Calvino José Juan

Abstract:

Furfural, a key biomass-derived platform compound, holds significant potential for biofuel production and the synthesis of high-value intermediates. This study investigates the hydrogenation-condensation reaction of furfural issued from lignocellulosique biomass with isopropyl alcohol to produce isopropylfurfuryl ether (iPFE), a next-generation synfuel with a high-octane number. iPFE’s water stability and resistance to methanol absorption make it a sustainable alternative to conventional gasoline additives, offering comparable performance. The catalyst used in this reaction is based on NiAl layered double hydroxides (LDH), with zirconium incorporated to enhance the distribution and structure of active sites. Gold (Au) was deposited on the NiAlZr-LDH support to improve selectivity and yield. The addition of Zr improved the thermal and mechanical stability of the catalyst, while the Au modification further increased selectivity toward iPFE. Extensive catalytic experiments were conducted to optimize reaction conditions, including temperature, hydrogen pressure, and Au loading, to maximize iPFE yield. The results demonstrate a high conversion rate of furfural, exceeding 90% under optimal conditions, with enhanced selectivity toward iPFE. Moreover, iPFE was shown to have a higher-octane number compared to traditional furfuryl ethers, making it a highly promising candidate for advanced fuel applications.

Keywords: Au-NiAlZr-LDH, biofuels, furfural, green chemistry, hydrogenation, isopropylfurfuryl ether, octane number.

Procedia PDF Downloads 8
3171 Development of Drying System for Dew Collection to Supplement Minimum Water Required for Grazing Plants in Arid Regions

Authors: Mohamed I. Alzarah

Abstract:

Passive dew harvesting and rainwater collection requires a very small financial investment meanwhile they can exploit a free and clean source of water in rural or remote areas. Dew condensation on greenhouse dryer cladding and assorted other surfaces was frequently noticed. Accordingly, this study was performed in order to measure the quantity of condensation in the arid regions. Dew was measured by using three different kinds of collectors which were glass of flat plate solar collector, tempered glass of photovoltaic (PV) and double sloped (25°) acrylic plexiglas of greenhouse dryer. The total amount of dew collection for three different types of collectors was measured during December 2013 to March 2014 in Alahsa, Saudi Arabia. Meteorological data were collected for one year. The condensate dew drops were collected naturally (before scraping) and by scraping once and twice. Dew began to condense most likely between 12:00 am and 6:30 am and its intensity reached the peak at about 45 min before sunrise. The cumulative dew yield on double-sloped test roof was varying with wind speed and direction. Results indicated that, wiping twice gave more dew yield compared to wiping once or collection by gravity. Dew and rain pH were neutral (close to 7) and the total mineralization was considerable. The ions concentration agrees with the World Health Organization recommendations for potable water. Using existing drying system for dew and rain harvesting cold provide a potable water source for arid region.

Keywords: PV module, flat plate solar collector, greenhouse, drying system, dew collection, water vapor, rainwater harvesting

Procedia PDF Downloads 335
3170 Application of Bayesian Model Averaging and Geostatistical Output Perturbation to Generate Calibrated Ensemble Weather Forecast

Authors: Muhammad Luthfi, Sutikno Sutikno, Purhadi Purhadi

Abstract:

Weather forecast has necessarily been improved to provide the communities an accurate and objective prediction as well. To overcome such issue, the numerical-based weather forecast was extensively developed to reduce the subjectivity of forecast. Yet the Numerical Weather Predictions (NWPs) outputs are unfortunately issued without taking dynamical weather behavior and local terrain features into account. Thus, NWPs outputs are not able to accurately forecast the weather quantities, particularly for medium and long range forecast. The aim of this research is to aid and extend the development of ensemble forecast for Meteorology, Climatology, and Geophysics Agency of Indonesia. Ensemble method is an approach combining various deterministic forecast to produce more reliable one. However, such forecast is biased and uncalibrated due to its underdispersive or overdispersive nature. As one of the parametric methods, Bayesian Model Averaging (BMA) generates the calibrated ensemble forecast and constructs predictive PDF for specified period. Such method is able to utilize ensemble of any size but does not take spatial correlation into account. Whereas space dependencies involve the site of interest and nearby site, influenced by dynamic weather behavior. Meanwhile, Geostatistical Output Perturbation (GOP) reckons the spatial correlation to generate future weather quantities, though merely built by a single deterministic forecast, and is able to generate an ensemble of any size as well. This research conducts both BMA and GOP to generate the calibrated ensemble forecast for the daily temperature at few meteorological sites nearby Indonesia international airport.

Keywords: Bayesian Model Averaging, ensemble forecast, geostatistical output perturbation, numerical weather prediction, temperature

Procedia PDF Downloads 278
3169 Residual Analysis and Ground Motion Prediction Equation Ranking Metrics for Western Balkan Strong Motion Database

Authors: Manuela Villani, Anila Xhahysa, Christopher Brooks, Marco Pagani

Abstract:

The geological structure of Western Balkans is strongly affected by the collision between Adria microplate and the southwestern Euroasia margin, resulting in a considerably active seismic region. The Harmonization of Seismic Hazard Maps in the Western Balkan Countries Project (BSHAP) (2007-2011, 2012-2015) by NATO supported the preparation of new seismic hazard maps of the Western Balkan, but when inspecting the seismic hazard models produced later by these countries on a national scale, significant differences in design PGA values are observed in the border, for instance, North Albania-Montenegro, South Albania- Greece, etc. Considering the fact that the catalogues were unified and seismic sources were defined within BSHAP framework, obviously, the differences arise from the Ground Motion Prediction Equations selection, which are generally the component with highest impact on the seismic hazard assessment. At the time of the project, a modest database was present, namely 672 three-component records, whereas nowadays, this strong motion database has increased considerably up to 20,939 records with Mw ranging in the interval 3.7-7 and epicentral distance distribution from 0.47km to 490km. Statistical analysis of the strong motion database showed the lack of recordings in the moderate-to-large magnitude and short distance ranges; therefore, there is need to re-evaluate the Ground Motion Prediction Equation in light of the recently updated database and the new generations of GMMs. In some cases, it was observed that some events were more extensively documented in one database than the other, like the 1979 Montenegro earthquake, with a considerably larger number of records in the BSHAP Analogue SM database when compared to ESM23. Therefore, the strong motion flat-file provided from the Harmonization of Seismic Hazard Maps in the Western Balkan Countries Project was merged with the ESM23 database for the polygon studied in this project. After performing the preliminary residual analysis, the candidate GMPE-s were identified. This process was done using the GMPE performance metrics available within the SMT in the OpenQuake Platform. The Likelihood Model and Euclidean Distance Based Ranking (EDR) were used. Finally, for this study, a GMPE logic tree was selected and following the selection of candidate GMPEs, model weights were assigned using the average sample log-likelihood approach of Scherbaum.

Keywords: residual analysis, GMPE, western balkan, strong motion, openquake

Procedia PDF Downloads 88
3168 A Feasibility Study on Producing Bio-Coal from Orange Peel Residue by Using Torrefaction

Authors: Huashan Tai, Chien-Hui Lung

Abstract:

Nowadays people use massive fossil fuels which not only cause environmental impacts and global climate change, but also cause the depletion of non-renewable energy such as coal and oil. Bioenergy is currently the most widely used renewable energy, and agricultural waste is one of the main raw materials for bioenergy. In this study, we use orange peel residue, which is easier to collect from agricultural waste to produce bio-coal by torrefaction. The orange peel residue (with 25 to 30% moisture) was treated by torrefaction, and the experiments were conducted with initial temperature at room temperature (approximately at 25° C), with heating rates of 10, 30, and 50°C / min, with terminal temperatures at 150, 200, 250, 300, 350℃, and with residence time of 10, 20, and 30 minutes. The results revealed that the heating value, ash content and energy densification ratio of the solid products after torrefaction are in direct proportion to terminal temperatures and residence time, and are inversely proportional to heating rates. The moisture content, solid mass yield, energy yield, and volumetric energy density of the solid products after torrefaction are inversely proportional to terminal temperatures and residence time, and are in direct proportion to heating rates. In conclusion, we found that the heating values of the solid products were 1.3 times higher than those of the raw orange peels before torrefaction, and the volumetric energy densities were increased by 1.45 times under operating parameters with terminal temperature at 250°C, residence time of 10 minutes, and heating rate of 10°C / min of torrefaction. The results indicated that the residue of orange peel treated by torrefaction improved its energy density and fuel properties, and became more suitable for bio-fuel applications.

Keywords: biomass energy, orange, torrefaction

Procedia PDF Downloads 288
3167 Cassava Plant Architecture: Insights from Genome-Wide Association Studies

Authors: Abiodun Olayinka, Daniel Dzidzienyo, Pangirayi Tongoona, Samuel Offei, Edwige Gaby Nkouaya Mbanjo, Chiedozie Egesi, Ismail Yusuf Rabbi

Abstract:

Cassava (Manihot esculenta Crantz) is a major source of starch for various industrial applications. However, the traditional cultivation and harvesting methods of cassava are labour-intensive and inefficient, limiting the supply of fresh cassava roots for industrial starch production. To achieve improved productivity and quality of fresh cassava roots through mechanized cultivation, cassava cultivars with compact plant architecture and moderate plant height are needed. Plant architecture-related traits, such as plant height, harvest index, stem diameter, branching angle, and lodging tolerance, are critical for crop productivity and suitability for mechanized cultivation. However, the genetics of cassava plant architecture remain poorly understood. This study aimed to identify the genetic bases of the relationships between plant architecture traits and productivity-related traits, particularly starch content. A panel of 453 clones developed at the International Institute of Tropical Agriculture, Nigeria, was genotyped and phenotyped for 18 plant architecture and productivity-related traits at four locations in Nigeria. A genome-wide association study (GWAS) was conducted using the phenotypic data from a panel of 453 clones and 61,238 high-quality Diversity Arrays Technology sequencing (DArTseq) derived Single Nucleotide Polymorphism (SNP) markers that are evenly distributed across the cassava genome. Five significant associations between ten SNPs and three plant architecture component traits were identified through GWAS. We found five SNPs on chromosomes 6 and 16 that were significantly associated with shoot weight, harvest index, and total yield through genome-wide association mapping. We also discovered an essential candidate gene that is co-located with peak SNPs linked to these traits in M. esculenta. A review of the cassava reference genome v7.1 revealed that the SNP on chromosome 6 is in proximity to Manes.06G101600.1, a gene that regulates endodermal differentiation and root development in plants. The findings of this study provide insights into the genetic basis of plant architecture and yield in cassava. Cassava breeders could leverage this knowledge to optimize plant architecture and yield in cassava through marker-assisted selection and targeted manipulation of the candidate gene.

Keywords: Manihot esculenta Crantz, plant architecture, DArtseq, SNP markers, genome-wide association study

Procedia PDF Downloads 68
3166 Pretreatment of Aquatic Weed Typha latifolia with Sodium Bisulphate for Enhanced Acid and Enzyme Hydrolysis for Production of Xylitol and Bioethanol

Authors: Jyosthna Khanna Goli, Shaik Naseeruddin, Hameeda Bee

Abstract:

Employing lignocellulosic biomass in fermentative production of xylitol and bioethanol is gaining interest as it is renewable, cheap, and abundantly available. Xylitol is a polyol, gaining its importance in the food and pharmacological industry due to its low calorific value and anti-cariogenic nature. Bioethanol from lignocellulosic biomass is widely accepted as an alternative fuel for transportation with reduced CO₂ emissions, thus reducing the greenhouse effect. Typha latifolia, an aquatic weed, was found to be promising lignocellulosic substrate as it posses a high amount of sugars and does not compete with arable lands and interfere with food and feed competition. In the present study, xylose from hemicellulosic fraction of typha is converted to xylitol by isolate Jfh5 (Candida. tropicalis) and cellulose part to ethanol using Saccharomyces cerevisiaeVS3. Initially, alkali pretreatment of typha using sodium hydroxide, potassium hydroxide, ammonium hydroxide, calcium hydroxide, sodium bisulphate and sodium dithionate for overnight (18h) at room temperature (28 ± 2°C), resulted in maximum delignification of 75% with 2% (v/v) sodium bisulphate. Later, pretreated biomass was subjected to acid hydrolysis with 1%, 1.5%, 2%, and 3% H₂SO₄ at 110 °C and 121°C for 30 and 60 min, respectively. 2% H₂SO₄ at 121°C for 60 min was found to release 13.5 g /l sugars, which on detoxification and fermentation produced 8.1g/l xylitol with yield and productivity of 0.65g/g and 0.112g/l/h respectively. Further enzymatic hydrolysis of the residual substrate obtained after acid hydrolysis released 11g/l sugar, which on fermentation with VS3 produced 4.9g/l ethanol with yield and productivity of 0.22g/g and 0.136g/l/h respectively.

Keywords: delignification, xylitol, bioethanol, acid hydrolysis, enzyme hydrolysis

Procedia PDF Downloads 148
3165 The Effect of Spent Mushroom Substrate on Blood Metabolites in Kurdish Male Lambs

Authors: Alireza Vakili, Shahab Ehtesham, Mohsen Danesh Mesgaran

Abstract:

The objective of this study was use different levels of spent mushroom substrate as a suitable substitute for wheat straw in the ration of male lambs. In this study 20 male lambs with the age of 90 days and initial average weight of 33± 1.7 kg were used. The animals were divided separately into single boxes with four treatments (control treatment, spent mushroom substrate 15%, spent mushroom substrate 25% and spent mushroom substrate 35%) and five replications. The experiment period was 114 days being 14 days adaptation and 90 days for breeding. On the days 36 and 94, blood samples were taken from the jugular vein. In order to carry out the trial, 20 male lambs received the four experimental diets in completely randomized design. The statistical analyses were carried out by using the GLM procedure of SAS 9.1. Means among treatments were compared by Tukey test. The results of the study showed that there was no significant differences between the serum biochemical and hematological contents of the lambs in the four treatments (p>0.05). It was concluded that spent mushroom substrate consumption has no harmful effect on the blood parameters of Kurdish male lambs.

Keywords: alternative food, nutrition, sheep performance, spent mushroom substrate

Procedia PDF Downloads 351
3164 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction

Authors: Yan Zhang

Abstract:

Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.

Keywords: Internet of Things, machine learning, predictive maintenance, streaming data

Procedia PDF Downloads 383
3163 Modelling Pest Immigration into Rape Seed Crops under Past and Future Climate Conditions

Authors: M. Eickermann, F. Ronellenfitsch, J. Junk

Abstract:

Oilseed rape (Brassica napus L.) is one of the most important crops throughout Europe, but pressure due to pest insects and pathogens can reduce yield amount substantially. Therefore, the usage of pesticide applications is outstanding in this crop. In addition, climate change effects can interact with phenology of the host plant and their pests and can apply additional pressure on the yield. Next to the pollen beetle, Meligethes aeneus L., the seed-damaging pest insects, cabbage seed weevil (Ceutorhynchus obstrictus Marsham) and the brassica pod midge (Dasineura brassicae Winn.) are of main economic impact to the yield. While females of C. obstrictus are infesting oilseed rape by depositing single eggs into young pods, the females of D. brassicae are using this local damage in the pod for their own oviposition, while depositing batches of 20-30 eggs. Without a former infestation by the cabbage seed weevil, a significant yield reduction by the brassica pod midge can be denied. Based on long-term, multisided field experiments, a comprehensive data-set on pest migration to crops of B. napus has been built up in the last ten years. Five observational test sides, situated in different climatic regions in Luxembourg were controlled between February until the end of May twice a week. Pest migration was recorded by using yellow water pan-traps. Caught insects were identified in the laboratory according to species specific identification keys. By a combination of pest observations and corresponding meteorological observations, the set-up of models to predict the migration periods of the seed-damaging pests was possible. This approach is the basis for a computer-based decision support tool, to assist the farmer in identifying the appropriate time point of pesticide application. In addition, the derived algorithms of that decision support tool can be combined with climate change projections in order to assess the future potential threat caused by the seed-damaging pest species. Regional climate change effects for Luxembourg have been intensively studied in recent years. Significant changes to wetter winters and drier summers, as well as a prolongation of the vegetation period mainly caused by higher spring temperature, have also been reported. We used the COSMO-CLM model to perform a time slice experiment for Luxembourg with a spatial resolution of 1.3 km. Three ten year time slices were calculated: The reference time span (1991-2000), the near (2041-2050) and the far future (2091-2100). Our results projected a significant shift of pest migration to an earlier onset of the year. In addition, a prolongation of the possible migration period could be observed. Because D. brassiace is depending on the former oviposition activity by C. obstrictus to infest its host plant successfully, the future dependencies of both pest species will be assessed. Based on this approach the future risk potential of both seed-damaging pests is calculated and the status as pest species is characterized.

Keywords: CORDEX projections, decision support tool, Brassica napus, pests

Procedia PDF Downloads 381
3162 A Multi-Dimensional Neural Network Using the Fisher Transform to Predict the Price Evolution for Algorithmic Trading in Financial Markets

Authors: Cristian Pauna

Abstract:

Trading the financial markets is a widespread activity today. A large number of investors, companies, public of private funds are buying and selling every day in order to make profit. Algorithmic trading is the prevalent method to make the trade decisions after the electronic trading release. The orders are sent almost instantly by computers using mathematical models. This paper will present a price prediction methodology based on a multi-dimensional neural network. Using the Fisher transform, the neural network will be instructed for a low-latency auto-adaptive process in order to predict the price evolution for the next period of time. The model is designed especially for algorithmic trading and uses the real-time price series. It was found that the characteristics of the Fisher function applied at the nodes scale level can generate reliable trading signals using the neural network methodology. After real time tests it was found that this method can be applied in any timeframe to trade the financial markets. The paper will also include the steps to implement the presented methodology into an automated trading system. Real trading results will be displayed and analyzed in order to qualify the model. As conclusion, the compared results will reveal that the neural network methodology applied together with the Fisher transform at the nodes level can generate a good price prediction and can build reliable trading signals for algorithmic trading.

Keywords: algorithmic trading, automated trading systems, financial markets, high-frequency trading, neural network

Procedia PDF Downloads 160
3161 Using Statistical Significance and Prediction to Test Long/Short Term Public Services and Patients' Cohorts: A Case Study in Scotland

Authors: Raptis Sotirios

Abstract:

Health and social care (HSc) services planning and scheduling are facing unprecedented challenges due to the pandemic pressure and also suffer from unplanned spending that is negatively impacted by the global financial crisis. Data-driven can help to improve policies, plan and design services provision schedules using algorithms assist healthcare managers’ to face unexpected demands using fewer resources. The paper discusses services packing using statistical significance tests and machine learning (ML) to evaluate demands similarity and coupling. This is achieved by predicting the range of the demand (class) using ML methods such as CART, random forests (RF), and logistic regression (LGR). The significance tests Chi-Squared test and Student test are used on data over a 39 years span for which HSc services data exist for services delivered in Scotland. The demands are probabilistically associated through statistical hypotheses that assume that the target service’s demands are statistically dependent on other demands as a NULL hypothesis. This linkage can be confirmed or not by the data. Complementarily, ML methods are used to linearly predict the above target demands from the statistically found associations and extend the linear dependence of the target’s demand to independent demands forming, thus groups of services. Statistical tests confirm ML couplings making the prediction also statistically meaningful and prove that a target service can be matched reliably to other services, and ML shows these indicated relationships can also be linear ones. Zero paddings were used for missing years records and illustrated better such relationships both for limited years and in the entire span offering long term data visualizations while limited years groups explained how well patients numbers can be related in short periods or can change over time as opposed to behaviors across more years. The prediction performance of the associations is measured using Receiver Operating Characteristic(ROC) AUC and ACC metrics as well as the statistical tests, Chi-Squared and Student. Co-plots and comparison tables for RF, CART, and LGR as well as p-values and Information Exchange(IE), are provided showing the specific behavior of the ML and of the statistical tests and the behavior using different learning ratios. The impact of k-NN and cross-correlation and C-Means first groupings is also studied over limited years and the entire span. It was found that CART was generally behind RF and LGR, but in some interesting cases, LGR reached an AUC=0 falling below CART, while the ACC was as high as 0.912, showing that ML methods can be confused padding or by data irregularities or outliers. On average, 3 linear predictors were sufficient, LGR was found competing RF well, and CART followed with the same performance at higher learning ratios. Services were packed only if when significance level(p-value) of their association coefficient was more than 0.05. Social factors relationships were observed between home care services and treatment of old people, birth weights, alcoholism, drug abuse, and emergency admissions. The work found that different HSc services can be well packed as plans of limited years, across various services sectors, learning configurations, as confirmed using statistical hypotheses.

Keywords: class, cohorts, data frames, grouping, prediction, prob-ability, services

Procedia PDF Downloads 229