Search results for: squared prediction risk
6499 Development of Femoral Head Osteonecrosis Due to Corticosteroids Consumption; Probable Role of OCP: A Case Report
Authors: S. Alireza Mirghasemi, Shervin Rashidinia, Mohammad Saleh Sadeghi, Mohsen Talebizadeh, Narges Rahimi Gabaran, Seyed Shahin Eftekhari, Sara Shahmoradi
Abstract:
Avascular necrosis of femoral head is a pathologic condition that the main cause is decreased blood supply of femoral head. Among predisposing risk factors, chronic use of corticosteroids, alcoholism, smocking and hip traumas have more important role. Also we can mention OCP consumption as a risk factor among less common predisposing factors that lead to AVNF, in this study we introduce another cause of AVNF with a period of treatment with moderate dose of corticosteroids accompanied by OCP as a probable facilitating factor that leads to AVNF.Keywords: AVN, corticosteroids consumption, femoral head osteonecrosis, OCP
Procedia PDF Downloads 4666498 Deformation Severity Prediction in Sewer Pipelines
Authors: Khalid Kaddoura, Ahmed Assad, Tarek Zayed
Abstract:
Sewer pipelines are prone to deterioration over-time. In fact, their deterioration does not follow a fixed downward pattern. This is in fact due to the defects that propagate through their service life. Sewer pipeline defects are categorized into distinct groups. However, the main two groups are the structural and operational defects. By definition, the structural defects influence the structural integrity of the sewer pipelines such as deformation, cracks, fractures, holes, etc. However, the operational defects are the ones that affect the flow of the sewer medium in the pipelines such as: roots, debris, attached deposits, infiltration, etc. Yet, the process for each defect to emerge follows a cause and effect relationship. Deformation, which is the change of the sewer pipeline geometry, is one type of an influencing defect that could be found in many sewer pipelines due to many surrounding factors. This defect could lead to collapse if the percentage exceeds 15%. Therefore, it is essential to predict the deformation percentage before confronting such a situation. Accordingly, this study will predict the percentage of the deformation defect in sewer pipelines adopting the multiple regression analysis. Several factors will be considered in establishing the model, which are expected to influence the defamation defect severity. Besides, this study will construct a time-based curve to understand how the defect would evolve overtime. Thus, this study is expected to be an asset for decision-makers as it will provide informative conclusions about the deformation defect severity. As a result, inspections will be minimized and so the budgets.Keywords: deformation, prediction, regression analysis, sewer pipelines
Procedia PDF Downloads 1896497 Blind Watermarking Using Discrete Wavelet Transform Algorithm with Patchwork
Authors: Toni Maristela C. Estabillo, Michaela V. Matienzo, Mikaela L. Sabangan, Rosette M. Tienzo, Justine L. Bahinting
Abstract:
This study is about blind watermarking on images with different categories and properties using two algorithms namely, Discrete Wavelet Transform and Patchwork Algorithm. A program is created to perform watermark embedding, extraction and evaluation. The evaluation is based on three watermarking criteria namely: image quality degradation, perceptual transparency and security. Image quality is measured by comparing the original properties with the processed one. Perceptual transparency is measured by a visual inspection on a survey. Security is measured by implementing geometrical and non-geometrical attacks through a pass or fail testing. Values used to measure the following criteria are mostly based on Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR). The results are based on statistical methods used to interpret and collect data such as averaging, z Test and survey. The study concluded that the combined DWT and Patchwork algorithms were less efficient and less capable of watermarking than DWT algorithm only.Keywords: blind watermarking, discrete wavelet transform algorithm, patchwork algorithm, digital watermark
Procedia PDF Downloads 2686496 Intelligent Computing with Bayesian Regularization Artificial Neural Networks for a Nonlinear System of COVID-19 Epidemic Model for Future Generation Disease Control
Authors: Tahir Nawaz Cheema, Dumitru Baleanu, Ali Raza
Abstract:
In this research work, we design intelligent computing through Bayesian Regularization artificial neural networks (BRANNs) introduced to solve the mathematical modeling of infectious diseases (Covid-19). The dynamical transmission is due to the interaction of people and its mathematical representation based on the system's nonlinear differential equations. The generation of the dataset of the Covid-19 model is exploited by the power of the explicit Runge Kutta method for different countries of the world like India, Pakistan, Italy, and many more. The generated dataset is approximately used for training, testing, and validation processes for every frequent update in Bayesian Regularization backpropagation for numerical behavior of the dynamics of the Covid-19 model. The performance and effectiveness of designed methodology BRANNs are checked through mean squared error, error histograms, numerical solutions, absolute error, and regression analysis.Keywords: mathematical models, beysian regularization, bayesian-regularization backpropagation networks, regression analysis, numerical computing
Procedia PDF Downloads 1476495 Dysbiosis of the Intestinal Microbiome in Colorectal Cancer Patients at Hospital of Amizour, Bejaia, Algeria
Authors: Adjebli Ahmed, Messis Abdelaziz, Ayeche Riad, Tighilet Karim, Talbi Melissa, Smaili Yanis, Lehri Mokrane, Louardiane Mustapha
Abstract:
Colorectal cancer is one of the most common types of cancer worldwide, and its incidence has been increasing in recent years. Data and fecal samples from colorectal cancer patients were collected at the Amizour Public Hospital's oncology department (Bejaia, Algeria). Microbiological and cohort study were conducted at the Biological Engineering of Cancers laboratory at the Faculty of Medicine of the University of Bejaia. All the data showed that patients aged between 50 and 70 years were the most affected by colorectal cancer, while the age categories of [30-40] and [40-50] were the least affected. Males were more likely to be at risk of contracting colorectal cancer than females. The most common types of colorectal cancer among the studied population were sigmoid cancer, rectal cancer, transverse colon cancer, and ascending colon cancer. The hereditary factor was found to be more dominant than other risk factors. Bacterial identification revealed the presence of certain pathogenic and opportunistic bacterial genera, such as E. coli, K. pneumoniae, Shigella sp, and Streptococcus group D. These results led us to conclude that dysbiosis of the intestinal microbiome is strongly present in colorectal cancer patients at the EPH of Amizour.Keywords: microbiome, colorectal cancer, risk factors, bacterial identification
Procedia PDF Downloads 866494 Analysis of Possible Draught Size of Container Vessels on the Lower Danube
Authors: Todor Bačkalić, Marinko Maslarić, Milosav Georgijević, Sanja Bojić
Abstract:
Water transport could be the backbone of the future European combined transport system. The future transport policy in landlocked countries from the Danube Region has to be based on inland waterway transport (IWT). The development of the container transport on inland waterways depends directly on technical-exploitative characteristics of the network of inland waterways. Research of navigational abilities of inland waterways is the basic step in transport planning. The size of the vessel’s draught (T) is the limiting value in project tasks and it depends on the depth of the waterway. Navigation characteristics of rivers have to be determined as precise as possible, especially from the aspect of determination of the possible draught of vessels. This article outlines a rationale, why it is necessary to develop competence about infrastructure risk in water transport. Climate changes are evident and require special attention and global monitoring. Current risk assessment methods for Inland waterway transport just consider some dramatic events. We present a new method for the assessment of risk and vulnerability of inland waterway transport where river depth represents a crucial part. The analysis of water level changes in the lower Danube was done for two significant periods (1965-1979 and 1998-2012).Keywords: container vessel, draught, probability, the Danube
Procedia PDF Downloads 4616493 Risk Mitigation of Data Causality Analysis Requirements AI Act
Authors: Raphaël Weuts, Mykyta Petik, Anton Vedder
Abstract:
Artificial Intelligence has the potential to create and already creates enormous value in healthcare. Prescriptive systems might be able to make the use of healthcare capacity more efficient. Such systems might entail interpretations that exclude the effect of confounders that brings risks with it. Those risks might be mitigated by regulation that prevents systems entailing such risks to come to market. One modality of regulation is that of legislation, and the European AI Act is an example of such a regulatory instrument that might mitigate these risks. To assess the risk mitigation potential of the AI Act for those risks, this research focusses on a case study of a hypothetical application of medical device software that entails the aforementioned risks. The AI Act refers to the harmonised norms for already existing legislation, here being the European medical device regulation. The issue at hand is a causal link between a confounder and the value the algorithm optimises for by proxy. The research identifies where the AI Act already looks at confounders (i.a. feedback loops in systems that continue to learn after being placed on the market). The research identifies where the current proposal by parliament leaves legal uncertainty on the necessity to check for confounders that do not influence the input of the system, when the system does not continue to learn after being placed on the market. The authors propose an amendment to article 15 of the AI Act that would require high-risk systems to be developed in such a way as to mitigate risks from those aforementioned confounders.Keywords: AI Act, healthcare, confounders, risks
Procedia PDF Downloads 2596492 How Cyber Insurers and Managed Security Companies Influence the Content and Meaning of Privacy Law and Cybersecurity Compliance
Authors: Shauhin Talesh
Abstract:
Cyber risks--loss exposure associated with the use of electronic equipment, computers, information technology, and virtual reality--are among the biggest threats facing businesses and consumers. Despite these threats, private organizations are not significantly changing their behavior in response. Although many organizations do have formal cybersecurity policies in place, the majority believe they are insufficiently prepared for cybersecurity incidences, and have not conducted proper risk assessments or invested necessary training and resources to protect consumers’ electronic information. Drawing on empirical observations over the past 5 years, this article explains why insurers who manage cybersecurity and privacy law compliance among organizations have not been more successful in curtailing breaches. The analysis draws on Talesh's “new institutional theory of insurance,” which explains how insurers shape the content and meaning of law among organizations that purchase insurance. In response to vague and fragmented privacy laws and a lack of strong government oversight, insurers offer cyber insurance and a series of risk-management services to their customers. These services convey legitimacy to the public and to the insureds but fall short of improving the robustness of organizations, rendering them largely symbolic. Cyber insurers and managed security companies have flooded the market with high-level technical tools that they claim mitigate risk, but all they've really accomplished is to institutionalize a norm that policyholders need these tools to avoid cybersecurity incidents. Federal and state regulators and industry-based rating agencies have deferred to cyber insurers without evidence that these tools actually improve security.Keywords: regulation, compliance, insurance, cybersecurity, privacy law, organizations, risk management
Procedia PDF Downloads 26491 Strategy Management of Soybean (Glycine max L.) for Dealing with Extreme Climate through the Use of Cropsyst Model
Authors: Aminah Muchdar, Nuraeni, Eddy
Abstract:
The aims of the research are: (1) to verify the cropsyst plant model of experimental data in the field of soybean plants and (2) to predict planting time and potential yield soybean plant with the use of cropsyst model. This research is divided into several stages: (1) first calibration stage which conducted in the field from June until September 2015.(2) application models stage, where the data obtained from calibration in the field will be included in cropsyst models. The required data models are climate data, ground data/soil data,also crop genetic data. The relationship between the obtained result in field with simulation cropsyst model indicated by Efficiency Index (EF) which the value is 0,939.That is showing that cropsyst model is well used. From the calculation result RRMSE which the value is 1,922%.That is showing that comparative fault prediction results from simulation with result obtained in the field is 1,92%. The conclusion has obtained that the prediction of soybean planting time cropsyst based models that have been made valid for use. and the appropriate planting time for planting soybeans mainly on rain-fed land is at the end of the rainy season, in which the above study first planting time (June 2, 2015) which gives the highest production, because at that time there was still some rain. Tanggamus varieties more resistant to slow planting time cause the percentage decrease in the yield of each decade is lower than the average of all varieties.Keywords: soybean, Cropsyst, calibration, efficiency Index, RRMSE
Procedia PDF Downloads 1806490 Screening for Internet Addiction among Medical Students in a Saudi Community
Authors: Nawaf A. Alqahtani, Ali M. Alqahtani, Khalid A. Alqahtani, Huda S. Abdullfattah, Ebtehal A. Alessa, Khalid S. Al Gelban, Ossama A. Mostafa
Abstract:
Background: The internet is an exciting medium that is becoming an essential part of everyday life. Although the internet is fully observed in Saudi Arabia, young people may be vulnerable to problematic internet use, possibly leading to addiction. Aim of study: To explore the magnitude of internet addiction (IA) among medical students associated risk factors and its impact on students' academic achievement. Subjects and Methods: A cross sectional study was conducted in 2014 on 571 medical students (293 males and 278 females) at the College of Medicine, King Khalid University, Abha, Saudi Arabia. Data Collection was done through using the Arabic version of the Compulsive Internet Use Scale and a checklist of demographic characteristics. Results: Age of participants ranged from 19 to 26 years (Mean+SD: 21.9+1.5 years). Internet access was available to 97.4% of students at home and to 80.2% of students at their mobile phones. The most frequently accessed websites by medical students were the social media (90.7%), scientific website (50.4%) and the news websites (31.3%). IA was mild in 47.8% of medical students while 5.8% had moderate IA. None of the students had severe IA. Prevalence of IA was significantly higher among female medical students (p=0.002), availability of internet at home (p=0.022), and availability of internet at the students' mobile phone (p=0.041). The mean General Point Average (GPA) was highest among students with mild IA (4.0+0.6), compared with 3.6+0.6 among those with moderate addiction, and 3.9+0.6 among those who did not show IA. Differences in mean GPA according to grade of IA were statistically significant ((P=0.001). Conclusions: Prevalence of IA is high among medical students in Saudi Arabia. Risk factors for IA include female gender, availability of internet at home or at the mobile phone. IA has a significant impact on students' GPA. Periodic screening of medical students for IA and raising their awareness toward the possible risk of IA are recommended.Keywords: internet addiction, medical students, risk factors, Saudi Arabia
Procedia PDF Downloads 5306489 Diabetes Mellitus and Blood Glucose Variability Increases the 30-day Readmission Rate after Kidney Transplantation
Authors: Harini Chakkera
Abstract:
Background: Inpatient hyperglycemia is an established independent risk factor among several patient cohorts with hospital readmission. This has not been studied after kidney transplantation. Nearly one-third of patients who have undergone a kidney transplant reportedly experience 30-day readmission. Methods: Data on first-time solitary kidney transplantations were retrieved between September 2015 to December 2018. Information was linked to the electronic health record to determine a diagnosis of diabetes mellitus and extract glucometeric and insulin therapy data. Univariate logistic regression analysis and the XGBoost algorithm were used to predict 30-day readmission. We report the average performance of the models on the testing set on five bootstrapped partitions of the data to ensure statistical significance. Results: The cohort included 1036 patients who received kidney transplantation, and 224 (22%) experienced 30-day readmission. The machine learning algorithm was able to predict 30-day readmission with an average AUC of 77.3% (95% CI 75.30-79.3%). We observed statistically significant differences in the presence of pretransplant diabetes, inpatient-hyperglycemia, inpatient-hypoglycemia, and minimum and maximum glucose values among those with higher 30-day readmission rates. The XGBoost model identified the index admission length of stay, presence of hyper- and hypoglycemia and recipient and donor BMI values as the most predictive risk factors of 30-day readmission. Additionally, significant variations in the therapeutic management of blood glucose by providers were observed. Conclusions: Suboptimal glucose metrics during hospitalization after kidney transplantation is associated with an increased risk for 30-day hospital readmission. Optimizing the hospital blood glucose management, a modifiable factor, after kidney transplantation may reduce the risk of 30-day readmission.Keywords: kidney, transplant, diabetes, insulin
Procedia PDF Downloads 906488 Thermal and Starvation Effects on Lubricated Elliptical Contacts at High Rolling/Sliding Speeds
Authors: Vinod Kumar, Surjit Angra
Abstract:
The objective of this theoretical study is to develop simple design formulas for the prediction of minimum film thickness and maximum mean film temperature rise in lightly loaded high-speed rolling/sliding lubricated elliptical contacts incorporating starvation effect. Herein, the reported numerical analysis focuses on thermoelastohydrodynamically lubricated rolling/sliding elliptical contacts, considering the Newtonian rheology of lubricant for wide range of operating parameters, namely load characterized by Hertzian pressure (PH = 0.01 GPa to 0.10 GPa), rolling speed (>10 m/s), slip parameter (S varies up to 1.0), and ellipticity ratio (k = 1 to 5). Starvation is simulated by systematically reducing the inlet supply. This analysis reveals that influences of load, rolling speed, and level of starvation are significant on the minimum film thickness. However, the maximum mean film temperature rise is strongly influenced by slip in addition to load, rolling speed, and level of starvation. In the presence of starvation, reduction in minimum film thickness and increase in maximum mean film temperature are observed. Based on the results of this study, empirical relations are developed for the prediction of dimensionless minimum film thickness and dimensionless maximum mean film temperature rise at the contacts in terms of various operating parameters.Keywords: starvation, lubrication, elliptical contact, traction, minimum film thickness
Procedia PDF Downloads 3926487 Development of Trigger Tool to Identify Adverse Drug Events From Warfarin Administered to Patient Admitted in Medical Wards of Chumphae Hospital
Authors: Puntarikorn Rungrattanakasin
Abstract:
Objectives: To develop the trigger tool to warn about the risk of bleeding as an adverse event from warfarin drug usage during admission in Medical Wards of Chumphae Hospital. Methods: A retrospective study was performed by reviewing the medical records for the patients admitted between June 1st,2020- May 31st, 2021. ADEs were evaluated by Naranjo’s algorithm. The international normalized ratio (INR) and events of bleeding during admissions were collected. Statistical analyses, including Chi-square test and Reciever Operating Characteristic (ROC) curve for optimal INR threshold, were used for the study. Results: Among the 139 admissions, the INR range was found to vary between 0.86-14.91, there was a total of 15 bleeding events, out of which 9 were mild, and 6 were severe. The occurrence of bleeding started whenever the INR was greater than 2.5 and reached the statistical significance (p <0.05), which was in concordance with the ROC curve and yielded 100 % sensitivity and 60% specificity in the detection of a bleeding event. In this regard, the INR greater than 2.5 was considered to be an optimal threshold to alert promptly for bleeding tendency. Conclusions: The INR value of greater than 2.5 (>2.5) would be an appropriate trigger tool to warn of the risk of bleeding for patients taking warfarin in Chumphae Hospital.Keywords: trigger tool, warfarin, risk of bleeding, medical wards
Procedia PDF Downloads 1486486 Cyber Security and Risk Assessment of the e-Banking Services
Authors: Aisha F. Bushager
Abstract:
Today we are more exposed than ever to cyber threats and attacks at personal, community, organizational, national, and international levels. More aspects of our lives are operating on computer networks simply because we are living in the fifth domain, which is called the Cyberspace. One of the most sensitive areas that are vulnerable to cyber threats and attacks is the Electronic Banking (e-Banking) area, where the banking sector is providing online banking services to its clients. To be able to obtain the clients trust and encourage them to practice e-Banking, also, to maintain the services provided by the banks and ensure safety, cyber security and risks control should be given a high priority in the e-banking area. The aim of the study is to carry out risk assessment on the e-banking services and determine the cyber threats, cyber attacks, and vulnerabilities that are facing the e-banking area specifically in the Kingdom of Bahrain. To collect relevant data, structured interviews were taken place with e-banking experts in different banks. Then, collected data where used as in input to the risk management framework provided by the National Institute of Standards and Technology (NIST), which was the model used in the study to assess the risks associated with e-banking services. The findings of the study showed that the cyber threats are commonly human errors, technical software or hardware failure, and hackers, on the other hand, the most common attacks facing the e-banking sector were phishing, malware attacks, and denial-of-service. The risks associated with the e-banking services were around the moderate level, however, more controls and countermeasures must be applied to maintain the moderate level of risks. The results of the study will help banks discover their vulnerabilities and maintain their online services, in addition, it will enhance the cyber security and contribute to the management and control of risks that are facing the e-banking sector.Keywords: cyber security, e-banking, risk assessment, threats identification
Procedia PDF Downloads 3506485 Statically Fused Unbiased Converted Measurements Kalman Filter
Authors: Zhengkun Guo, Yanbin Li, Wenqing Wang, Bo Zou
Abstract:
The statically fused converted position and doppler measurements Kalman filter (SF-CMKF) with additive debiased measurement conversion has been previously presented to combine the resulting states of converted position measurements Kalman filter (CPMKF) and converted doppler measurement Kalman filter (CDMKF) to yield the final state estimates under minimum mean squared error (MMSE) criterion. However, the exact compensation for the bias in the polar-to-cartesian and spherical-to-cartesian conversion are multiplicative and depend on the statistics of the cosine of the angle measurement errors. As a result, the consistency and performance of the SF-CMKF may be suboptimal in large-angle error situations. In this paper, the multiplicative unbiased position and Doppler measurement conversion for 2D (polar-to-cartesian) tracking are derived, and the SF-CMKF is improved to use those conversions. Monte Carlo simulations are presented to demonstrate the statistical consistency of the multiplicative unbiased conversion and the superior performance of the modified SF-CMKF (SF-UCMKF).Keywords: measurement conversion, Doppler, Kalman filter, estimation, tracking
Procedia PDF Downloads 2086484 An Experimental Study on Heat and Flow Characteristics of Water Flow in Microtube
Authors: Zeynep Küçükakça, Nezaket Parlak, Mesut Gür, Tahsin Engin, Hasan Küçük
Abstract:
In the current research, the single phase fluid flow and heat transfer characteristics are experimentally investigated. The experiments are conducted to cover transition zone for the Reynolds numbers ranging from 100 to 4800 by fused silica and stainless steel microtubes having diameters of 103-180 µm. The applicability of the Logarithmic Mean Temperature Difference (LMTD) method is revealed and an experimental method is developed to calculate the heat transfer coefficient. Heat transfer is supplied by a water jacket surrounding the microtubes and heat transfer coefficients are obtained by LMTD method. The results are compared with data obtained by the correlations available in the literature in the study. The experimental results indicate that the Nusselt numbers of microtube flows do not accord with the conventional results when the Reynolds number is lower than 1000. After that, the Nusselt number approaches the conventional theory prediction. Moreover, the scaling effects in micro scale such as axial conduction, viscous heating and entrance effects are discussed. On the aspect of fluid characteristics, the friction factor is well predicted with conventional theory and the conventional friction prediction is valid for water flow through microtube with a relative surface roughness less than about 4 %.Keywords: microtube, laminar flow, friction factor, heat transfer, LMTD method
Procedia PDF Downloads 4606483 Review of Concepts and Tools Applied to Assess Risks Associated with Food Imports
Authors: A. Falenski, A. Kaesbohrer, M. Filter
Abstract:
Introduction: Risk assessments can be performed in various ways and in different degrees of complexity. In order to assess risks associated with imported foods additional information needs to be taken into account compared to a risk assessment on regional products. The present review is an overview on currently available best practise approaches and data sources used for food import risk assessments (IRAs). Methods: A literature review has been performed. PubMed was searched for articles about food IRAs published in the years 2004 to 2014 (English and German texts only, search string “(English [la] OR German [la]) (2004:2014 [dp]) import [ti] risk”). Titles and abstracts were screened for import risks in the context of IRAs. The finally selected publications were analysed according to a predefined questionnaire extracting the following information: risk assessment guidelines followed, modelling methods used, data and software applied, existence of an analysis of uncertainty and variability. IRAs cited in these publications were also included in the analysis. Results: The PubMed search resulted in 49 publications, 17 of which contained information about import risks and risk assessments. Within these 19 cross references were identified to be of interest for the present study. These included original articles, reviews and guidelines. At least one of the guidelines of the World Organisation for Animal Health (OIE) and the Codex Alimentarius Commission were referenced in any of the IRAs, either for import of animals or for imports concerning foods, respectively. Interestingly, also a combination of both was used to assess the risk associated with the import of live animals serving as the source of food. Methods ranged from full quantitative IRAs using probabilistic models and dose-response models to qualitative IRA in which decision trees or severity tables were set up using parameter estimations based on expert opinions. Calculations were done using @Risk, R or Excel. Most heterogeneous was the type of data used, ranging from general information on imported goods (food, live animals) to pathogen prevalence in the country of origin. These data were either publicly available in databases or lists (e.g., OIE WAHID and Handystatus II, FAOSTAT, Eurostat, TRACES), accessible on a national level (e.g., herd information) or only open to a small group of people (flight passenger import data at national airport customs office). In the IRAs, an uncertainty analysis has been mentioned in some cases, but calculations have been performed only in a few cases. Conclusion: The current state-of-the-art in the assessment of risks of imported foods is characterized by a great heterogeneity in relation to general methodology and data used. Often information is gathered on a case-by-case basis and reformatted by hand in order to perform the IRA. This analysis therefore illustrates the need for a flexible, modular framework supporting the connection of existing data sources with data analysis and modelling tools. Such an infrastructure could pave the way to IRA workflows applicable ad-hoc, e.g. in case of a crisis situation.Keywords: import risk assessment, review, tools, food import
Procedia PDF Downloads 3026482 The Role of Cognitive Control and Social Camouflage Associated with Social Anxiety Autism Spectrum Conditions
Authors: Siqing Guan, Fumiyo Oshima, Eiji Shimizu, Nozomi Tomita, Toru Takahashi, Hiroaki Kumano
Abstract:
Risk factors for social anxiety in autism spectrum conditions involve executive attention, emotion regulation, and thought regulation as processes of cognitive dysregulation. Social camouflaging behaviors as strategies used to mask and/or compensate for autism characteristics during social interactions in autism spectrum conditions have also been emphasized. However, the role of cognitive dysregulation and social camouflaging related to social anxiety in autism spectrum conditions has not been clarified. Whether these factors are specific to social anxiety in autism spectrum conditions or common to social anxiety independent of autism spectrum conditions needs to be clarified. Here, we explored risk factors specific to social anxiety in autism spectrum conditions and general risk factors for social anxiety independent of autism spectrum conditions. From the Japanese participants in early adulthood (age=18~39) of the online survey in Japan, those who exceeded the Japanese version Autism-Spectrum Quotient cutoff (33 points or more )were divided into the autism spectrum conditions group (ASC; N=255, mean age=32.08, SD age=5.16)and those who did not exceed the cutoff were divided into the non-autism spectrum conditions group (Non-ASC; N=255, mean age=31.70, SD age=5.09). Using the Japanese versions of the Social Phobia Scale, the Social Interaction Anxiety Scale, and the Short Fear of Negative Evaluation Scale, a composite score for social anxiety was calculated using a method of principal. We also measured emotional control difficulties using the Difficulties in Emotion Regulation Scale, executive attention using the Effortful Control Scale for Adults, rumination using the Rumination-Reflection Questionnaire, and worry using the Penn State Worry Questionnaire. This study was passed through the review of the Ethics Committee. No conflicts of interest. Multiple regression analysis with forced entry method was used to predict social anxiety in the ASC and non-ASC groups separately, based on executive attention, emotion dysregulation, worry, rumination, and social camouflage. In the ASC group, emotion dysregulation (β=.277, p<.001), worry (β=.162, p<.05), assimilation (β=.308, p<.001) and masking (β=.275, p<.001) were significant predictors of social anxiety (F (7,247) = 45.791, p <.001, R2=.565). In the non-ASC groups,emotion dysregulation (β=.171, p<.05), worry (β=.344,p <.001), assimilation (β=.366,p <.001) and executive attention (β=-.132,p <.05) were significant predictors of social anxiety (F (7,207) =47.333, p <.001, R2=.615).The findings suggest that masking was shown to be a risk factor for social anxiety specific to autism spectrum conditions, while emotion dysregulation, worry, and assimilation were shown to be common risk factors for social anxiety, regardless of autism spectrum conditions. In addition, executive attention is a risk factor for social anxiety without autism spectrum conditions.Keywords: autism spectrum, cognitive control, social anxiety, social camouflaging
Procedia PDF Downloads 2086481 A Basic Understanding of Viral Disease and Education Level Influences Disease Risk Perception, Disease Severity Perception, and Mask Wearing Behavior During the COVID-19 Pandemic
Authors: Ilse Kreme
Abstract:
To the best of this author’s knowledge, no studies have been identified on the connection between a refusal to engage in health-protective behaviors and a basic understanding of viral biology among community college students, faculty, and staff during the COVID-19 pandemic. Lack of scientific knowledge could prevent understanding of why these behaviors are important to prevent the community spread of COVID-19, even when they are not shown to offer much individual protection. In this study, a possible correlation was examined between a basic knowledge level of viral disease that comes from having taken a college biology course and disease perceptions of COVID-19. In particular, disease risk perception, disease severity percept and mask-wearing behaviors were examined as they correlated with having taken an undergraduate biology course. The effect of covariates of age, gender, and education level were investigated along with the main dependent variables. A representative sample of the population included students, faculty, and staff at Paradise Valley Community College (PVCC) in Phoenix, Arizona. Participants were recruited by an email sent to all students, faculty, and staff at PVCC using an all-college email distribution. Disease risk and severity perception were assessed with the Brief Illness Perception Questionnaire 5 (BIP-Q5), which was modified to include questions measuring participant age, education level, and whether they took or ever took a college biology course. Two additional questions measured compliance of willingness to wear a face mask. The results showed an effect of gender on mask-wearing behavior and a correlation between having taken a biology course and disease severity perception. No differences were seen in mask-wearing behavior and disease risk perception as a result of having taken a biology course. These findings suggest that taking an undergraduate biology course leads to a greater awareness of COVID-19 disease severity through an understanding of the basic biological principles of viral disease transmission. The results can be used to modify existing health education strategies. Further research is needed on how to best reach target audiences in all education brackets.Keywords: COVID-19, education, gender, mask wearing, disease risk perception, disease severity perception
Procedia PDF Downloads 1056480 A Sequential Approach for Random-Effects Meta-Analysis
Authors: Samson Henry Dogo, Allan Clark, Elena Kulinskaya
Abstract:
The objective in meta-analysis is to combine results from several independent studies in order to create generalization and provide evidence based for decision making. But recent studies show that the magnitude of effect size estimates reported in many areas of research finding changed with year publication and this can impair the results and conclusions of meta-analysis. A number of sequential methods have been proposed for monitoring the effect size estimates in meta-analysis. However they are based on statistical theory applicable to fixed effect model (FEM). For random-effects model (REM), the analysis incorporates the heterogeneity variance, tau-squared and its estimation create complications. In this paper proposed the use of Gombay and Serbian (2005) truncated CUSUM-type test with asymptotically valid critical values for sequential monitoring of REM. Simulation results show that the test does not control the Type I error well, and is not recommended. Further work required to derive an appropriate test in this important area of application.Keywords: meta-analysis, random-effects model, sequential test, temporal changes in effect sizes
Procedia PDF Downloads 4676479 Prediction of the Lateral Bearing Capacity of Short Piles in Clayey Soils Using Imperialist Competitive Algorithm-Based Artificial Neural Networks
Authors: Reza Dinarvand, Mahdi Sadeghian, Somaye Sadeghian
Abstract:
Prediction of the ultimate bearing capacity of piles (Qu) is one of the basic issues in geotechnical engineering. So far, several methods have been used to estimate Qu, including the recently developed artificial intelligence methods. In recent years, optimization algorithms have been used to minimize artificial network errors, such as colony algorithms, genetic algorithms, imperialist competitive algorithms, and so on. In the present research, artificial neural networks based on colonial competition algorithm (ANN-ICA) were used, and their results were compared with other methods. The results of laboratory tests of short piles in clayey soils with parameters such as pile diameter, pile buried length, eccentricity of load and undrained shear resistance of soil were used for modeling and evaluation. The results showed that ICA-based artificial neural networks predicted lateral bearing capacity of short piles with a correlation coefficient of 0.9865 for training data and 0.975 for test data. Furthermore, the results of the model indicated the superiority of ICA-based artificial neural networks compared to back-propagation artificial neural networks as well as the Broms and Hansen methods.Keywords: artificial neural network, clayey soil, imperialist competition algorithm, lateral bearing capacity, short pile
Procedia PDF Downloads 1526478 The Influence of Environmental Attributes on Children's Pedestrian-Crash Risk in School Zones
Authors: Jeongwoo Lee
Abstract:
Children are the most vulnerable travelers and they are at risk for pedestrian injury. Creating a safe route to school is important because walking to school is one of the main opportunities for promotion of needed physical exercise among children. This study examined how the built environmental attributes near an elementary school influence traffic accidents among school-aged children. The study used two complementary data sources including the locations of police-reported pedestrian crashes and the built environmental characteristics of school areas. The environmental attributes of road segments were collected through GIS measurements of local data and actual site audits using the inventory developed for measuring pedestrian-crash risk scores. The inventory data collected at 840 road segments near 32 elementary schools in the city of Ulsan. We observed all segments in a 300-meter-radius area from the entrance of an elementary school. Segments are street block faces. The inventory included 50 items, organized into four domains: accessibility (17items), pleasurability (11items), perceived safety from traffic (9items), and traffic and land-use measures (13items). Elementary schools were categorized into two groups based on the distribution of the pedestrian-crash hazard index scores. A high pedestrian-crash zone was defined as an school area within the eighth, ninth, and tenth deciles, while no pedestrian-crash zone was defined as a school zone with no pedestrian-crash accident among school-aged children between 2013 and 2016. No- and high pedestrian-crash zones were compared to determine whether different settings of the built environment near the school lead to a different rate of pedestrian-crash incidents. The results showed that a crash risk can be influenced by several environmental factors such as a shape of school-route, number of intersections, visibility and land-use in a street, and a type of sidewalk. The findings inform policy for creating safe routes to school to reduce the pedestrian-crash risk among children by focusing on school zones.Keywords: active school travel, school zone, pedestrian crash, safety route to school
Procedia PDF Downloads 2456477 Discovering New Organic Materials through Computational Methods
Authors: Lucas Viani, Benedetta Mennucci, Soo Young Park, Johannes Gierschner
Abstract:
Organic semiconductors have attracted the attention of the scientific community in the past decades due to their unique physicochemical properties, allowing new designs and alternative device fabrication methods. Until today, organic electronic devices are largely based on conjugated polymers mainly due to their easy processability. In the recent years, due to moderate ET and CT efficiencies and the ill-defined nature of polymeric systems the focus has been shifting to small conjugated molecules with well-defined chemical structure, easier control of intermolecular packing, and enhanced CT and ET properties. It has led to the synthesis of new small molecules, followed by the growth of their crystalline structure and ultimately by the device preparation. This workflow is commonly followed without a clear knowledge of the ET and CT properties related mainly to the macroscopic systems, which may lead to financial and time losses, since not all materials will deliver the properties and efficiencies demanded by the current standards. In this work, we present a theoretical workflow designed to predict the key properties of ET of these new materials prior synthesis, thus speeding up the discovery of new promising materials. It is based on quantum mechanical, hybrid, and classical methodologies, starting from a single molecule structure, finishing with the prediction of its packing structure, and prediction of properties of interest such as static and averaged excitonic couplings, and exciton diffusion length.Keywords: organic semiconductor, organic crystals, energy transport, excitonic couplings
Procedia PDF Downloads 2536476 Benefits of Monitoring Acid Sulfate Potential of Coffee Rock (Indurated Sand) across Entire Dredge Cycle in South East Queensland
Authors: S. Albert, R. Cossu, A. Grinham, C. Heatherington, C. Wilson
Abstract:
Shipping trends suggest increasing vessel size and draught visiting Australian ports highlighting potential challenges to port infrastructure and requiring optimization of shipping channels to ensure safe passage for vessels. The Port of Brisbane in Queensland, Australia has an 80 km long access shipping channel which vessels must transit 15 km of relatively shallow coffee rock (generic class of indurated sands where sand grains are bound within an organic clay matrix) outcrops towards the northern passage in Moreton Bay. This represents a risk to shipping channel deepening and maintenance programs as the dredgeability of this material is more challenging due to its high cohesive strength compared with the surrounding marine sands and potential higher acid sulfate risk. In situ assessment of acid sulfate sediment for dredge spoil control is an important tool in mitigating ecological harm. The coffee rock in an anoxic undisturbed state does not pose any acid sulfate risk, however when disturbed via dredging it’s vital to ensure that any present iron sulfides are either insignificant or neutralized. To better understand the potential risk we examined the reduction potential of coffee rock across the entire dredge cycle in order to accurately portray the true outcome of disturbed acid sulfate sediment in dredging operations in Moreton Bay. In December 2014 a dredge trial was undertaken with a trailing suction hopper dredger. In situ samples were collected prior to dredging revealed acid sulfate potential above threshold guidelines which could lead to expensive dredge spoil management. However, potential acid sulfate risk was then monitored in the hopper and subsequent discharge, both showing a significant reduction in acid sulfate potential had occurred. Additionally, the acid neutralizing capacity significantly increased due to the inclusion of shell fragments (calcium carbonate) from the dredge target areas. This clearly demonstrates the importance of assessing potential acid sulfate risk across the entire dredging cycle and highlights the need to carefully evaluate sources of acidity.Keywords: acid sulfate, coffee rock, indurated sand, dredging, maintenance dredging
Procedia PDF Downloads 3686475 Iterative Replanning of Diesel Generator and Energy Storage System for Stable Operation of an Isolated Microgrid
Authors: Jiin Jeong, Taekwang Kim, Kwang Ryel Ryu
Abstract:
The target microgrid in this paper is isolated from the large central power system and is assumed to consist of wind generators, photovoltaic power generators, an energy storage system (ESS), a diesel power generator, the community load, and a dump load. The operation of such a microgrid can be hazardous because of the uncertain prediction of power supply and demand and especially due to the high fluctuation of the output from the wind generators. In this paper, we propose an iterative replanning method for determining the appropriate level of diesel generation and the charging/discharging cycles of the ESS for the upcoming one-hour horizon. To cope with the uncertainty of the estimation of supply and demand, the one-hour plan is built repeatedly in the regular interval of one minute by rolling the one-hour horizon. Since the plan should be built with a sufficiently large safe margin to avoid any possible black-out, some energy waste through the dump load is inevitable. In our approach, the level of safe margin is optimized through learning from the past experience. The simulation experiments show that our method combined with the margin optimization can reduce the dump load compared to the method without such optimization.Keywords: microgrid, operation planning, power efficiency optimization, supply and demand prediction
Procedia PDF Downloads 4326474 Evaluation of the Effect of Learning Disabilities and Accommodations on the Prediction of the Exam Performance: Ordinal Decision-Tree Algorithm
Abstract:
Providing students with learning disabilities (LD) with extra time to grant them equal access to the exam is a necessary but insufficient condition to compensate for their LD; there should also be a clear indication that the additional time was actually used. For example, if students with LD use more time than students without LD and yet receive lower grades, this may indicate that a different accommodation is required. If they achieve higher grades but use the same amount of time, then the effectiveness of the accommodation has not been demonstrated. The main goal of this study is to evaluate the effect of including parameters related to LD and extended exam time, along with other commonly-used characteristics (e.g., student background and ability measures such as high-school grades), on the ability of ordinal decision-tree algorithms to predict exam performance. We use naturally-occurring data collected from hundreds of undergraduate engineering students. The sub-goals are i) to examine the improvement in prediction accuracy when the indicator of exam performance includes 'actual time used' in addition to the conventional indicator (exam grade) employed in most research; ii) to explore the effectiveness of extended exam time on exam performance for different courses and for LD students with different profiles (i.e., sets of characteristics). This is achieved by using the patterns (i.e., subgroups) generated by the algorithms to identify pairs of subgroups that differ in just one characteristic (e.g., course or type of LD) but have different outcomes in terms of exam performance (grade and time used). Since grade and time used to exhibit an ordering form, we propose a method based on ordinal decision-trees, which applies a weighted information-gain ratio (WIGR) measure for selecting the classifying attributes. Unlike other known ordinal algorithms, our method does not assume monotonicity in the data. The proposed WIGR is an extension of an information-theoretic measure, in the sense that it adjusts to the case of an ordinal target and takes into account the error severity between two different target classes. Specifically, we use ordinal C4.5, random-forest, and AdaBoost algorithms, as well as an ensemble technique composed of ordinal and non-ordinal classifiers. Firstly, we find that the inclusion of LD and extended exam-time parameters improves prediction of exam performance (compared to specifications of the algorithms that do not include these variables). Secondly, when the indicator of exam performance includes 'actual time used' together with grade (as opposed to grade only), the prediction accuracy improves. Thirdly, our subgroup analyses show clear differences in the effect of extended exam time on exam performance among different courses and different student profiles. From a methodological perspective, we find that the ordinal decision-tree based algorithms outperform their conventional, non-ordinal counterparts. Further, we demonstrate that the ensemble-based approach leverages the strengths of each type of classifier (ordinal and non-ordinal) and yields better performance than each classifier individually.Keywords: actual exam time usage, ensemble learning, learning disabilities, ordinal classification, time extension
Procedia PDF Downloads 1006473 Vine Copula Structure among Yield, Price and Weather Variables for Rating Crop Insurance Premium
Authors: Jiemiao Chen, Shuoxun Xu
Abstract:
The main goal of our research is to apply the Vine copula measuring dependency between price, temperature, and precipitation indices to calculate a fair crop insurance premium. This research is focused on Worth, Iowa, United States, over the period from 2000 to 2020, where the farmers are dependent on precipitation and average temperature during the growth period of corn. Our proposed insurance considers both the natural risk and the price risk in agricultural production. We first estimate the distributions of crops using parametric methods based on Goodness of Fit tests, and then Vine Copula is applied to model dependence between yield price, crop yield, and weather indices. Once the vine structure and its parameters are determined based on AIC/BIC criteria and forecasting price and yield are obtained from the ARIMA model, we calculate this crop insurance premium using the simulation data generated from the vine copula by the Monte Carlo Simulation method. It is shown that, compared with traditional crop insurance, our proposed insurance is more fair and thus less costly for the farmers and government.Keywords: vine copula, weather index, crop insurance premium, insurance risk management, Monte Carlo simulation
Procedia PDF Downloads 2016472 The Effectiveness of an Injury Prevention Workshop in Increasing Knowledge and Understanding in Grass-Root Youth Coaches
Authors: Mark De Ste Croix, Jonathan Hughes, Francisco Ayala, Michal Lehnert
Abstract:
There are well-known challenges to implementing injury prevention training for youth players but no data are available on the knowledge and understanding of deliverers of such programmes at grass root level. To increase adoption and adherence to such programmes coach knowledge and understanding of injury risk and prevention is essential. Therefore, the purpose of this study was to examine grass-root coaches knowledge and understanding of injury risk and prevention in youth players. 68 grass root coaches (18 females and 50 males) who were attending a one-day injury prevention workshop completed a modified validated questionnaire exploring knowledge and understanding of injury risk and prevention in youth players. Only 59% of coaches agreed that youth players are at a high risk of suffering an injury. There were high levels of agreement that injuries can have negative impacts on team performance (75%) and can cause physical problems in later life (85%), however only around half of coaches felt that injuries affect youth players current quality of life (59%). There was strong agreement that it is possible to prevent injuries in youth players (84%), but coaches were generally unaware of programs to help prevent injuries (84%), and only 9% used some form of injury prevention program. Despite this, nearly all coaches felt that their coaching could benefit from a greater understanding of growth and maturation (91%), injury prevention programmes (91%) and specific exercises (93%) for youth athletes. 17% of coaches rated their knowledge of injury prevention as good/very good at the start of the workshop and this increased to 94% at the end of the workshop. 62% of coaches identified their attitude towards injury prevention as indifferent at the start of the workshop compared with only 1% at the end. Only 14% of coaches at the start of the workshop were confident to deliver an injury prevention session but 83% stated they were confident by the end of the workshop. Finally, 98% of coaches felt that the workshop provided them with the confidence and the knowledge to deliver an injury prevention session and 98% suggested that they would implement injury prevention into their coaching. These data suggest that there is a lack of understanding of grass root coaches that children are a high-risk group for injuries, and that such injuries impact on current quality of life. Despite understanding that injuries can be prevented most grass root coaches do not have the knowledge to implement injury prevention into their coaching and very few do. There is a common consensus amongst these coaches that a greater understanding of such programmes will enhance their coaching. The injury prevention workshop appears to have increased the knowledge and changed the attitude of coaches towards injury prevention. All coaches felt that the workshop provided them with the tools to adopt, implement and deliver injury prevention in their coaching. These data highlight that there is a clear need for education regarding injury risk and prevention to be embedded within the coach education pathway, especially at grass root level.Keywords: coach education, injury prevention, knowledge, and understanding, youth
Procedia PDF Downloads 1716471 Psychiatric Risk Assessment in the Emergency Department: The Impact of NEAT on the Management of Mental Health Patients
Authors: Euan Donley
Abstract:
Emergency Departments (EDs) are heavily burdened as presentation rates continue to rise. To improve patient flow National Emergency Access Targets (NEAT) were introduced. NEAT implements timelines for ED presentations, such as discharging patients within four hours of arrival. Mental health patients use EDs more than the general population and are generally more complex in their presentations. The aim of this study is to examine the impact of NEAT on psychiatric risk assessment of mental health patients in the ED. Seventy-eight mental health clinicians from 7 Victoria, Australia, hospital EDs participated in a mixed method analysis via anonymous online survey. NEAT was considered helpful as mental health patients were seen quicker, were less likely to abscond, could improve teamwork amongst ED staff, and in some cases administrative processes were better streamlined. However, clinicians felt that NEAT was also responsible for less time with patients and relatives’, resulted in rushed assessments, placed undue pressure on mental health clinicians, was not conducive to training, and the emphasis on time was the wrong focus for patient treatment. The profile of a patient typically likely to be treated within NEAT timelines showed a perfect storm of luck and compliance. If a patient was sober, medically stable, referred early, did not require much collateral information and did not have distressed relatives, NEAT was more likely to be met. Organisationally participants reported no organisational change or training to meet NEAT. Poor mental health staffing, multiple ED presentations and a shortage of mental health beds also hamper meeting NEAT. Findings suggest participants were supportive of NEAT in principle, but a demanding workload and organisational barriers meant NEAT had an overall negative effect on psychiatric risk assessment of mental health patients in ED.Keywords: assessment, emergency, risk, psychiatric
Procedia PDF Downloads 5166470 Deep Learning Approach for Colorectal Cancer’s Automatic Tumor Grading on Whole Slide Images
Authors: Shenlun Chen, Leonard Wee
Abstract:
Tumor grading is an essential reference for colorectal cancer (CRC) staging and survival prognostication. The widely used World Health Organization (WHO) grading system defines histological grade of CRC adenocarcinoma based on the density of glandular formation on whole slide images (WSI). Tumors are classified as well-, moderately-, poorly- or un-differentiated depending on the percentage of the tumor that is gland forming; >95%, 50-95%, 5-50% and <5%, respectively. However, manually grading WSIs is a time-consuming process and can cause observer error due to subjective judgment and unnoticed regions. Furthermore, pathologists’ grading is usually coarse while a finer and continuous differentiation grade may help to stratifying CRC patients better. In this study, a deep learning based automatic differentiation grading algorithm was developed and evaluated by survival analysis. Firstly, a gland segmentation model was developed for segmenting gland structures. Gland regions of WSIs were delineated and used for differentiation annotating. Tumor regions were annotated by experienced pathologists into high-, medium-, low-differentiation and normal tissue, which correspond to tumor with clear-, unclear-, no-gland structure and non-tumor, respectively. Then a differentiation prediction model was developed on these human annotations. Finally, all enrolled WSIs were processed by gland segmentation model and differentiation prediction model. The differentiation grade can be calculated by deep learning models’ prediction of tumor regions and tumor differentiation status according to WHO’s defines. If multiple WSIs were possessed by a patient, the highest differentiation grade was chosen. Additionally, the differentiation grade was normalized into scale between 0 to 1. The Cancer Genome Atlas, project COAD (TCGA-COAD) project was enrolled into this study. For the gland segmentation model, receiver operating characteristic (ROC) reached 0.981 and accuracy reached 0.932 in validation set. For the differentiation prediction model, ROC reached 0.983, 0.963, 0.963, 0.981 and accuracy reached 0.880, 0.923, 0.668, 0.881 for groups of low-, medium-, high-differentiation and normal tissue in validation set. Four hundred and one patients were selected after removing WSIs without gland regions and patients without follow up data. The concordance index reached to 0.609. Optimized cut off point of 51% was found by “Maxstat” method which was almost the same as WHO system’s cut off point of 50%. Both WHO system’s cut off point and optimized cut off point performed impressively in Kaplan-Meier curves and both p value of logrank test were below 0.005. In this study, gland structure of WSIs and differentiation status of tumor regions were proven to be predictable through deep leaning method. A finer and continuous differentiation grade can also be automatically calculated through above models. The differentiation grade was proven to stratify CAC patients well in survival analysis, whose optimized cut off point was almost the same as WHO tumor grading system. The tool of automatically calculating differentiation grade may show potential in field of therapy decision making and personalized treatment.Keywords: colorectal cancer, differentiation, survival analysis, tumor grading
Procedia PDF Downloads 134