Search results for: linear predictive coding (LPC)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4831

Search results for: linear predictive coding (LPC)

3151 Bisphenol-A Concentrations in Urine and Drinking Water Samples of Adults Living in Ankara

Authors: Hasan Atakan Sengul, Nergis Canturk, Bahar Erbas

Abstract:

Drinking water is indispensable for life. With increasing awareness of communities, the content of drinking water and tap water has been a matter of curiosity. The presence of Bisphenol-A is the top one when content curiosity is concerned. The most used chemical worldwide for production of polycarbonate plastics and epoxy resins is Bisphenol-A. People are exposed to Bisphenol-A chemical, which disrupts the endocrine system, almost every day. Each year it is manufactured an average of 5.4 billion kilograms of Bisphenol-A. Linear formula of Bisphenol-A is (CH₃)₂C(C₆H₄OH)₂, its molecular weight is 228.29 and CAS number is 80-05-7. Bisphenol-A is known to be used in the manufacturing of plastics, along with various chemicals. Bisphenol-A, an industrial chemical, is used in the raw materials of packaging mate-rials in the monomers of polycarbonate and epoxy resins. The pass through the nutrients of Bisphenol-A substance happens by packaging. This substance contaminates with nutrition and penetrates into body by consuming. International researches show that BPA is transported through body fluids, leading to hormonal disorders in animals. Experimental studies on animals report that BPA exposure also affects the gender of the newborn and its time to reach adolescence. The extent to what similar endocrine disrupting effects are on humans is a debate topic in many researches. In our country, detailed studies on BPA have not been done. However, it is observed that 'BPA-free' phrases are beginning to appear on plastic packaging such as baby products and water carboys. Accordingly, this situation increases the interest of the society about the subject; yet it causes information pollution. In our country, all national and international studies on exposure to BPA have been examined and Ankara province has been designated as testing region. To assess the effects of plastic use in daily habits of people and the plastic amounts removed out of the body, the results of the survey conducted with volunteers who live in Ankara has been analyzed with Sciex appliance by means of LC-MS/MS in the laboratory and the amount of exposure and BPA removal have been detected by comparing the results elicited before. The results have been compared with similar studies done in international arena and the relation between them has been exhibited. Consequently, there has been found no linear correlation between the amount of BPA in drinking water and the amount of BPA in urine. This has also revealed that environmental exposure and the habits of daily plastic use have also direct effects a human body. When the amount of BPA in drinking water is considered; minimum 0.028 µg/L, maximum 1.136 µg/L, mean 0.29194 µg/L and SD(standard deviation)= 0.199 have been detected. When the amount of BPA in urine is considered; minimum 0.028 µg/L, maximum 0.48 µg/L, mean 0.19181 µg/L and SD= 0.099 have been detected. In conclusion, there has been found no linear correlation between the amount of BPA in drinking water and the amount of BPA in urine (r= -0.151). The p value of the comparison between drinking water’s and urine’s BPA amounts is 0.004 which shows that there is a significant change and the amounts of BPA in urine is dependent on the amounts in drinking waters (p < 0.05). This has revealed that environmental exposure and daily plastic habits have also direct effects on the human body.

Keywords: analyze of bisphenol-A, BPA, BPA in drinking water, BPA in urine

Procedia PDF Downloads 133
3150 Total Synthesis of Natural Cyclic Depsi Peptides by Convergent SPPS and Macrolactonization Strategy for Anti-Tb Activity

Authors: Katharigatta N. Venugopala, Fernando Albericio, Bander E. Al-Dhubiab, T. Govender

Abstract:

Recent years have witnessed a renaissance in the field of peptides that are obtained from various natural sources such as many bacteria, fungi, plants, seaweeds, vertebrates, invertebrates and have been reported for various pharmacological properties such as anti-TB, anticancer, antimalarial, anti-inflammatory, anti-HIV, antibacterial, antifungal, and antidiabetic, activities. In view of the pharmacological significance of natural peptides, serious research efforts of many scientific groups and pharmaceutical companies have consequently focused on them to explore the possibility of developing their potential analogues as therapeutic agents. Solid phase and solution phase peptide synthesis are the two methodologies currently available for the synthesis of natural or synthetic linear or cyclic depsi-peptides. From a synthetic point of view, there is no doubt that the solid-phase methodology gained added advantages over solution phase methodology in terms of simplicity, purity of the compound and the speed with which peptides can be synthesised. In the present study total synthesis, purification and structural elucidation of analogues of natural anti-TB cyclic depsi-peptides such as depsidomycin, massetolides and viscosin has been attempted by solid phase method using standard Fmoc protocols and finally off resin cyclization in solution phase method. In case of depsidomycin, synthesis of linear peptide on solid phase could not be achieved because of two turn inducing amino acids in the peptide sequence, but total synthesis was achieved by convergent solid phase peptide synthesis followed by cyclization in solution phase method. The title compounds obtained were in good yields and characterized by NMR and HRMS. Anti-TB results revealed that the potential title compound exhibited promising activity at 4 µg/mL against H37Rv and 16 µg/mL against MDR strains of tuberculosis.

Keywords: total synthesis, cyclic depsi-peptides, anti-TB activity, tuberculosis

Procedia PDF Downloads 626
3149 Financing from Customers for SMEs and Managing Financial Risks: The Role of Customer Relationships

Authors: Yongsheng Guo, Mengyu Lu

Abstract:

This study investigates how Chinese SMEs manage financial risks in financing from customers from the perspectives of ethics and national culture. A grounded theory approach is adopted to identify the causal conditions, actions/interactions, and consequences. 32 interviews were conducted, and systematic coding methods were used to identify themes and categories. This study found that Chinese ethical principles, including integrity, friendship, and reciprocity, and cultural traits, including collectivism, acquaintance society, and long-term orientation, provide conditions for financing from customers. The SMEs establish trust-based relationships with customers through personal communications and social networks and reduce financial risk through diversification, frequent operations, and enterprise reputations. Both customers and SMEs can get benefits like financial resources and customer experiences. This study creates a theoretical framework that connects the causal conditions, processes, and outcomes, providing a deeper understanding of financing from customers. A resource and process capability theory of SMEs and a customer capital and customer value model are proposed to connect accounting and finance concepts. Suggestions are proposed for the authorities as more guidance and regulations are needed for this informal finance.

Keywords: CRM, culture, ethics, SME, risk management

Procedia PDF Downloads 49
3148 Vertical Urban Design Guideline and Its Application to Measure Human Cognition and Emotions

Authors: Hee Sun (Sunny) Choi, Gerhard Bruyns, Wang Zhang, Sky Cheng, Saijal Sharma

Abstract:

This research addresses the need for a comprehensive framework that can guide the design and assessment of multi-level public spaces and public realms and their impact on the built environment. The study aims to understand and measure the neural mechanisms involved in this process. By doing so, it can lay the foundation for vertical and volumetric urbanism and ensure consistency and excellence in the field while also supporting scientific research methods for urban design with cognitive neuroscientists. To investigate these aspects, the paper focuses on the neighborhood scale in Hong Kong, specifically examining multi-level public spaces and quasi-public spaces within both commercial and residential complexes. The researchers use predictive Artificial Intelligence (AI) as a methodology to assess and comprehend the applicability of the urban design framework for vertical and volumetric urbanism. The findings aim to identify the factors that contribute to successful public spaces within a vertical living environment, thus introducing a new typology of public spaces.

Keywords: vertical urbanism, scientific research methods, spatial cognition, urban design guideline

Procedia PDF Downloads 89
3147 Academic Achievement in Argentinean College Students: Major Findings in Psychological Assessment

Authors: F. Uriel, M. M. Fernandez Liporace

Abstract:

In the last decade, academic achievement in higher education has become a topic of agenda in Argentina, regarding the high figures of adjustment problems, academic failure and dropout, and the low graduation rates in the context of massive classes and traditional teaching methods. Psychological variables, such as perceived social support, academic motivation and learning styles and strategies have much to offer since their measurement by tests allows a proper diagnose of their influence on academic achievement. Framed in a major research, several studies analysed multiple samples, totalizing 5135 students attending Argentinean public universities. The first goal was aimed at the identification of statistically significant differences in psychological variables -perceived social support, learning styles, learning strategies, and academic motivation- by age, gender, and degree of academic advance (freshmen versus sophomores). Thus, an inferential group differences study for each psychological dependent variable was developed by means of student’s T tests, given the features of data distribution. The second goal, aimed at examining associations between the four psychological variables on the one hand, and academic achievement on the other, was responded by correlational studies, calculating Pearson’s coefficients, employing grades as the quantitative indicator of academic achievement. The positive and significant results that were obtained led to the formulation of different predictive models of academic achievement which had to be tested in terms of adjustment and predictive power. These models took the four psychological variables above mentioned as predictors, using regression equations, examining predictors individually, in groups of two, and together, analysing indirect effects as well, and adding the degree of academic advance and gender, which had shown their importance within the first goal’s findings. The most relevant results were: first, gender showed no influence on any dependent variable. Second, only good achievers perceived high social support from teachers, and male students were prone to perceive less social support. Third, freshmen exhibited a pragmatic learning style, preferring unstructured environments, the use of examples and simultaneous-visual processing in learning, whereas sophomores manifest an assimilative learning style, choosing sequential and analytic processing modes. Despite these features, freshmen have to deal with abstract contents and sophomores, with practical learning situations due to study programs in force. Fifth, no differences in academic motivation were found between freshmen and sophomores. However, the latter employ a higher number of more efficient learning strategies. Sixth, freshmen low achievers lack intrinsic motivation. Seventh, models testing showed that social support, learning styles and academic motivation influence learning strategies, which affect academic achievement in freshmen, particularly males; only learning styles influence achievement in sophomores of both genders with direct effects. These findings led to conclude that educational psychologists, education specialists, teachers, and universities must plan urgent and major changes. These must be applied in renewed and better study programs, syllabi and classes, as well as tutoring and training systems. Such developments should be targeted to the support and empowerment of students in their academic pathways, and therefore to the upgrade of learning quality, especially in the case of freshmen, male freshmen, and low achievers.

Keywords: academic achievement, academic motivation, coping, learning strategies, learning styles, perceived social support

Procedia PDF Downloads 127
3146 Beyond Replicating Linguistic Elements: Novel Concept Combinations in Multilingual Children

Authors: Xiao-lei Wang

Abstract:

The Novel Concept Combination (NCC) refers to the unique ability of multilingual children to creatively merge and integrate different linguistic and cultural elements to form innovative and original concepts. Children raised with more than one language often exhibit this skill in their daily communication, such as creating innovative metaphors that enrich their communication, showcasing their creativity in conveying the essence of their messages. This paper explores NCC abilities in multilingual children by focusing on two male trilingual siblings exposed to Chinese, French, and English from birth. The siblings were observed for 19 years in their daily context. Seventy-six hours of video-recorded data were used for this study (38 hours for each participant). A coding scheme developed by Wang et al. was employed to code the recorded data. The results suggest that these multilingual siblings proportionally increased their NCC skills over the years, emerging at age 3 and peaking at age 15. The characteristic of their NCC lies in their capacity to not merely replicate linguistic elements of different languages but to recreate, reshape, and reconstruct novel ideas in communication, enriching their interactions. The paper also addresses the educational implications for educators and parents, emphasizing the importance of valuing these novel ideas in everyday environments to encourage NCC development. This, in turn, contributes to cognitive and social development.

Keywords: multilingual children, novel concept combination, multilingual creativity, linguistic richness

Procedia PDF Downloads 70
3145 Machine Learning-Driven Prediction of Cardiovascular Diseases: A Supervised Approach

Authors: Thota Sai Prakash, B. Yaswanth, Jhade Bhuvaneswar, Marreddy Divakar Reddy, Shyam Ji Gupta

Abstract:

Across the globe, there are a lot of chronic diseases, and heart disease stands out as one of the most perilous. Sadly, many lives are lost to this condition, even though early intervention could prevent such tragedies. However, identifying heart disease in its initial stages is not easy. To address this challenge, we propose an automated system aimed at predicting the presence of heart disease using advanced techniques. By doing so, we hope to empower individuals with the knowledge needed to take proactive measures against this potentially fatal illness. Our approach towards this problem involves meticulous data preprocessing and the development of predictive models utilizing classification algorithms such as Support Vector Machines (SVM), Decision Tree, and Random Forest. We assess the efficiency of every model based on metrics like accuracy, ensuring that we select the most reliable option. Additionally, we conduct thorough data analysis to reveal the importance of different attributes. Among the models considered, Random Forest emerges as the standout performer with an accuracy rate of 96.04% in our study.

Keywords: support vector machines, decision tree, random forest

Procedia PDF Downloads 47
3144 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network

Authors: Abdulaziz Alsadhan, Naveed Khan

Abstract:

In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion Detection System (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw data set for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. These optimal feature subset used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.

Keywords: Particle Swarm Optimization (PSO), Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP)

Procedia PDF Downloads 376
3143 Linearly Polarized Single Photon Emission from Nonpolar, Semipolar and Polar Quantum Dots in GaN/InGaN Nanowires

Authors: Snezana Lazic, Zarko Gacevic, Mark Holmes, Ekaterina Chernysheva, Marcus Müller, Peter Veit, Frank Bertram, Juergen Christen, Yasuhiko Arakawa, Enrique Calleja

Abstract:

The study reports how the pencil-like morphology of a homoepitaxially grown GaN nanowire can be exploited for the fabrication of a thin conformal InGaN nanoshell, hosting nonpolar, semipolar and polar single photon sources (SPSs). All three SPS types exhibit narrow emission lines (FWHM~0.35 - 2 meV) and high degrees of linear optical polarization (P > 70%) in the low-temperature micro-photoluminescence (µ-PL) experiments and are characterized by a pronounced antibunching in the photon correlation measurements (gcorrected(2)(0) < 0.3). The quantum-dot-like exciton localization centers induced by compositional fluctuations within the InGaN nanoshell are identified as the driving mechanism for the single photon emission. As confirmed by the low-temperature transmission electron microscopy combined with cathodoluminescence (TEM-CL) study, the crystal region (i.e. non-polar m-, semi-polar r- and polar c-facets) hosting the single photon emitters strongly affects their emission wavelength, which ranges from ultra-violet for the non-polar to visible for the polar SPSs. The photon emission lifetime is also found to be facet-dependent and varies from sub-nanosecond time scales for the non- and semi-polar SPSs to a few nanoseconds for the polar ones. These differences are mainly attributed to facet-dependent indium content and electric field distribution across the hosting InGaN nanoshell. The hereby reported pencil-like InGaN nanoshell is the first single nanostructure able to host all three types of single photon emitters and is thus a promising building block for tunable quantum light devices integrated into future photonic and optoelectronic circuits.

Keywords: GaN nanowire, InGaN nanoshell, linear polarization, nonpolar, semipolar, polar quantum dots, single-photon sources

Procedia PDF Downloads 396
3142 Dynamic Modelling of Hepatitis B Patient Using Sihar Model

Authors: Alakija Temitope Olufunmilayo, Akinyemi, Yagba Joy

Abstract:

Hepatitis is the inflammation of the liver tissue that can cause whiteness of the eyes (Jaundice), lack of appetite, vomiting, tiredness, abdominal pain, diarrhea. Hepatitis is acute if it resolves within 6 months and chronic if it last longer than 6 months. Acute hepatitis can resolve on its own, lead to chronic hepatitis or rarely result in acute liver failure. Chronic hepatitis may lead to scarring of the liver (Cirrhosis), liver failure and liver cancer. Modelling Hepatitis B may become necessary in order to reduce its spread. So, dynamic SIR model can be used. This model consists of a system of three coupled non-linear ordinary differential equation which does not have an explicit formula solution. It is an epidemiological model used to predict the dynamics of infectious disease by categorizing the population into three possible compartments. In this study, a five-compartment dynamic model of Hepatitis B disease was proposed and developed by adding control measure of sensitizing the public called awareness. All the mathematical and statistical formulation of the model, especially the general equilibrium of the model, was derived, including the nonlinear least square estimators. The initial parameters of the model were derived using nonlinear least square embedded in R code. The result study shows that the proportion of Hepatitis B patient in the study population is 1.4 per 1,000,000 populations. The estimated Hepatitis B induced death rate is 0.0108, meaning that 1.08% of the infected individuals die of the disease. The reproduction number of Hepatitis B diseases in Nigeria is 6.0, meaning that one individual can infect more than 6.0 people. The effect of sensitizing the public on the basic reproduction number is significant as the reproduction number is reduced. The study therefore recommends that programme should be designed by government and non-governmental organization to sensitize the entire Nigeria population in order to reduce cases of Hepatitis B disease among the citizens.

Keywords: hepatitis B, modelling, non-linear ordinary differential equation, sihar model, sensitization

Procedia PDF Downloads 96
3141 Planckian Dissipation in Bi₂Sr₂Ca₂Cu₃O₁₀₋δ

Authors: Lalita, Niladri Sarkar, Subhasis Ghosh

Abstract:

Since the discovery of high temperature superconductivity (HTSC) in cuprates, several aspects of this phenomena have fascinated physics community. The most debated one is the linear temperature dependence of normal state resistivity over wide range of temperature in violation of with Fermi liquid theory. The linear-in-T resistivity (LITR) is the indication of strongly correlated metallic, known as “strange metal”, attributed to non Fermi liquid theory (NFL). The proximity of superconductivity to LITR suggests that there may be underlying common origin. The LITR has been shown to be due to unknown dissipative phenomena, restricted by quantum mechanics and commonly known as ‘‘Planckian dissipation” , the term first coined by Zaanen and the associated inelastic scattering time τ and given by 1/τ=αkBT/ℏ, where ℏ, kB and α are reduced Planck’s constant, Boltzmann constant and a dimensionless constant of order of unity, respectively. Since the first report, experimental support for α ~ 1 is appearing in literature. There are several striking issues which remain to be resolved if we desire to find out or at least get a clue towards microscopic origin of maximal dissipation in cuprates. (i) Universality of α ~ 1, recently some doubts have been raised in some cases. (ii) So far, Planckian dissipation has been demonstrated in overdoped Cuprates, but if the proximity to quantum criticality is important, then Planckian dissipation should be observed in optimally doped and marginally underdoped cuprates. The link between Planckian dissipation and quantum criticality still remains an open problem. (iii) Validity of Planckian dissipation in all cuprates is an important issue. Here, we report reversible change in the superconducting behavior of high temperature superconductor Bi2Sr2Ca2Cu3O10+δ (Bi-2223) under dynamic doping induced by photo-excitation. Two doped Bi-223 samples, which are x = 0.16 (optimal-doped), x = 0.145 (marginal-doped) have been used for this investigation. It is realized that steady state photo-excitation converts magnetic Cu2+ ions to nonmagnetic Cu1+ ions which reduces superconducting transition temperature (Tc) by killing superfluid density. In Bi-2223, one would expect the maximum of suppression of Tc should be at charge transfer gap. We have observed suppression of Tc starts at 2eV, which is the charge transfer gap in Bi-2223. We attribute this transition due to Cu-3d9(Cu2+) to Cu-3d10(Cu+), known as d9 − d10 L transition, photoexcitation makes some Cu ions in CuO2 planes as spinless non-magnetic potential perturbation as Zn2+ does in CuO2 plane in case Zn-doped cuprates. The resistivity varies linearly with temperature with or without photo-excitation. Tc can be varied by almost by 40K be photoexcitation. Superconductivity can be destroyed completely by introducing ≈ 2% of Cu1+ ions for this range of doping. With this controlled variation of Tc and resistivity, detailed investigation has been carried out to reveal Planckian dissipation underdoped to optimally doped Bi-2223. The most important aspect of this investigation is that we could vary Tc dynamically and reversibly, so that LITR and associated Planckian dissipation can be studied over wide ranges of Tc without changing the doping chemically.

Keywords: linear resistivity, HTSC, Planckian dissipation, strange metal

Procedia PDF Downloads 64
3140 Machine Learning-Based Workflow for the Analysis of Project Portfolio

Authors: Jean Marie Tshimula, Atsushi Togashi

Abstract:

We develop a data-science approach for providing an interactive visualization and predictive models to find insights into the projects' historical data in order for stakeholders understand some unseen opportunities in the African market that might escape them behind the online project portfolio of the African Development Bank. This machine learning-based web application identifies the market trend of the fastest growing economies across the continent as well skyrocketing sectors which have a significant impact on the future of business in Africa. Owing to this, the approach is tailored to predict where the investment needs are the most required. Moreover, we create a corpus that includes the descriptions of over more than 1,200 projects that approximately cover 14 sectors designed for some of 53 African countries. Then, we sift out this large amount of semi-structured data for extracting tiny details susceptible to contain some directions to follow. In the light of the foregoing, we have applied the combination of Latent Dirichlet Allocation and Random Forests at the level of the analysis module of our methodology to highlight the most relevant topics that investors may focus on for investing in Africa.

Keywords: machine learning, topic modeling, natural language processing, big data

Procedia PDF Downloads 169
3139 Mixed-Sub Fractional Brownian Motion

Authors: Mounir Zili

Abstract:

We will introduce a new extension of the Brownian motion, that could serve to get a good model of many natural phenomena. It is a linear combination of a finite number of sub-fractional Brownian motions; that is why we will call it the mixed sub-fractional Brownian motion. We will present some basic properties of this process. Among others, we will check that our process is non-markovian and that it has non-stationary increments. We will also give the conditions under which it is a semi-martingale. Finally, the main features of its sample paths will be specified.

Keywords: fractal dimensions, mixed gaussian processes, sample paths, sub-fractional brownian motion

Procedia PDF Downloads 424
3138 Validation of Existing Index Properties-Based Correlations for Estimating the Soil–Water Characteristic Curve of Fine-Grained Soils

Authors: Karim Kootahi, Seyed Abolhasan Naeini

Abstract:

The soil-water characteristic curve (SWCC), which represents the relationship between suction and water content (or degree of saturation), is an important property of unsaturated soils. The conventional method for determining SWCC is through specialized testing procedures. Since these procedures require specialized unsaturated soil testing apparatus and lengthy testing programs, several index properties-based correlations have been developed for estimating the SWCC of fine-grained soils. There are, however, considerable inconsistencies among the published correlations and there is no validation study on the predictive ability of existing correlations. In the present study, all existing index properties-based correlations are evaluated using a high quality worldwide database. The performances of existing correlations are assessed both graphically and quantitatively using statistical measures. The results of the validation indicate that most of the existing correlations provide unacceptable estimates of degree of saturation but the most recent model appears to be promising.

Keywords: SWCC, correlations, index properties, validation

Procedia PDF Downloads 182
3137 Chassis Level Control Using Proportional Integrated Derivative Control, Fuzzy Logic and Deep Learning

Authors: Atakan Aral Ormancı, Tuğçe Arslantaş, Murat Özcü

Abstract:

This study presents the design and implementation of an experimental chassis-level system for various control applications. Specifically, the height level of the chassis is controlled using proportional integrated derivative, fuzzy logic, and deep learning control methods. Real-time data obtained from height and pressure sensors installed in a 6x2 truck chassis, in combination with pulse-width modulation signal values, are utilized during the tests. A prototype pneumatic system of a 6x2 truck is added to the setup, which enables the Smart Pneumatic Actuators to function as if they were in a real-world setting. To obtain real-time signal data from height sensors, an Arduino Nano is utilized, while a Raspberry Pi processes the data using Matlab/Simulink and provides the correct output signals to control the Smart Pneumatic Actuator in the truck chassis. The objective of this research is to optimize the time it takes for the chassis to level down and up under various loads. To achieve this, proportional integrated derivative control, fuzzy logic control, and deep learning techniques are applied to the system. The results show that the deep learning method is superior in optimizing time for a non-linear system. Fuzzy logic control with a triangular membership function as the rule base achieves better outcomes than proportional integrated derivative control. Traditional proportional integrated derivative control improves the time it takes to level the chassis down and up compared to an uncontrolled system. The findings highlight the superiority of deep learning techniques in optimizing the time for a non-linear system, and the potential of fuzzy logic control. The proposed approach and the experimental results provide a valuable contribution to the field of control, automation, and systems engineering.

Keywords: automotive, chassis level control, control systems, pneumatic system control

Procedia PDF Downloads 84
3136 Detection of Viral-Plant Interaction Using Some Pathogenesis Related Protein Genes to Identify Resistant Genes against Potato LeafRoll Virus and Potato Virus Y in Egyptian Isolates

Authors: Dalia. G. Aseel, E. E. Hafez, S. M. Hammad

Abstract:

Viral RNAs of both potato leaf roll virus (PLRV) and potato virus Y (PVY) were extracted from infected potato leaves collected from different Egyptian regions. Differential Display Polymerase Chain Reaction (DD-PCR) using (Endogluconase, β-1,3-glucanases, Chitinase, Peroxidase and Polyphenol oxidase) primers (forward strand) for was performed. The obtained data revealed different banding patterns depending on the viral type and the region of infection. Regarding PLRV, a 58 up regulated and 19 down regulated genes were detected, while, 31 up regulated and 14 down regulated genes were observed in case of PVY. Based on the nucleotide sequencing, variable phylogenetic relationships were reported for the three sequenced genes coding for: Induced stolen tip protein, Disease resistance RPP-like protein and non-specific lipid-transfer protein. In a complementary approach, using the quantitative Real-time PCR, the expressions of PRs genes understudy were estimated in the infected leaves by PLRV and PVY of three potato cultivars (Spunta, Diamont and Cara). The infection with both viruses inhibited the expressions of the five PRs genes. On the contrary, infected leaves by PLRV or PVY elevated the expression of some defense genes. This interaction also may be enhanced and/or inhibited the expression of some genes responsible for the plant defense mechanisms.

Keywords: PLRV, PVY, PR genes, DD-PCR, qRT-PCR, sequencing

Procedia PDF Downloads 344
3135 Optimization Studies on Biosorption of Ni(II) and Cd(II) from Wastewater Using Pseudomonas putida in a Packed Bed Bioreactor

Authors: K.Narasimhulu, Y. Pydi Setty

Abstract:

The objective of this present study is the optimization of process parameters in biosorption of Ni(II) and Cd(II) ions by Pseudomonas putida using Response Surface Methodology in a Packed bed bioreactor. The experimental data were also tested with theoretical models to find the best fit model. The present paper elucidates RSM as an efficient approach for predictive model building and optimization of Ni(II) and Cd(II) ions using Pseudomonas putida. In packed bed biosorption studies, comparison of the breakthrough curves of Ni(II) and Cd(II) for Agar immobilized and PAA immobilized Pseudomonas putida at optimum conditions of flow rate of 300 mL/h, initial metal ion concentration of 100 mg/L and bed height of 20 cm with weight of biosorbent of 12 g, it was found that the Agar immobilized Pseudomonas putida showed maximum percent biosorption and bed saturation occurred at 20 minutes. Optimization results of Ni(II) and Cd(II) by Pseudomonas putida from the Design Expert software were obtained as bed height of 19.93 cm, initial metal ion concentration of 103.85 mg/L, and flow rate of 310.57 mL/h. The percent biosorption of Ni(II) and Cd(II) is 87.2% and 88.2% respectively. The predicted optimized parameters are in agreement with the experimental results.

Keywords: packed bed bioreactor, response surface mthodology, pseudomonas putida, biosorption, waste water

Procedia PDF Downloads 454
3134 Method of Successive Approximations for Modeling of Distributed Systems

Authors: A. Torokhti

Abstract:

A new method of mathematical modeling of the distributed nonlinear system is developed. The system is represented by a combination of the set of spatially distributed sensors and the fusion center. Its mathematical model is obtained from the iterative procedure that converges to the model which is optimal in the sense of minimizing an associated cost function.

Keywords: mathematical modeling, non-linear system, spatially distributed sensors, fusion center

Procedia PDF Downloads 386
3133 Demotivation-Reducing Strategies Employed by Turkish EFL Learners in L2 Writing

Authors: kaveh Jalilzadeh, Maryam Rastgari

Abstract:

Motivation for learning a foreign language is needed for learners of any foreign language to effectively learn language skills. However, there are some factors that lead to the learners’ demotivation. Therefore, teachers of foreign languages, most notably English language which turned out to be an international language for academic and business purposes, need to be well aware of the demotivation sources and know how to reduce learners’ demotivation. This study is an attempt to explore demotivation-reducing strategies employed by Turkish EFL learners in L2 writing. The researchers used a qualitative case study and employed semi-structured interviews to collect data. The informants recruited in this study were 20 English writing lecturers who were selected through purposive sampling among university lecturers/instructors at the state and non-state universities in Istanbul and Ankara. Interviews were transcribed verbatim, and MAXQDA software (version 2022) was used for performing coding and thematic analysis of the data. Findings revealed that Turkish EFL teachers use 18 strategies to reduce language learners’ demotivation. The most frequently reported strategies were: writing in a group, writing about interesting topics, writing about new topics, writing about familiar topics, writing about simple topics, and writing about relevant topics. The findings have practical implications for writing teachers and learners of the English language.

Keywords: phenomenological study, emotional vulnerability, motivation, digital Settings

Procedia PDF Downloads 72
3132 Simulation Study on Effects of Surfactant Properties on Surfactant Enhanced Oil Recovery from Fractured Reservoirs

Authors: Xiaoqian Cheng, Jon Kleppe, Ole Torsaeter

Abstract:

One objective of this work is to analyze the effects of surfactant properties (viscosity, concentration, and adsorption) on surfactant enhanced oil recovery at laboratory scale. The other objective is to obtain the functional relationships between surfactant properties and the ultimate oil recovery and oil recovery rate. A core is cut into two parts from the middle to imitate the matrix with a horizontal fracture. An injector and a producer are at the left and right sides of the fracture separately. The middle slice of the core is used as the model in this paper, whose size is 4cm x 0.1cm x 4.1cm, and the space of the fracture in the middle is 0.1 cm. The original properties of matrix, brine, oil in the base case are from Ekofisk Field. The properties of surfactant are from literature. Eclipse is used as the simulator. The results are followings: 1) The viscosity of surfactant solution has a positive linear relationship with surfactant oil recovery time. And the relationship between viscosity and oil production rate is an inverse function. The viscosity of surfactant solution has no obvious effect on ultimate oil recovery. Since most of the surfactant has no big effect on viscosity of brine, the viscosity of surfactant solution is not a key parameter of surfactant screening for surfactant flooding in fractured reservoirs. 2) The increase of surfactant concentration results a decrease of oil recovery rate and an increase of ultimate oil recovery. However, there are no functions could describe the relationships. Study on economy should be conducted because of the price of surfactant and oil. 3) In the study of surfactant adsorption, assume that the matrix wettability is changed to water-wet when the surfactant adsorption is to the maximum at all cases. And the ratio of surfactant adsorption and surfactant concentration (Cads/Csurf) is used to estimate the functional relationship. The results show that the relationship between ultimate oil recovery and Cads/Csurf is a logarithmic function. The oil production rate has a positive linear relationship with exp(Cads/Csurf). The work here could be used as a reference for the surfactant screening of surfactant enhanced oil recovery from fractured reservoirs. And the functional relationships between surfactant properties and the oil recovery rate and ultimate oil recovery help to improve upscaling methods.

Keywords: fractured reservoirs, surfactant adsorption, surfactant concentration, surfactant EOR, surfactant viscosity

Procedia PDF Downloads 177
3131 Dizziness in the Emergency: A 1 Year Prospective Study

Authors: Nouini Adrâa

Abstract:

Background: The management of dizziness and vertigo can be challenging in the emergency department (ED). It is important to rapidly diagnose vertebrobasilar stroke (VBS), as therapeutic options such as thrombolysis and anticoagulation require prompt decisions. Objective: This study aims to assess the rate of misdiagnosis in patients with dizziness caused by VBS in the ED. Methods and Results: The cohort was comprised of 82 patients with a mean age of 55 years; 51% were women and 49% were men. Among dizzy patients, 15% had VBS. We used Cohen’s kappa test to quantify the agreement between two raters – namely, emergency physicians and neurologists – regarding the causes of dizziness in the ED. The agreement between emergency physicians and neurologists is low for the final diagnosis of central vertigo disorders and moderate for the final diagnosis of VBS. The sensitivity of ED clinal examination for benign conditions such as BPPV was low at 56%. The positive predictive value of the ED clinical examination for VBS was also low at 50%. Conclusion: There is a substantial rate of misdiagnosis in patients with dizziness caused by VBS in the ED. To reduce the number of missing diagnoses of VBS in the future, there is a need to train emergency physicians in neuro vestibular examinations, including the HINTS examination for acute vestibular syndrome (AVS) and the Dix-Hallpike (DH) maneuver for episodic vestibular syndrome. Using video head impulse tests could help reduce the rate of misdiagnosis of VBS in the ED.

Keywords: dizziness, vertigo, vestibular disease, emergency

Procedia PDF Downloads 60
3130 Crack Propagation in Concrete Gravity Dam

Authors: Faramarz Khoshnoudian

Abstract:

A seismic stability assessment of the concrete gravity dam was performed. Initially (Phase 1), a linear response spectrum analysis was performed to verify the potential for crack formation. The result shows the possibility of developing cracks in the upstream face of the dam close to the lowest gallery, which were sufficiently long that the dam would not be stable following the earthquake. The results show the dam has potentially inadequate seismic and post-earthquake resistance and recommended an update of the stability analysis.

Keywords: crack propgation, concrete gravity dam, seismic, assesment

Procedia PDF Downloads 76
3129 High Pressure Thermophysical Properties of Complex Mixtures Relevant to Liquefied Natural Gas (LNG) Processing

Authors: Saif Al Ghafri, Thomas Hughes, Armand Karimi, Kumarini Seneviratne, Jordan Oakley, Michael Johns, Eric F. May

Abstract:

Knowledge of the thermophysical properties of complex mixtures at extreme conditions of pressure and temperature have always been essential to the Liquefied Natural Gas (LNG) industry’s evolution because of the tremendous technical challenges present at all stages in the supply chain from production to liquefaction to transport. Each stage is designed using predictions of the mixture’s properties, such as density, viscosity, surface tension, heat capacity and phase behaviour as a function of temperature, pressure, and composition. Unfortunately, currently available models lead to equipment over-designs of 15% or more. To achieve better designs that work more effectively and/or over a wider range of conditions, new fundamental property data are essential, both to resolve discrepancies in our current predictive capabilities and to extend them to the higher-pressure conditions characteristic of many new gas fields. Furthermore, innovative experimental techniques are required to measure different thermophysical properties at high pressures and over a wide range of temperatures, including near the mixture’s critical points where gas and liquid become indistinguishable and most existing predictive fluid property models used breakdown. In this work, we present a wide range of experimental measurements made for different binary and ternary mixtures relevant to LNG processing, with a particular focus on viscosity, surface tension, heat capacity, bubble-points and density. For this purpose, customized and specialized apparatus were designed and validated over the temperature range (200 to 423) K at pressures to 35 MPa. The mixtures studied were (CH4 + C3H8), (CH4 + C3H8 + CO2) and (CH4 + C3H8 + C7H16); in the last of these the heptane contents was up to 10 mol %. Viscosity was measured using a vibrating wire apparatus, while mixture densities were obtained by means of a high-pressure magnetic-suspension densimeter and an isochoric cell apparatus; the latter was also used to determine bubble-points. Surface tensions were measured using the capillary rise method in a visual cell, which also enabled the location of the mixture critical point to be determined from observations of critical opalescence. Mixture heat capacities were measured using a customised high-pressure differential scanning calorimeter (DSC). The combined standard relative uncertainties were less than 0.3% for density, 2% for viscosity, 3% for heat capacity and 3 % for surface tension. The extensive experimental data gathered in this work were compared with a variety of different advanced engineering models frequently used for predicting thermophysical properties of mixtures relevant to LNG processing. In many cases the discrepancies between the predictions of different engineering models for these mixtures was large, and the high quality data allowed erroneous but often widely-used models to be identified. The data enable the development of new or improved models, to be implemented in process simulation software, so that the fluid properties needed for equipment and process design can be predicted reliably. This in turn will enable reduced capital and operational expenditure by the LNG industry. The current work also aided the community of scientists working to advance theoretical descriptions of fluid properties by allowing to identify deficiencies in theoretical descriptions and calculations.

Keywords: LNG, thermophysical, viscosity, density, surface tension, heat capacity, bubble points, models

Procedia PDF Downloads 275
3128 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain

Authors: Zachary Blanks, Solomon Sonya

Abstract:

Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.

Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection

Procedia PDF Downloads 296
3127 Evaluation of Golden Beam Data for the Commissioning of 6 and 18 MV Photons Beams in Varian Linear Accelerator

Authors: Shoukat Ali, Abdul Qadir Jandga, Amjad Hussain

Abstract:

Objective: The main purpose of this study is to compare the Percent Depth dose (PDD) and In-plane and cross-plane profiles of Varian Golden beam data to the measured data of 6 and 18 MV photons for the commissioning of Eclipse treatment planning system. Introduction: Commissioning of treatment planning system requires an extensive acquisition of beam data for the clinical use of linear accelerators. Accurate dose delivery require to enter the PDDs, Profiles and dose rate tables for open and wedges fields into treatment planning system, enabling to calculate the MUs and dose distribution. Varian offers a generic set of beam data as a reference data, however not recommend for clinical use. In this study, we compared the generic beam data with the measured beam data to evaluate the reliability of generic beam data to be used for the clinical purpose. Methods and Material: PDDs and Profiles of Open and Wedge fields for different field sizes and at different depths measured as per Varian’s algorithm commissioning guideline. The measurement performed with PTW 3D-scanning water phantom with semi-flex ion chamber and MEPHYSTO software. The online available Varian Golden Beam Data compared with the measured data to evaluate the accuracy of the golden beam data to be used for the commissioning of Eclipse treatment planning system. Results: The deviation between measured vs. golden beam data was in the range of 2% max. In PDDs, the deviation increases more in the deeper depths than the shallower depths. Similarly, profiles have the same trend of increasing deviation at large field sizes and increasing depths. Conclusion: Study shows that the percentage deviation between measured and golden beam data is within the acceptable tolerance and therefore can be used for the commissioning process; however, verification of small subset of acquired data with the golden beam data should be mandatory before clinical use.

Keywords: percent depth dose, flatness, symmetry, golden beam data

Procedia PDF Downloads 493
3126 Comparison of Head Kinematics Resulting from Reconstructed Direct and Non-Direct Head-to-Glass Impacts in Ice Hockey

Authors: Ella Bowles, Alexandra Hughes, Clara Karton, T. Blaine Hoshizaki

Abstract:

As a fast-paced and physical game, body contact is an inevitable component in professional men's ice hockey. Despite efforts and advancements in material engineering to create safer equipment, brain trauma continues to persist and burden hockey players. Head and body contact occur in many ways and vary in terms of impact characteristics including the inbound velocity, force, direction, location, and compliance of the surfaces, which in turn influence head dynamics and brain injury outcomes including concussions. It has been reported that glass and board impacts account for approximately 40% of diagnosed concussions. This type of impact often involves the body (i.e., shoulder) contacting the surface prior to head contact, which may influence the head’s dynamic response by interrupting the head’s initial trajectory.  However, the effect of body-first contact during head impacts is not well understood. The purpose of this research is to compare the head’s kinematic response during direct and non-direct (body-first) head-to-glass impacts representative of ice hockey events. Analysis was performed under varying impact conditions of neck stiffness and impact velocity as they have been shown to influence the resulting head dynamics. Data was collected by video analysis of the 2016-17 NHL season and event reconstructions were performed using a Hybrid III headform, an unbiased neck with tension springs (uONSA), and a high-speed impactor. Direct and non-direct impacts were analyzed at three common velocities (3.0, 5.0, 7.0 m/s), and three neck stiffnesses representing low (25%), medium (75%), and high (100%) contraction. Reconstructions representing non-direct head-to-glass impacts used a shoulder bumper as the first point of contact followed by the head’s contact with the glass. The same method and equipment were used to replicate the direct head impacts, where the head made initial contact with the glass. The dynamic response of the head, specifically the peak resultant linear and rotational acceleration, was collected for each impact and compared between direct and non-direct contact under each condition. The results show that non-direct impacts created an initial head acceleration resulting from shoulder contact, preceding a secondary acceleration response from head contact with the glass. Compared to direct head impacts, non-direct impacts consistently resulted in lower linear and rotational acceleration of the head under all neck stiffness and velocity conditions with an average decrease of 32.56 g and 689.33 rad/s2. However, the linear acceleration produced from shoulder contact in non-direct impacts resulted in a higher response compared to direct impacts with low neck stiffness at 5 m/s (55.2g and 41.2g, respectively) and 7 m/s (76.1g and 73.4g, respectively), and medium neck stiffness at 5 m/s (55.4g and 43.9g, respectively ) and 7 m/s (94.4g and 69.5g, respectively. These findings show that non-direct impacts produce complex scenarios that are further influenced by interaction with neck stiffness and velocity. This research provides an understanding of the fundamentals of body-first impacts. With this basis, an understanding of the implications of body-first head-impacts to better distinguish trauma based on events, and adapt protocols, evaluations, technologies, and equipment accordingly.

Keywords: body-first, concussion, direct, hockey, kinematics

Procedia PDF Downloads 12
3125 Artificial Neural Network and Satellite Derived Chlorophyll Indices for Estimation of Wheat Chlorophyll Content under Rainfed Condition

Authors: Muhammad Naveed Tahir, Wang Yingkuan, Huang Wenjiang, Raheel Osman

Abstract:

Numerous models used in prediction and decision-making process but most of them are linear in natural environment, and linear models reach their limitations with non-linearity in data. Therefore accurate estimation is difficult. Artificial Neural Networks (ANN) found extensive acceptance to address the modeling of the complex real world for the non-linear environment. ANN’s have more general and flexible functional forms than traditional statistical methods can effectively deal with. The link between information technology and agriculture will become more firm in the near future. Monitoring crop biophysical properties non-destructively can provide a rapid and accurate understanding of its response to various environmental influences. Crop chlorophyll content is an important indicator of crop health and therefore the estimation of crop yield. In recent years, remote sensing has been accepted as a robust tool for site-specific management by detecting crop parameters at both local and large scales. The present research combined the ANN model with satellite-derived chlorophyll indices from LANDSAT 8 imagery for predicting real-time wheat chlorophyll estimation. The cloud-free scenes of LANDSAT 8 were acquired (Feb-March 2016-17) at the same time when ground-truthing campaign was performed for chlorophyll estimation by using SPAD-502. Different vegetation indices were derived from LANDSAT 8 imagery using ERADAS Imagine (v.2014) software for chlorophyll determination. The vegetation indices were including Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Chlorophyll Absorbed Ratio Index (CARI), Modified Chlorophyll Absorbed Ratio Index (MCARI) and Transformed Chlorophyll Absorbed Ratio index (TCARI). For ANN modeling, MATLAB and SPSS (ANN) tools were used. Multilayer Perceptron (MLP) in MATLAB provided very satisfactory results. For training purpose of MLP 61.7% of the data, for validation purpose 28.3% of data and rest 10% of data were used to evaluate and validate the ANN model results. For error evaluation, sum of squares error and relative error were used. ANN model summery showed that sum of squares error of 10.786, the average overall relative error was .099. The MCARI and NDVI were revealed to be more sensitive indices for assessing wheat chlorophyll content with the highest coefficient of determination R²=0.93 and 0.90 respectively. The results suggested that use of high spatial resolution satellite imagery for the retrieval of crop chlorophyll content by using ANN model provides accurate, reliable assessment of crop health status at a larger scale which can help in managing crop nutrition requirement in real time.

Keywords: ANN, chlorophyll content, chlorophyll indices, satellite images, wheat

Procedia PDF Downloads 150
3124 Comparison Of Data Mining Models To Predict Future Bridge Conditions

Authors: Pablo Martinez, Emad Mohamed, Osama Mohsen, Yasser Mohamed

Abstract:

Highway and bridge agencies, such as the Ministry of Transportation in Ontario, use the Bridge Condition Index (BCI) which is defined as the weighted condition of all bridge elements to determine the rehabilitation priorities for its bridges. Therefore, accurate forecasting of BCI is essential for bridge rehabilitation budgeting planning. The large amount of data available in regard to bridge conditions for several years dictate utilizing traditional mathematical models as infeasible analysis methods. This research study focuses on investigating different classification models that are developed to predict the bridge condition index in the province of Ontario, Canada based on the publicly available data for 2800 bridges over a period of more than 10 years. The data preparation is a key factor to develop acceptable classification models even with the simplest one, the k-NN model. All the models were tested, compared and statistically validated via cross validation and t-test. A simple k-NN model showed reasonable results (within 0.5% relative error) when predicting the bridge condition in an incoming year.

Keywords: asset management, bridge condition index, data mining, forecasting, infrastructure, knowledge discovery in databases, maintenance, predictive models

Procedia PDF Downloads 196
3123 Determinants of Investment in Vaca Muerta, Argentina

Authors: Ivan Poza Martínez

Abstract:

The international energy landscape has been significantly affected by the Covid-19 pandemic and te conflict in Ukraine. The Vaca Muerta sedimentary formation in Argentina´s Neuquén province has become a crucial area for energy production, specifically in the shale gas ad shale oil sectors. The massive investment required for theexploitation of this reserve make it essential to understand te determinants of the investment in the upstream sector at both local ad international levels. The aim of this study is to identify the qualitative and quantitative determinants of investment in Vaca Muerta. The research methodolody employs both quantiative ( econometrics ) and qualitative approaches. A linear regression model is used to analyze the impact in non-conventional hydrocarbons. The study highlights that, in addition to quantitative factors, qualitative variables, particularly the design of a regulatory framework, significantly influence the level of the investment in Vaca Muerta. The analysis reveals the importance of attracting both domestic and foreign capital investment. This research contributes to understanding the factors influencing investment inthe Vaca Muerta regioncomapred to other published studies. It emphasizes to role of qualitative varibles, such as regulatory frameworks, in the development of the shale gas and oil sectors. The study uses a combination ofquantitative data , such a investment figures, and qualitative data, such a regulatory frameworks. The data is collected from various rpeorts and industry publications. The linear regression model is used to analyze the relationship between the variables and the investment in Vaca Muerta. The research addresses the question of what factors drive investment in the Vaca Muerta region, both from a quantitative and qualitative perspective. The study concludes that a combination of quantitative and qualitative factors, including the design of a regulatory framework, plays a significant role in attracting investment in Vaca Muerta. It highlights the importance of these determinants in the developmentof the local energy sector and the potential economic benefits for Argentina and the Southern Cone region.

Keywords: vaca muerta, FDI, shale gas, shale oil, YPF

Procedia PDF Downloads 61
3122 Unraveling the Phonosignological Foundations of Human Language and Semantic Analysis of Linguistic Elements in Cross-Cultural Contexts

Authors: Mahmudjon Kuchkarov, Marufjon Kuchkarov, Mukhayyo Sobirjanova

Abstract:

The origins of human language remain a profound scientific mystery, characterized by speculative theories often lacking empirical support. This study presents findings that may illuminate the genesis of human language, emphasizing its roots in natural, systematic, and repetitive sound patterns. Also, this paper presents the phonosignological and semantic analysis of linguistic elements across various languages and cultures. By utilizing the principles of the "Human Language" theory, we analyze the symbolic, phonetic, and semantic characteristics of elements such as "A", "L", "I", "F", and "四" (pronounced /si/ in Chinese and /shi/ in Japanese). Our findings reveal that natural sounds and their symbolic representations form the foundation of language, with significant implications for understanding religious and secular myths. This paper explores the intricate relationships between these elements and their cultural connotations, particularly focusing on the concept of "descent" in the context of the phonetic sequence "A, L, I, F," and the symbolic associations of the number four with death.

Keywords: empirical research, human language, phonosignology, semantics, sound patterns, symbolism, body shape, body language, coding, Latin alphabet, merging method, natural sound, origin of language, pairing, phonetics, sound and shape production, word origin, word semantic

Procedia PDF Downloads 46