Search results for: fisheries science
1127 Highly Glazed Office Spaces: Simulated Visual Comfort vs Real User Experiences
Authors: Zahra Hamedani, Ebrahim Solgi, Henry Skates, Gillian Isoardi
Abstract:
Daylighting plays a pivotal role in promoting productivity and user satisfaction in office spaces. There is an ongoing trend in designing office buildings with a high proportion of glazing which relatively increases the risk of high visual discomfort. Providing a more realistic lighting analysis can be of high value at the early stages of building design when necessary changes can be made at a very low cost. This holistic approach can be achieved by incorporating subjective evaluation and user behaviour in computer simulation and provide a comprehensive lighting analysis. In this research, a detailed computer simulation model has been made using Radiance and Daysim. Afterwards, this model was validated by measurements and user feedback. The case study building is the school of science at Griffith University, Gold Coast, Queensland, which features highly glazed office spaces. In this paper, the visual comfort predicted by the model is compared with a preliminary survey of the building users to evaluate how user behaviour such as desk position, orientation selection, and user movement caused by daylight changes and other visual variations can inform perceptions of visual comfort. This work supports preliminary design analysis of visual comfort incorporating the effects of gaze shift patterns and views with the goal of designing effective layout for office spaces.Keywords: lighting simulation, office buildings, user behaviour, validation, visual comfort
Procedia PDF Downloads 2131126 Facilitators and Barriers of Family Resilience in Cancer Patients Based on the Theoretical Domains Framework: An Integrative Review
Authors: Jiang Yuqi
Abstract:
Aims: The aim is to analyze the facilitators and barriers of family resilience in cancer patients based on the theoretical domain framework, provide a basis for intervention in the family resilience of cancer patients, and identify the progress and enlightenment of existing intervention projects. Methods: NVivo software was used to code the influencing factors using the framework of 14 theoretical domains as primary nodes; secondary nodes were then refined using thematic analysis, and specific influencing factors were aggregated and analyzed for evaluator reliability. Data sources: PubMed, Embase, CINAHL, Web of Science, Cochrane Library, MEDLINE, CNKI, and Wanfang (search dates: from construction to November 2023). Results: A total of 35 papers were included, with 142 coding points across 14 theoretical domains and 38 secondary nodes. The three most relevant theoretical domains are social influences (norms), the environment and resources, and emotions (mood). The factors with the greatest impact were family support, mood, confidence and beliefs, external support, quality of life, economic circumstances, family adaptation, coping styles with illness, and management. Conclusion: The factors influencing family resilience in cancer patients cover most of the theoretical domains in the Theoretical Domains Framework and are cross-cutting, multi-sourced, and complex. Further in-depth exploration of the key factors influencing family resilience is necessary to provide a basis for intervention research.Keywords: cancer, survivors, family resilience, theoretical domains framework, literature review
Procedia PDF Downloads 461125 Exploring the Impact of Artificial Intelligence (AI) in the Context of English as a Foreign Language (EFL): A Comprehensive Bibliometric Study
Authors: Kate Benedicta Amenador, Dianjian Wang, Bright Nkrumah
Abstract:
This extensive bibliometric study explores the dynamic influence of artificial intelligence in the field of English as a Foreign Language (EFL) between 2012 and 2024. The study, which examined 4,500 articles from Google Scholar, Modern Language Association Linguistics Abstracts, Web of Science, Scopus, Researchgate, and library genesis databases, indicates that AI integration in EFL is on the rise. This notable increase is ascribed to a variety of transformative events, including increased academic funding for higher education and the COVID-19 epidemic. The results of the study identify leading contributors, prominent authors, publishers and sources, with the United States, China and the United Kingdom emerging as key contributors. The co-occurrence analysis of key terms reveals five clusters highlighting patterns in AI-enhanced language instruction and learning, including evaluation strategies, educational technology, learning motivation, EFL teaching aspects, and learner feedback. The study also discusses the impact of various AIs in enhancing EFL writing skills with software such as Grammarly, Quilbot, and Chatgpt. The current study recognizes limitations in database selection and linguistic constraints. Nevertheless, the results provide useful insights for educators, researchers and policymakers, inspiring and guiding a cross-disciplinary collaboration and creative pedagogical techniques and approaches to teaching and learning in the future.Keywords: artificial intelligence, bibliometrics study, VOSviewer visualization, English as a foreign language
Procedia PDF Downloads 321124 Development of a Dairy Drink Made of Cocoa, Coffee and Orange By-Products with Antioxidant Activity
Authors: Gianella Franco, Karen Suarez, María Quijano, Patricia Manzano
Abstract:
Agro-industries generate large amounts of waste, which are mostly untapped. This research was carried out to use cocoa, coffee and orange industrial by-products to develop a dairy drink. The product was prepared by making a 10% aqueous extract of the mixture of cocoa and coffee beans shells and orange peel. Extreme Vertices Mixture Design was applied to vary the proportions of the ingredients of the aqueous extract, getting 13 formulations. Each formulation was mixed with skim milk and pasteurized. The attributes of taste, smell, color and appearance were evaluated by a semi-trained panel by multiple comparisons test, comparing the formulations against a standard marked as "R", which consisted of a coffee commercial drink. The formulations with the highest scores were selected to maximize the Total Polyphenol Content (TPC) through a process of linear optimization resulting in the formulation 80.5%: 18.37%: 1.13% of cocoa bean shell, coffee bean shell and orange peel, respectively. The Total Polyphenol Content was 4.99 ± 0.34 mg GAE/g of drink, DPPH radical scavenging activity (%) was 80.14 ± 0.05 and caffeine concentration of 114.78 mg / L, while the coffee commercial drink presented 3.93 ± 0.84 mg GAE / g drink, 55.54 ± 0.03 % and 47.44 mg / L of TPC, DPPH radical scavenging activity and caffeine content, respectively. The results show that it is possible to prepare an antioxidant - rich drink with good sensorial attributes made of industrial by-products.Keywords: DPPH, polyphenols, waste, food science
Procedia PDF Downloads 4671123 A Laboratory–Designed Activity in Ecology to Demonstrate the Allelopathic Property of the Philippine Chromolaena odorata L. (King and Robinson) Leaf Extracts
Authors: Lina T. Codilla
Abstract:
This study primarily designed a laboratory activity in ecology to demonstrate the allelopathic property of the Philippine Chromolaena odorata L. (hagonoy) leaf extracts to Lycopersicum esculentum (M), commonly known as tomatoes. Ethanol extracts of C. odorata leaves were tested on seed germination and seedling growth of L. esculentum in 7-day and 14-day observation periods. Analysis of variance and Tukey’s HSD post hoc test was utilized to determine differences among treatments while Pre–test – Post–test experimental design was utilized in the determination of the effectiveness of the designed laboratory activity. Results showed that the 0.5% concentration level of ethanol leaf extracts significantly inhibited germination and seedling growth of L. esculentum in both observation periods. These results were used as the basis in the development of instructional material in ecology. The laboratory activity underwent face validation by five (5) experts in various fields of specialization, namely, Biological Sciences, Chemistry and Science Education. The readability of the designed laboratory activity was determined using a Cloze Test. Pilot testing was conducted and showed that the laboratory activity developed is found to be a very effective tool in supplementing learning about allelopathy in ecology class. Thus, it is recommended for use among ecology classes but modification will be made in a small – scale basis to minimize time consumption.Keywords: allelopathy, chromolaena odorata l. (hagonoy), designed-laboratory activity, organic herbicide students’ performance
Procedia PDF Downloads 2941122 An Orphan Software Engineering Course: Supportive Ways toward a True Software Engineer
Authors: Haya Sammana
Abstract:
A well-defined curricula must be adopted to meet the increasing complexity and diversity in the software applications. In reality, some IT majors such as computer science and computer engineering receive the software engineering education in a single course which is considered as a big challenged for the instructors and universities. Also, it requires students to gain the most of practical experiences that simulate the real work in software companies. Furthermore, we have noticed that there is no consensus on how, when and what to teach in that introductory course to gain the practical experiences that are required by the software companies. Because all of software engineering disciplines will not fit in just one course, so the course needs reasonable choices in selecting its topics. This arises an important question which is an essential one to ask: Is this course has the ability to formulate a true software engineer that meets the needs of industry? This question arises a big challenge in selecting the appropriate topics. So answering this question is very important for the next undergraduate students. During teaching this course in the curricula, the feedbacks from an undergraduate students and the keynotes of the annual meeting for an advisory committee from industrial side provide a probable answer for the proposed question: it is impossible to build a true software engineer who possesses all the essential elements of software engineering education such teamwork, communications skills, project management skills and contemporary industrial practice from one course and it is impossible to have a one course covering all software engineering topics. Besides the used teaching approach, the author proposes an implemented three supportive ways aiming for mitigating the expected risks and increasing the opportunity to build a true software engineer.Keywords: software engineering course, software engineering education, software experience, supportive approach
Procedia PDF Downloads 3581121 Effect of Sulfur on the High-Temperature Oxidation of DIN1.4091
Abstract:
Centrifugal casting is a metal casting method that uses forces make by centripetal acceleration to distribute molten material in mold. Centrifugal cast parts manufactured in industry contain gas pipes and water supply lines, moreover rings, turbocharger, bushings, brake drums. Turbochargers were exposed to exhaust temperatures of 900-1050°C require a material for the corrosion resistance that will withstand such high component temperatures during the entire service life of the vehicle. Hence, the study of corrosion resistance for turbocharger is important for practical application. DIN1.4091 steels were used widely. The DIN1.4091 steels whose compositions were Fe-34.4Cr-14.5Ni-2.5Mo-0.4W-0.4Mn-0.5Si-(0.009 or 0.35)S (wt.%) were centrifugally cast, and oxidized at 900°C for 50-200 h in order to find the effect of sulfur on the high-temperature oxidation of Fe-34.4Cr-14.5Ni-2.5Mo-0.4W-0.4Mn-0.5Si-(0.009 or 0.35)S (wt.%) alloys. These alloys formed oxide scales that consisted primarily of Cr₂O₃ as the major oxide and Cr₂MnO₄ as the minor one through preferential oxidation of Cr and Mn. Cr formed a thin CrOx oxide film on the surface to prevent further oxidation, and when it is added more than 20%, the sulphide decreased corrosion rate. The high affinity of Mn with S, led to the formation of scattered MnS inclusions, particularly in the 0.35S-containing cast alloy. Sulfur was harmful to the oxidation resistance because it deteriorated the scale/alloy adherence so as to accelerate the adherence and compactness of the formed scales. Acknowledgement: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1A2B1013169).Keywords: centrifugal casting, turbocharger, sulfur, oxidation, Fe-34.4Cr-14.5Ni alloy
Procedia PDF Downloads 1991120 Simulation Analysis of a Full-Scale Five-Story Building with Vibration Control Dampers
Authors: Naohiro Nakamura
Abstract:
Analysis methods to accurately estimate the behavior of buildings when earthquakes occur is very important for improving the seismic safety of such buildings. Recently, the use of damping devices has increased significantly and there is a particular need to appropriately evaluate the behavior of buildings with such devices during earthquakes in the design stage. At present, however, the accuracy of the analysis evaluations is not sufficient. One reason is that the accuracy of current analysis methods has not been appropriately verified because there is very limited data on the behavior of actual buildings during earthquakes. Many types of shaking table test of large structures are performed at the '3-Dimensional Full-Scale Earthquake Testing Facility' (nicknamed 'E-Defense') operated by the National Research Institute of Earth Science and Disaster Prevention (NIED). In this study, simulations using 3- dimensional analysis models were conducted on shaking table test of a 5-story steel-frame structure with dampers. The results of the analysis correspond favorably to the test results announced afterward by the committee. However, the suitability of the parameters and models used in the analysis and the influence they had on the responses remain unclear. Hence, we conducted additional analysis and studies on these models and parameters. In this paper, outlines of the test are shown and the utilized analysis model is explained. Next, the analysis results are compared with the test results. Then, the additional analyses, concerning with the hysteresis curve of the dampers and the beam-end stiffness of the frame, are investigated.Keywords: three-dimensional analysis, E-defense, full-scale experimen, vibration control damper
Procedia PDF Downloads 1901119 Antihyperglycemic Effect of Aqueous Extract of Foeniculum vulgare Miller in Diabetic Mice
Authors: Singh Baljinder, Sharma Navneet
Abstract:
Foeniculum vulgare Miller is a biennial medicinal and aromatic plant belonging to the family Apiaceae (Umbelliferaceae). It is a hardy, perennial–umbelliferous herb with yellow flowers and feathery leaves. The aim is to study the control of blood glucose in alloxan induced diabetic mice.Method used for extraction was continuous hot percolation method in which Soxhlet apparatus was used.95%ethanol was used as solvent. Male albino mice weighing about 20-25 g obtained from Guru Angad Dev University of Veterinary Science, Ludhiana were used for the study. Diabetes was induced by a single i.p. injection of 125 mg/kg of alloxan monohydrate in sterile saline (11). After 48 h, animals with serum glucose level above 200 mg/dl (diabetic) were selected for the study. Blood samples from mice were collected by retro-orbital puncture (ROP) technique. Serum glucose levels were determined by glucose oxidase and peroxidase method. Single administration (single dose) of aqueous extract of fennel (25, 50, and 100 mg/kg, p.o.) in diabetic Swiss albino mice, showed reduction in serum glucose level after 45 min. Maximum reduction in serum glucose level was seen at doses of 100 mg/kg. Aqueous extract of fennel in all doses except 25 mg/kg did not cause any significant decrease in blood glucose. It may be said that the aqueous extract of fennel decreased the serum glucose level and improved glucose tolerance owing to the presence of aldehyde moiety. The aqueous extract of fennel has antihyperglycemic activity as it lowers serum glucose level in diabetic mice.Keywords: Foeniculum vulgare Miller, antihyperglycemic, diabetic mice, Umbelliferaceae
Procedia PDF Downloads 2861118 A Concept Analysis of Self-Efficacy for Cancer Pain Management
Authors: Yi-Fung Lin, Yuan-Mei Liao
Abstract:
Background: Pain is common among patients with cancer and is also one of the most disturbing symptoms. As this suffering is subjective, if patients proactively participate in their pain self-management, pain could be alleviated effectively. However, not everyone can carry out self-management very well because human behavior is a product of the cognition process. In this process, we can see that "self-efficacy" plays an essential role in affecting human behaviors. Methods: We used the eight steps of concept analysis proposed by Walker and Avant to clarify the concept of “self-efficacy for cancer pain management.” A comprehensive literature review was conducted for relevant publications that were published during the period of 1977 to 2021. We used several keywords, including self-efficacy, self-management, concept analysis, conceptual framework, and cancer pain, to search the following databases: PubMed, CINAHL, Web of Science, and Embase. Results: We identified three defining attributes for the concept of self-efficacy for cancer pain management, including pain management abilities, confidence, and continuous pain monitoring, and recognized six skills related to pain management abilities: problem-solving, decision-making, resource utilization, forming partnerships between medical professionals and patients, planning actions, and self-regulation. Five antecedents for the concept of self-efficacy for cancer pain management were identified: pain experience, existing cancer pain, pain-related knowledge, a belief in pain management, and physical/mental state. Consequences related to self-efficacy for cancer pain management were achievement of pain self-management, well pain control, satisfying quality of life, and containing motivation. Conclusions: This analysis provides researchers with a clearer understanding of the concept of “self-efficacy for cancer pain management.” The findings presented here provide a foundation for future research and nursing interventions to enhance self-efficacy for cancer pain management.Keywords: cancer pain, concept analysis, self-efficacy, self-management
Procedia PDF Downloads 701117 Convolutional Neural Networks versus Radiomic Analysis for Classification of Breast Mammogram
Authors: Mehwish Asghar
Abstract:
Breast Cancer (BC) is a common type of cancer among women. Its screening is usually performed using different imaging modalities such as magnetic resonance imaging, mammogram, X-ray, CT, etc. Among these modalities’ mammogram is considered a powerful tool for diagnosis and screening of breast cancer. Sophisticated machine learning approaches have shown promising results in complementing human diagnosis. Generally, machine learning methods can be divided into two major classes: one is Radiomics analysis (RA), where image features are extracted manually; and the other one is the concept of convolutional neural networks (CNN), in which the computer learns to recognize image features on its own. This research aims to improve the incidence of early detection, thus reducing the mortality rate caused by breast cancer through the latest advancements in computer science, in general, and machine learning, in particular. It has also been aimed to ease the burden of doctors by improving and automating the process of breast cancer detection. This research is related to a relative analysis of different techniques for the implementation of different models for detecting and classifying breast cancer. The main goal of this research is to provide a detailed view of results and performances between different techniques. The purpose of this paper is to explore the potential of a convolutional neural network (CNN) w.r.t feature extractor and as a classifier. Also, in this research, it has been aimed to add the module of Radiomics for comparison of its results with deep learning techniques.Keywords: breast cancer (BC), machine learning (ML), convolutional neural network (CNN), radionics, magnetic resonance imaging, artificial intelligence
Procedia PDF Downloads 2251116 A Preliminary Literature Review of Digital Transformation Case Studies
Authors: Vesna Bosilj Vukšić, Lucija Ivančić, Dalia Suša Vugec
Abstract:
While struggling to succeed in today’s complex market environment and provide better customer experience and services, enterprises encompass digital transformation as a means for reaching competitiveness and foster value creation. A digital transformation process consists of information technology implementation projects, as well as organizational factors such as top management support, digital transformation strategy, and organizational changes. However, to the best of our knowledge, there is little evidence about digital transformation endeavors in organizations and how they perceive it – is it only about digital technologies adoption or a true organizational shift is needed? In order to address this issue and as the first step in our research project, a literature review is conducted. The analysis included case study papers from Scopus and Web of Science databases. The following attributes are considered for classification and analysis of papers: time component; country of case origin; case industry and; digital transformation concept comprehension, i.e. focus. Research showed that organizations – public, as well as private ones, are aware of change necessity and employ digital transformation projects. Also, the changes concerning digital transformation affect both manufacturing and service-based industries. Furthermore, we discovered that organizations understand that besides technologies implementation, organizational changes must also be adopted. However, with only 29 relevant papers identified, research positioned digital transformation as an unexplored and emerging phenomenon in information systems research. The scarcity of evidence-based papers calls for further examination of this topic on cases from practice.Keywords: digital strategy, digital technologies, digital transformation, literature review
Procedia PDF Downloads 2171115 Quantitative, Qualitative, and Technological Challenges for Higher Education in Jordan Critical Analytical Study
Authors: Habes Moh’d Khalifeh Hatamleh, Shukri Refai Ibrahim Marashdh
Abstract:
The study came with the aim of identifying the most prominent quantitative, qualitative, and technological challenges facing the higher education system in Jordan as a dilemma in light of the technological revolution that had a radical contribution to changing the face of science and knowledge in various fields of higher education in Jordan. Human societies that require the adoption of scientific research and its basics as a clear entrance aimed at serving the community and upgrading it civilly. The number of private and public universities has increased, and many students have been accepted for all levels of study in the bachelor’s, higher diploma, master’s and doctoral programs, and the quantitative growth has been accompanied by many negatives, which requires renewal and development in the field of higher education, which led to the emergence of many challenges, and the qualitative challenge in terms of relevance, quality and goodness constitutes an important requirement for the improvement of teaching, scientific research and services in light of the social demand for higher education, in order to reach the quality. The real challenge facing our country is to enter the civilization of advanced technology, which has become the main factor and the starting point for preparing staff capable of accomplishing this transformation and creating an appropriate educational environment for the student to help him to use the sources of knowledge. This study can provide a set of recommendations and proposals that may contribute to addressing challenges and contributing to improving educational outcomes in light of the requirements of the labor market and the needs of society.Keywords: quantitative, qualitative, technological, challenges, higher education
Procedia PDF Downloads 781114 Quantitative, Qualitative, and Technological Challenges for Higher Education in Jordan Critical Analytical Study
Authors: Habes Moh’d Khalifeh Hatamleh, Shukri Refai Ibrahim Marashdh
Abstract:
The study came with the aim of identifying the most prominent quantitative, qualitative, and technological challenges facing the higher education system in Jordan as a dilemma in light of the technological revolution that had a radical contribution to changing the face of science and knowledge in various fields of higher education in Jordan. Human societies that require the adoption of scientific research and its basics as a clear entrance aimed at serving the community and upgrading it civilly. The number of private and public universities has increased, and many students have been accepted for all levels of study in the bachelor’s, higher diploma, master’s and doctoral programs, and the quantitative growth has been accompanied by many negatives, which requires renewal and development in the field of higher education, which led to the emergence of many challenges, and the qualitative challenge in terms of relevance, quality and goodness constitutes an important requirement for the improvement of teaching, scientific research and services in light of the social demand for higher education, in order to reach the quality. The real challenge facing our country is to enter the civilization of advanced technology, which has become the main factor and the starting point for preparing staff capable of accomplishing this transformation and creating an appropriate educational environment for the student to help him to use the sources of knowledge. This study can provide a set of recommendations and proposals that may contribute to addressing challenges and contributing to improving educational outcomes in light of the requirements of the labor market and the needs of society.Keywords: quantitative, qualitative, technological, challenges, higher education
Procedia PDF Downloads 831113 The Effect of Health Program on the Fitness Ability of Abnormal BMI University Students
Authors: Hui-Fang Lee, Meng-Chu Liu, Wen-Chi Lu, Hsuan-Jung Hsieh
Abstract:
The purpose of the study was to examine the effect of health program on the fitness ability of abnormal BMI students of Ching-Yun University of Science and Technology. In order to achieve this purpose, self-regulation theory and dietary education were applied, and the effect of 10-week sports activities and three-day diet records on pre-test and post-test of fitness activities was analyzed. There were 40 original participants. Then, nine people who were with normal BMI, low attendance or unfinished fitness test were eliminated from this research. The valid samples were 31 (77.5%) participants. The fitness activities included sit-bending, one minute sit-up, standing long jump, and three-minute stage boarding. The averages of three-day diet records were compared, and differences of pre-test and post-test of the four fitness activities were analyzed with paired-samples t test. The results showed that there was a significant difference between pre-test and post of male students’ BMI and one minute sit-up. Females’ sit-bending and one minute sit-up had the same effect. Females had high fat intake in three-day diet records. The research showed that the use of self-regulation theory and dietary education, the implementation of sports activities and three-day diet records could significantly enhance the physical fitness indicators or effects. While in the course of sports, we should guide students to think about the gap between self-behavior and ideal behavior, then realize the main reasons and improving methods, and finally go towards the goal and improve the effect of physical fitness.Keywords: self-regulation theory, dietary education, three-day diet records, physical fitness
Procedia PDF Downloads 3231112 Computer Countenanced Diagnosis of Skin Nodule Detection and Histogram Augmentation: Extracting System for Skin Cancer
Authors: S. Zith Dey Babu, S. Kour, S. Verma, C. Verma, V. Pathania, A. Agrawal, V. Chaudhary, A. Manoj Puthur, R. Goyal, A. Pal, T. Danti Dey, A. Kumar, K. Wadhwa, O. Ved
Abstract:
Background: Skin cancer is now is the buzzing button in the field of medical science. The cyst's pandemic is drastically calibrating the body and well-being of the global village. Methods: The extracted image of the skin tumor cannot be used in one way for diagnosis. The stored image contains anarchies like the center. This approach will locate the forepart of an extracted appearance of skin. Partitioning image models has been presented to sort out the disturbance in the picture. Results: After completing partitioning, feature extraction has been formed by using genetic algorithm and finally, classification can be performed between the trained and test data to evaluate a large scale of an image that helps the doctors for the right prediction. To bring the improvisation of the existing system, we have set our objectives with an analysis. The efficiency of the natural selection process and the enriching histogram is essential in that respect. To reduce the false-positive rate or output, GA is performed with its accuracy. Conclusions: The objective of this task is to bring improvisation of effectiveness. GA is accomplishing its task with perfection to bring down the invalid-positive rate or outcome. The paper's mergeable portion conflicts with the composition of deep learning and medical image processing, which provides superior accuracy. Proportional types of handling create the reusability without any errors.Keywords: computer-aided system, detection, image segmentation, morphology
Procedia PDF Downloads 1501111 Cadmium Concentrations in Breast Milk and Factors of Exposition: Systematic Review
Authors: Abha Cherkani Hassani, Imane Ghanname, Nezha Mouane
Abstract:
Background: This is the first systematic review summarizing 43 years of research from 36 countries in the assessment of cadmium in breast milk; a suitable matrix in human biomonitoring. Objectives: To report from the published literature the levels of cadmium in breast milk and the affecting factors causing the increase of cadmium concentrations; also to gather several quantitative data which might be useful to evaluate the international degrees of maternal and infant exposure. Methods: We reviewed the literature for studies reporting quantitative data about cadmium levels in human breast milk in the world that have been published between 1971 and 2014 and that are available on Pubmed, Science direct and Google scholar. The aim of the study, country, period of samples collection, size of samples, sampling method, time of lactation, mother’s age, area of residence, cadmium concentration and other information were extracted. Results: 67 studies were selected and included in this systematic review. Some concentrations greatly exceed the limit of the WHO, However about 50% of the studies had less than 1 µg/l cadmium concentration (the recommendation of the WHO); as well many factors have shown their implication in breast milk contamination by Cadmium as lactation stage, smoking, diet, supplement intake, interaction with other mineral elements, age of mothers, parity and other parameters. Conclusion: Breast milk is a pathway of maternal excretion of cadmium. It is also a biological indicator of the degree of environmental pollution and cadmium exposure of the lactating women and the nourished infant. Therefore preventive measures and continuous monitoring are necessary.Keywords: breast milk, cadmium level, factors, systematic review
Procedia PDF Downloads 5241110 Internet Economy: Enhancing Information Communication Technology Adaptation, Service Delivery, Content and Digital Skills for Small Holder Farmers in Uganda
Authors: Baker Ssekitto, Ambrose Mbogo
Abstract:
The study reveals that indeed agriculture employs over 70% of Uganda’s population, of which majority are youth and women. The study further reveals that over 70% of the farmers are smallholder farmers based in rural areas, whose operations are greatly affected by; climate change, weak digital skills, limited access to productivity knowledge along value chains, limited access to quality farm inputs, weak logistics systems, limited access to quality extension services, weak business intelligence, limited access to quality markets among others. It finds that the emerging 4th industrial revolution powered by artificial intelligence, 5G and data science will provide possibilities of addressing some of these challenges. Furthermore, the study finds that despite rapid development of ICT4Agric Innovation, their uptake is constrained by a number of factors including; limited awareness of these innovations, low internet and smart phone penetration especially in rural areas, lack of appropriate digital skills, inappropriate programmes implementation models which are project and donor driven, limited articulation of value addition to various stakeholders among others. Majority of farmers and other value chain actors lacked knowledge and skills to harness the power of ICTs, especially their application of ICTs in monitoring and evaluation on quality of service in the extension system and farm level processes.Keywords: artificial intelligence, productivity, ICT4agriculture, value chain, logistics
Procedia PDF Downloads 781109 Big Data in Telecom Industry: Effective Predictive Techniques on Call Detail Records
Authors: Sara ElElimy, Samir Moustafa
Abstract:
Mobile network operators start to face many challenges in the digital era, especially with high demands from customers. Since mobile network operators are considered a source of big data, traditional techniques are not effective with new era of big data, Internet of things (IoT) and 5G; as a result, handling effectively different big datasets becomes a vital task for operators with the continuous growth of data and moving from long term evolution (LTE) to 5G. So, there is an urgent need for effective Big data analytics to predict future demands, traffic, and network performance to full fill the requirements of the fifth generation of mobile network technology. In this paper, we introduce data science techniques using machine learning and deep learning algorithms: the autoregressive integrated moving average (ARIMA), Bayesian-based curve fitting, and recurrent neural network (RNN) are employed for a data-driven application to mobile network operators. The main framework included in models are identification parameters of each model, estimation, prediction, and final data-driven application of this prediction from business and network performance applications. These models are applied to Telecom Italia Big Data challenge call detail records (CDRs) datasets. The performance of these models is found out using a specific well-known evaluation criteria shows that ARIMA (machine learning-based model) is more accurate as a predictive model in such a dataset than the RNN (deep learning model).Keywords: big data analytics, machine learning, CDRs, 5G
Procedia PDF Downloads 1391108 Non-Linear Assessment of Chromatographic Lipophilicity and Model Ranking of Newly Synthesized Steroid Derivatives
Authors: Milica Karadzic, Lidija Jevric, Sanja Podunavac-Kuzmanovic, Strahinja Kovacevic, Anamarija Mandic, Katarina Penov Gasi, Marija Sakac, Aleksandar Okljesa, Andrea Nikolic
Abstract:
The present paper deals with chromatographic lipophilicity prediction of newly synthesized steroid derivatives. The prediction was achieved using in silico generated molecular descriptors and quantitative structure-retention relationship (QSRR) methodology with the artificial neural networks (ANN) approach. Chromatographic lipophilicity of the investigated compounds was expressed as retention factor value logk. For QSRR modeling, a feedforward back-propagation ANN with gradient descent learning algorithm was applied. Using the novel sum of ranking differences (SRD) method generated ANN models were ranked. The aim was to distinguish the most consistent QSRR model that can be found, and similarity or dissimilarity between the models that could be noticed. In this study, SRD was performed with average values of retention factor value logk as reference values. An excellent correlation between experimentally observed retention factor value logk and values predicted by the ANN was obtained with a correlation coefficient higher than 0.9890. Statistical results show that the established ANN models can be applied for required purpose. This article is based upon work from COST Action (TD1305), supported by COST (European Cooperation in Science and Technology).Keywords: artificial neural networks, liquid chromatography, molecular descriptors, steroids, sum of ranking differences
Procedia PDF Downloads 3191107 Non-Linear Regression Modeling for Composite Distributions
Authors: Mostafa Aminzadeh, Min Deng
Abstract:
Modeling loss data is an important part of actuarial science. Actuaries use models to predict future losses and manage financial risk, which can be beneficial for marketing purposes. In the insurance industry, small claims happen frequently while large claims are rare. Traditional distributions such as Normal, Exponential, and inverse-Gaussian are not suitable for describing insurance data, which often show skewness and fat tails. Several authors have studied classical and Bayesian inference for parameters of composite distributions, such as Exponential-Pareto, Weibull-Pareto, and Inverse Gamma-Pareto. These models separate small to moderate losses from large losses using a threshold parameter. This research introduces a computational approach using a nonlinear regression model for loss data that relies on multiple predictors. Simulation studies were conducted to assess the accuracy of the proposed estimation method. The simulations confirmed that the proposed method provides precise estimates for regression parameters. It's important to note that this approach can be applied to datasets if goodness-of-fit tests confirm that the composite distribution under study fits the data well. To demonstrate the computations, a real data set from the insurance industry is analyzed. A Mathematica code uses the Fisher information algorithm as an iteration method to obtain the maximum likelihood estimation (MLE) of regression parameters.Keywords: maximum likelihood estimation, fisher scoring method, non-linear regression models, composite distributions
Procedia PDF Downloads 331106 Eliciting and Confirming Data, Information, Knowledge and Wisdom in a Specialist Health Care Setting - The Wicked Method
Authors: Sinead Impey, Damon Berry, Selma Furtado, Miriam Galvin, Loretto Grogan, Orla Hardiman, Lucy Hederman, Mark Heverin, Vincent Wade, Linda Douris, Declan O'Sullivan, Gaye Stephens
Abstract:
Healthcare is a knowledge-rich environment. This knowledge, while valuable, is not always accessible outside the borders of individual clinics. This research aims to address part of this problem (at a study site) by constructing a maximal data set (knowledge artefact) for motor neurone disease (MND). This data set is proposed as an initial knowledge base for a concurrent project to develop an MND patient data platform. It represents the domain knowledge at the study site for the duration of the research (12 months). A knowledge elicitation method was also developed from the lessons learned during this process - the WICKED method. WICKED is an anagram of the words: eliciting and confirming data, information, knowledge, wisdom. But it is also a reference to the concept of wicked problems, which are complex and challenging, as is eliciting expert knowledge. The method was evaluated at a second site, and benefits and limitations were noted. Benefits include that the method provided a systematic way to manage data, information, knowledge and wisdom (DIKW) from various sources, including healthcare specialists and existing data sets. Limitations surrounded the time required and how the data set produced only represents DIKW known during the research period. Future work is underway to address these limitations.Keywords: healthcare, knowledge acquisition, maximal data sets, action design science
Procedia PDF Downloads 3591105 Counter-Terrorism and Civil Society in Nigeria
Authors: Emeka Thaddues Njoku
Abstract:
Since 2009, the Nigerian Government has established diverse counter-terrorism legislations and practices in response terrorism in North Eastern part of the country. However, these measures have hampered not only the ability of civil society organizations to sustain the autonomous spaces that define/locate them at the intersection between the state and public but also the balance between freedom and security. Hence, this study examines the various elements associated with the interface between the counter terrorism security framework of the government and the capacity of civil society organizations to carry out their mandates in Nigeria. In order to achieve this, the survey research of the ex-post facto type will be adopted using the multi-stage sampling technique. A total of two hundred (200) copies of questionnaire will be administered to members of the civil society organizations and 24 In-Depth Interviews (IDI) will be conducted for officials of security agencies, Ministry of Defence and operators of civil society organizations. Fifty respondents will be drawn from each civil society organisations in the areas of humanitarian assistance, human rights Advocacy, development-oriented, peace-building. Moreover, 24 interviewees drawn from the key members of the security agencies (6), Ministry of Defence (6) and 12 operators of civil society organizations-three respondents each will represent the four civil society organizations mentioned above. Also, secondary data will be used to complement In-depth Interview (IDI) sessions. All collected data will be coded and analysed using descriptive statistics of frequency counts and simple percentage in the Statistical Package for Social Science (SPSS). Content analysis will be used for the In-depth interview and secondary data.Keywords: counter-terrorism, civil society organizations, freedom, terrorism
Procedia PDF Downloads 3911104 The Roots of the Robust and Looting Economy (poverty and inequality) in Iran after the 1979 Revolution, From the Perspective of Acem Oglu & Robinson theory
Authors: Vorya Shabrandi
Abstract:
The study factors of poverty and inequality causes in countries is the subject of many scholars and economists in the last century, theorists in various areas of economic science know different factors as the roots of poverty and inequality in Iran after the 1979 revolution. Economists have emphasized political elements and political scientists on political elements. This research reviews the political economy of poverty and corruption in Iran after the revolution. The findings of this research, based on AcemOgluand Robinson theory, show how the institutional structural dependence of Iran's economy to raw has led to the growth of its non-economic economic institutions and its consequence of the continuity of the release and looting economy and poverty and inequality in Iran's political economy Is. This research was carried out using descriptive-analytical and comparative methods. Many economists try to justify the conditions of the country based on war, sanctions; And the external factors, and ... knows. In this study, we tried to examine the roots of poverty and the looting economy of Iran by implementing Research AcemOgluand Robinson on the institutions and roots of poverty. Looking for a framework for understanding why countries, such as Iran, the reason for the difference in revenue in different countries, as well as the poor or wealth of countries, regardless of the non-effective and non-professional institutions, and why inefficient institutions in some countries, such as Iran, such as Iran It remains and does not have a voluntary political powers to change these institutions. Findings The research shows that institutions are broadly the main reason for the roots of the robust and looting economy (poverty and inequality) in Iran.Keywords: Iran, plunderable (Loot) economy, raw shopping, poverty and inequality, acem oglu and robinson, non-inclusive institutions
Procedia PDF Downloads 1401103 Information Overload, Information Literacy and Use of Technology by Students
Authors: Elena Krelja Kurelović, Jasminka Tomljanović, Vlatka Davidović
Abstract:
The development of web technologies and mobile devices makes creating, accessing, using and sharing information or communicating with each other simpler every day. However, while the amount of information constantly increasing it is becoming harder to effectively organize and find quality information despite the availability of web search engines, filtering and indexing tools. Although digital technologies have overall positive impact on students’ lives, frequent use of these technologies and digital media enriched with dynamic hypertext and hypermedia content, as well as multitasking, distractions caused by notifications, calls or messages; can decrease the attention span, make thinking, memorizing and learning more difficult, which can lead to stress and mental exhaustion. This is referred to as “information overload”, “information glut” or “information anxiety”. Objective of this study is to determine whether students show signs of information overload and to identify the possible predictors. Research was conducted using a questionnaire developed for the purpose of this study. The results show that students frequently use technology (computers, gadgets and digital media), while they show moderate level of information literacy. They have sometimes experienced symptoms of information overload. According to the statistical analysis, higher frequency of technology use and lower level of information literacy are correlated with larger information overload. The multiple regression analysis has confirmed that the combination of these two independent variables has statistically significant predictive capacity for information overload. Therefore, the information science teachers should pay attention to improving the level of students’ information literacy and educate them about the risks of excessive technology use.Keywords: information overload, computers, mobile devices, digital media, information literacy, students
Procedia PDF Downloads 2781102 Presenting a Model in the Analysis of Supply Chain Management Components by Using Statistical Distribution Functions
Authors: Ramin Rostamkhani, Thurasamy Ramayah
Abstract:
One of the most important topics of today’s industrial organizations is the challenging issue of supply chain management. In this field, scientists and researchers have published numerous practical articles and models, especially in the last decade. In this research, to our best knowledge, the discussion of data modeling of supply chain management components using well-known statistical distribution functions has been considered. The world of science owns mathematics, and showing the behavior of supply chain data based on the characteristics of statistical distribution functions is innovative research that has not been published anywhere until the moment of doing this research. In an analytical process, describing different aspects of functions including probability density, cumulative distribution, reliability, and failure function can reach the suitable statistical distribution function for each of the components of the supply chain management. It can be applied to predict the behavior data of the relevant component in the future. Providing a model to adapt the best statistical distribution function in the supply chain management components will be a big revolution in the field of the behavior of the supply chain management elements in today's industrial organizations. Demonstrating the final results of the proposed model by introducing the process capability indices before and after implementing it alongside verifying the approach through the relevant assessment as an acceptable verification is a final step. The introduced approach can save the required time and cost to achieve the organizational goals. Moreover, it can increase added value in the organization.Keywords: analyzing, process capability indices, statistical distribution functions, supply chain management components
Procedia PDF Downloads 871101 Fluorescence Effect of Carbon Dots Modified with Silver Nanoparticles
Authors: Anna Piasek, Anna Szymkiewicz, Gabriela Wiktor, Jolanta Pulit-Prociak, Marcin Banach
Abstract:
Carbon dots (CDs) have great potential for application in many fields of science. They are characterized by fluorescent properties that can be manipulated. The nanomaterial has many advantages in addition to its unique properties. CDs may be obtained easily, and they undergo surface functionalization in a simple way. In addition, there is a wide range of raw materials that can be used for their synthesis. An interesting possibility is the use of numerous waste materials of natural origin. In the research presented here, the synthesis of CDs was carried out according to the principles of Green chemistry. Beet molasses was used as a natural raw material. It has a high sugar content. This makes it an excellent high-carbon precursor for obtaining CDs. To increase the fluorescence effect, we modified the surface of CDs with silver (Ag-CDs) nanoparticles. The process of obtaining CQD was based on the hydrothermal method by applying microwave radiation. Silver nanoparticles were formed via the chemical reduction method. The synthesis plans were performed on the Design of the Experimental method (DoE). Variable process parameters such as concentration of beet molasses, temperature and concentration of nanosilver were used in these syntheses. They affected the obtained properties and particle parameters. The Ag-CDs were analyzed by UV-vis spectroscopy. The fluorescence properties and selection of the appropriate excitation light wavelength were performed by spectrofluorimetry. Particle sizes were checked using the DLS method. The influence of the input parameters on the obtained results was also studied.Keywords: fluorescence, modification, nanosilver, molasses, Green chemistry, carbon dots
Procedia PDF Downloads 841100 Downscaling Seasonal Sea Surface Temperature Forecasts over the Mediterranean Sea Using Deep Learning
Authors: Redouane Larbi Boufeniza, Jing-Jia Luo
Abstract:
This study assesses the suitability of deep learning (DL) for downscaling sea surface temperature (SST) over the Mediterranean Sea in the context of seasonal forecasting. We design a set of experiments that compare different DL configurations and deploy the best-performing architecture to downscale one-month lead forecasts of June–September (JJAS) SST from the Nanjing University of Information Science and Technology Climate Forecast System version 1.0 (NUIST-CFS1.0) for the period of 1982–2020. We have also introduced predictors over a larger area to include information about the main large-scale circulations that drive SST over the Mediterranean Sea region, which improves the downscaling results. Finally, we validate the raw model and downscaled forecasts in terms of both deterministic and probabilistic verification metrics, as well as their ability to reproduce the observed precipitation extreme and spell indicator indices. The results showed that the convolutional neural network (CNN)-based downscaling consistently improves the raw model forecasts, with lower bias and more accurate representations of the observed mean and extreme SST spatial patterns. Besides, the CNN-based downscaling yields a much more accurate forecast of extreme SST and spell indicators and reduces the significant relevant biases exhibited by the raw model predictions. Moreover, our results show that the CNN-based downscaling yields better skill scores than the raw model forecasts over most portions of the Mediterranean Sea. The results demonstrate the potential usefulness of CNN in downscaling seasonal SST predictions over the Mediterranean Sea, particularly in providing improved forecast products.Keywords: Mediterranean Sea, sea surface temperature, seasonal forecasting, downscaling, deep learning
Procedia PDF Downloads 761099 Enhancing Quality Management Systems through Automated Controls and Neural Networks
Authors: Shara Toibayeva, Irbulat Utepbergenov, Lyazzat Issabekova, Aidana Bodesova
Abstract:
The article discusses the importance of quality assessment as a strategic tool in business and emphasizes the significance of the effectiveness of quality management systems (QMS) for enterprises. The evaluation of these systems takes into account the specificity of quality indicators, the multilevel nature of the system, and the need for optimal selection of the number of indicators and evaluation of the system state, which is critical for making rational management decisions. Methods and models of automated enterprise quality management are proposed, including an intelligent automated quality management system integrated with the Management Information and Control System. These systems make it possible to automate the implementation and support of QMS, increasing the validity, efficiency, and effectiveness of management decisions by automating the functions performed by decision makers and personnel. The paper also emphasizes the use of recurrent neural networks to improve automated quality management. Recurrent neural networks (RNNs) are used to analyze and process sequences of data, which is particularly useful in the context of document quality assessment and non-conformance detection in quality management systems. These networks are able to account for temporal dependencies and complex relationships between different data elements, which improves the accuracy and efficiency of automated decisions. The project was supported by a grant from the Ministry of Education and Science of the Republic of Kazakhstan under the Zhas Galym project No. AR 13268939, dedicated to research and development of digital technologies to ensure consistency of QMS regulatory documents.Keywords: automated control system, quality management, document structure, formal language
Procedia PDF Downloads 391098 Tea (Camellia sinensis (L.) O. Kuntze) Typology in Kenya: A Review
Authors: Joseph Kimutai Langat
Abstract:
Tea typology is the science of classifying tea. This study was carried out between November 2023 and July 2024, whose main objective was to investigate the typological classification nomenclature of processed tea in the world, narrowing down to Kenya. Centres of origin, historical background, tea growing region, scientific naming system, market, fermentation levels, processing/ oxidation levels and cultural reasons are used to classify tea at present. Of these, the most common typology is by oxidation, and more specifically, by the production methods within the oxidation categories. While the Asian tea producing countries categorises tea products based on the decreasing oxidation levels during the manufacturing process: black tea, green tea, oolong tea and instant tea, Kenya’s tea typology system is based on the degree of fermentation process, i.e. black tea, purple tea, green tea and white tea. Tea is also classified into five categories: black tea, green tea, white tea, oolong tea, and dark tea. Black tea is the main tea processed and exported in Kenya, manufactured mainly by withering, rolling, or by use of cutting-tearing-curling (CTC) method that ensures efficient conversion of leaf herbage to made tea, oxidizing, and drying before being sorted into different grades. It is from these varied typological methods that this review paper concludes that different regions of the world use different classification nomenclature. Therefore, since tea typology is not standardized, it is recommended that a global tea regulator dealing in tea classification be created to standardize tea typology, with domestic in-country regulatory bodies in tea growing countries accredited to implement the global-wide typological agreements and resolutions.Keywords: classification, fermentation, oxidation, tea, typology
Procedia PDF Downloads 40