Search results for: critical temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11678

Search results for: critical temperature

9998 The Study of the Perspectives on Economic Development in Bilateral Investment Treaties

Authors: Anuj Kumar Vaksha

Abstract:

In the post cold war era the foreign direct investments have come to be considered as one of the most critical factors for economic development of a country particularly for the capital scarce countries like the developing and the under developed countries. The rush for foreign direct investments have led to intense competition between the countries treaties to attract foreign investments by entering into alluring Bilateral Investment Treaties (BITs). The Bilateral Investment Treaties are the intergovernmental legal framework for the promotion of private investments from one country to other. With more than 3000 BITs, the web of such BITs are the most dominant development of International Law in the post cold war era. The essence of all these BITs are bilateral cooperation for economic development and thus it is actually the theme of economic development around which the International Law had developed most dominantly in the post cold war era. Within the framework of two generally accepted premises that foreign direct investments are critical for economic development and the bilateral investment treaties are critical for promotion of foreign direct investments, the research paper seeks to explore the perspectives and paradigms on economic development as embodied in various Bilateral Investment Treaties. It seeks to address how and in what manners the perspectives on economic development as embodied in bilateral investment varies between the developed, developing and underdeveloped countries. It goes without saying that economic development is a very broad, complex and operationally intricate concept. In the paradigm of International Law it becomes much more complex and intricate. Understanding the concept of economic development from the perspectives of Bilateral Investment Treaties is a novel idea with far reaching significance. Such a perspective on economic development would help in enriching the contemporary International Law perspectives and paradigms on economic development.

Keywords: bilateral investment treaties, economic development, international Law, perspectives

Procedia PDF Downloads 310
9997 Open Channel Flow Measurement of Water by Using Width Contraction

Authors: Arun Goel, D. V. S. Verma, Sanjeev Sangwan

Abstract:

The present study was aimed to develop a discharge measuring device for irrigation and laboratory channels. Experiments were conducted on a sharp edged constricted flow meters having four types of width constrictions namely 2:1, 1.5:1, 1:1, and 90o in the direction of flow. These devices were made of MS sheets and installed separately in a rectangular flume. All these four devices were tested under free and submerged flow conditions. Eight different discharges varying from 2 lit/sec to 30 lit/sec were passed through each device. In total around 500 observations of upstream and downstream depths were taken in the present work. For each discharge, free submerged and critical submergence under different flow conditions were noted and plotted. Once the upstream and downstream depths of flow over any of the device are known, the discharge can be easily calculated with the help of the curves developed for free and submerged flow conditions. The device having contraction 2:1 is the most efficient one as it allows maximum critical submergence.

Keywords: flowrate, flowmeter, open channels, submergence

Procedia PDF Downloads 417
9996 Online Measurement of Fuel Stack Elongation

Authors: Sung Ho Ahn, Jintae Hong, Chang Young Joung, Tae Ho Yang, Sung Ho Heo, Seo Yun Jang

Abstract:

The performances of nuclear fuels and materials are qualified at an irradiation system in research reactors operating under the commercial nuclear power plant conditions. Fuel centerline temperature, coolant temperature, neutron flux, deformations of fuel stack and swelling are important parameters needed to analyze the nuclear fuel performances. The dimensional stability of nuclear fuels is a key parameter measuring the fuel densification and swelling. In this study, the fuel stack elongation is measured using a LVDT. A mockup LVDT instrumented fuel rod is developed. The performances of mockup LVDT instrumented fuel rod is evaluated by experiments.

Keywords: axial deformation, elongation measurement, in-pile instrumentation, LVDT

Procedia PDF Downloads 521
9995 Detection of Latent Fingerprints Recovered from Arson Simulation by a Novel Fluorescent Method

Authors: Somayeh Khanjani, Samaneh Nabavi, Shirin Jalili, Afshin Khara

Abstract:

Fingerprints are area source of ubiquitous evidence and consequential for establishing identity. The detection and subsequent development of fingerprints are thus inevitable in criminal investigations. This becomes a difficult task in the case of certain extreme conditions like fire. A fire scene may be accidental or arson. The evidence subjected to fire is generally overlooked as there is a misconception that they are damaged. There are several scientific approaches to determine whether the fire was deliberate or not. In such as scenario, fingerprints may be most critical to link the perpetrator to the crime. The reason for this may be the destructive nature of fire. Fingerprints subjected to fire are exposed to high temperatures, soot deposition, electromagnetic radiation, and subsequent water force. It is believed that these phenomena damage the fingerprint. A novel fluorescent and a pre existing small particle reagent were investigated for the same. Zinc carbonates based fluorescent small particle reagent was capable of developing latent fingerprints exposed to a maximum temperature of 800 ̊C. Fluorescent SPR may prove very useful in such cases. Fluorescent SPR reagent based on zinc carbonate is a potential method for developing fingerprints from arson sites. The method is cost effective and non hazardous. This formulation is suitable for developing fingerprints exposed to fire/ arson.

Keywords: fingerprint, small particle reagent (SPR), arson, novel fluorescent

Procedia PDF Downloads 458
9994 Influence of Cation Substitution on Magnetic Transitions and Ordering in La2NixCo1-xMnO6 Compounds (x = 0.2 - 0.8)

Authors: Amine.Harbia, Hicham. Moutaabbidb, Yann. Le Godecb, Said. Benmokhtara, Mouhammed. Moutaabbida

Abstract:

This study explores the structural and magnetic characteristics of newly synthesized double perovskite oxides, La₂NiₓCo1-xMnO₆, with x ranging from 0.2 to 0.8. Utilizing X-ray powder diffraction and SQUID magnetometry, we analyzed the compounds that consistently exhibit a monoclinic structure with the P21/n space group at ambient temperature. it findings reveal that as Ni2+ is progressively substituted by Co2+, there is a corresponding decrease in cell parameters, attributable to the smaller ionic radius of Ni2+ (0.69 Å) compared to Co2+ (0.74 Å). The crystal structure features octahedrally coordinated (Co/Ni)2+ and Mn4+ cations with oxygen, forming (Co/Ni)O6 and MnO6 octahedra linked via oxygen atoms along different crystallographic axes. Magnetic characterization conducted over a temperature range of 2 to 300 K in both DC and AC magnetic fields, showed a predominant paramagnetic to ferromagnetic transition between 232 K and 260 K, with the Curie temperature notably increasing with higher x values. Samples with x=0.2, 0.25, and 0.5 exhibited a secondary PM-FM transition between 200 K and 208 K. Cation ordering was quantitatively assessed, indicating a higher ordering in Ni2+-rich samples (x=0.75 and 0.8) at over 96%, whereas the sample with x=0.25 showed minimal ordering. Furthermore, the out-of-phase component of the AC susceptibility displayed frequency-dependent transitions between 65 K and 110 K, suggesting the presence of superparamagnetic domains across all samples.

Keywords: double perovskite oxides, magnetic transitions, cation ordering, squid magnetometry

Procedia PDF Downloads 27
9993 Droning the Pedagogy: Future Prospect of Teaching and Learning

Authors: Farha Sattar, Laurence Tamatea, Muhammad Nawaz

Abstract:

Drones, the Unmanned Aerial Vehicles are playing an important role in real-world problem-solving. With the new advancements in technology, drones are becoming available, affordable and user- friendly. Use of drones in education is opening new trends in teaching and learning practices in an innovative and engaging way. Drones vary in types and sizes and possess various characteristics and capabilities which enhance their potential to be used in education from basic to advanced and challenging learning activities which are suitable for primary, middle and high school level. This research aims to provide an insight to explore different types of drones and their compatibility to be used in teaching different subjects at various levels. Research focuses on integrating the drone technology along with Australian curriculum content knowledge to reinforce the understanding of the fundamental concepts and helps to develop the critical thinking and reasoning in the learning process.

Keywords: critical thinking, drone technology, drone types, innovative learning

Procedia PDF Downloads 291
9992 Evaluation of NASA POWER and CRU Precipitation and Temperature Datasets over a Desert-prone Yobe River Basin: An Investigation of the Impact of Drought in the North-East Arid Zone of Nigeria

Authors: Yusuf Dawa Sidi, Abdulrahman Bulama Bizi

Abstract:

The most dependable and precise source of climate data is often gauge observation. However, long-term records of gauge observations, on the other hand, are unavailable in many regions around the world. In recent years, a number of gridded climate datasets with high spatial and temporal resolutions have emerged as viable alternatives to gauge-based measurements. However, it is crucial to thoroughly evaluate their performance prior to utilising them in hydroclimatic applications. Therefore, this study aims to assess the effectiveness of NASA Prediction of Worldwide Energy Resources (NASA POWER) and Climate Research Unit (CRU) datasets in accurately estimating precipitation and temperature patterns within the dry region of Nigeria from 1990 to 2020. The study employs widely used statistical metrics and the Standardised Precipitation Index (SPI) to effectively capture the monthly variability of precipitation and temperature and inter-annual anomalies in rainfall. The findings suggest that CRU exhibited superior performance compared to NASA POWER in terms of monthly precipitation and minimum and maximum temperatures, demonstrating a high correlation and much lower error values for both RMSE and MAE. Nevertheless, NASA POWER has exhibited a moderate agreement with gauge observations in accurately replicating monthly precipitation. The analysis of the SPI reveals that the CRU product exhibits superior performance compared to NASA POWER in accurately reflecting inter-annual variations in rainfall anomalies. The findings of this study indicate that the CRU gridded product is often regarded as the most favourable gridded precipitation product.

Keywords: CRU, climate change, precipitation, SPI, temperature

Procedia PDF Downloads 61
9991 Urban Boundary Layer and Its Effects on Haze Episode in Thailand

Authors: S. Bualert, K. Duangmal

Abstract:

Atmospheric boundary layer shows effects of land cover on atmospheric characteristic in term of temperature gradient and wind profile. They are key factors to control atmospheric process such as atmospheric dilution and mixing via thermal and mechanical turbulent. Bangkok, ChiangMai, and Hatyai are major cities of central, southern and northern of Thailand, respectively. The different of them are location, geography and size of the city, Bangkok is the most urbanized city and classified as mega city compared to ChiangMai and HatYai, respectively. They have been suffering from air pollution episode such as transboundary haze. The worst period of the northern part of Thailand was occurred at the end of February through April of each year. The particulate matter less than 10 micrometer (PM10) concentrations were higher than Thai’s ambient air quality standard (120 micrograms per cubic meter) more than two times. Radiosonde technique and air pollutant (CO, PM10, TSP, O3, NOx) measurements were used to identify characteristics of urban boundary layer and air pollutions problems in the cities. Furthermore, air pollutant profiles showed good relationship to characteristic’s urban boundary layer especially on daytime temperature inversion on 29 February 2009 caused two times higher than normal concentrations of CO and particulate matter.

Keywords: haze episode, micrometeorology, temperature inversion, urban boundary layer

Procedia PDF Downloads 246
9990 The Thermal Properties of Nano Magnesium Hydroxide Blended with LDPE/EVA/Irganox1010 for Insulator Application

Authors: Ahmad Aroziki Abdul Aziz, Sakinah Mohd Alauddin, Ruzitah Mohd Salleh, Mohammed Iqbal Shueb

Abstract:

This paper illustrates the effect of nano Magnesium Hydroxide (MH) loading on the thermal properties of Low Density Polyethylene (LDPE)/ Poly (ethylene-co vinyl acetate)(EVA) nano composite. Thermal studies were conducted, as it understanding is vital for preliminary development of new polymeric systems. Thermal analysis of nano composite was conducted using thermo gravimetric analysis (TGA), and differential scanning calorimetry (DSC). Major finding of TGA indicated two main stages of degradation process found at (350 ± 25 oC) and (480 ± 25 oC) respectively. Nano metal filler expressed better fire resistance as it stand over high degree of temperature. Furthermore, DSC analysis provided a stable glass temperature around 51 (±1 oC) and captured double melting point at 84 (±2 oC) and 108 (±2 oC). This binary melting point reflects the modification of nano filler to the polymer matrix forming melting crystals of folded and extended chain. The percent crystallinity of the samples grew vividly with increasing filler content. Overall, increasing the filler loading improved the degradation temperature and weight loss evidently and a better process and phase stability was captured in DSC.

Keywords: thermal properties, nano MH, nano particles, cable and wire, LDPE/EVA

Procedia PDF Downloads 439
9989 Basic Need Satisfaction and Students’ Willingness to Use Spreadsheet Software

Authors: Anne Sørebø

Abstract:

The present study was designed to test how fulfilment of three basic psychological needs influence students development of perceived usefulness (PU) and ease of use (EOU) in connection with use of a spreadsheet. Both PU and EOU are assumed to be critical for development of students' willingness to utilize spreadsheet in future work within business administration. A questionnaire was completed by 196 business students in Norway. We found that satisfying the need for competence and autonomy is most critical for willingness to utilize the software package. The results also indicate that satisfying the need for relatedness, surprisingly, has no influence on students’ willingness to utilize the software package. A key implication of the present research is that teachers mainly should focus on fulfilling students need for competence and self-determination when the purpose is to motivate them to utilize new software. That students’ should develop their own competence when using a new technology is somewhat obvious, but that the feeling of being self-determined needs to be a complementary element in this connection is not necessary seen as obvious.

Keywords: spreadsheet, business students, technology acceptance, basic psychological needs

Procedia PDF Downloads 378
9988 Study of Intergranular Corrosion in Austenitic Stainless Steels Using Electrochemical Impedance Spectroscopy

Authors: Satish Kolli, Adriana Ferancova, David Porter, Jukka Kömi

Abstract:

Electrochemical impedance spectroscopy (EIS) has been used to detect sensitization in austenitic stainless steels that are heat treated in the temperature regime 600-820 °C to produce different degrees of sensitization in the material. The tests were conducted at five different DC potentials in the transpassive region. The quantitative determination of degree of sensitization has been done using double loop electrochemical potentiokinetic reactivation tests (DL-EPR). The correlation between EIS Nyquist diagrams and DL-EPR degree of sensitization values has been studied. The EIS technique can be used as a qualitative tool in determining the intergranular corrosion in austenitic stainless steels that are heat treated at a given temperature.

Keywords: electrochemical technique, intergranular corrosion, sensitization, stainless steels

Procedia PDF Downloads 167
9987 Natural Convection of a Nanofluid in a Conical Container

Authors: Brahim Mahfoud, Ali Bendjaghlouli

Abstract:

Natural convection is simulated in a truncated cone filled with nanofluid. Inclined and top walls have constant temperature where the heat source is located on the bottom wall of the conical container which is thermally insulated. A finite volume approach is used to solve the governing equations using the SIMPLE algorithm for different parameters such as Rayleigh number, inclination angle of inclined walls of the enclosure and heat source length. The results showed an enhancement in cooling system by using a nanofluid, when conduction regime is assisted. The inclination angle of inclined sidewall and heat source length affect the heat transfer rate and the maximum temperature.

Keywords: heat source, truncated cone, nanofluid, natural convection

Procedia PDF Downloads 354
9986 Easy Method of Synthesis and Functionalzation of Zno Nanoparticules With 3 Aminopropylthrimethoxysilane (APTES)

Authors: Haythem Barrak, Gaetan Laroche, Adel M’nif, Ahmed Hichem Hamzaoui

Abstract:

The use of semiconductor oxides, as chemical or biological, requires their functionalization with appropriate dependent molecules of the substance to be detected. generally, the support materials used are TiO2 and SiO2. In the present work, we used zinc oxide (ZnO) known for its interesting physical properties. The synthesis of nano scale ZnO was performed by co-precipitation at low temperature (60 ° C).To our knowledge, the obtaining of this material at this temperature was carried out for the first time. This shows the low cost of this operation. On the other hand, the surface functionalization of ZnO was performed with (3-aminopropyl) triethoxysilane (APTES) by using a specific method using ethanol for the first time. In addition, the duration of this stage is very low compared to literature. The samples obtained were analyzed by XRD, TEM, DLS, FTIR, and TGA shows that XPS that the operation of grafting of APTES on our support was carried out with success.

Keywords: functionalization, nanoparticle, ZnO, APTES, caractérisation

Procedia PDF Downloads 341
9985 Design and Analysis of Enhanced Heat Transfer Kit for Plate Type Heat Exchanger

Authors: Muhammad Shahrukh Saeed, Syed Ahmad Nameer, Shafiq Ur Rehman, Aisha Jillani

Abstract:

Heat exchangers play a critical role in industrial applications of thermal systems. Its physical size and performance are vital parameters; therefore enhancement of heat transfer through different techniques remained a major research area for both academia and industry. This research reports the main purpose of heat exchanger with better kit design which plays a vital role during the process of heat transfer. Plate type heat exchanger mainly requires a design in which the plates can be easily be installed and removed without having any problem with the plates. For the flow of the fluid within the heat exchanger, it requires a flow should be fully developed. As natural laws allows the driving energy of the system to flow until equilibrium is achieved. As with a plate type heat exchanger heat the heat penetrates the surface which separates the hot medium with the cold one very easily. As some of the precautions should be considered while taking the heat exchanger accountable like heat should transfer from hot medium to cold, there should always be difference in temperature present and heat loss from hot body should be equal to the heat gained by the cold body regardless of the losses present to the surroundings. Aluminum plates of same grade are used in all experiments to ensure similarity. Size of all plates was 254 mm X 100 mm and thickness was taken as 5 mm.

Keywords: heat transfer coefficient, aluminium, entry length, design

Procedia PDF Downloads 316
9984 LAMOS - Layered Amorphous Metal Oxide Gas Sensors: New Interfaces for Gas Sensing Applications

Authors: Valentina Paolucci, Jessica De Santis, Vittorio Ricci, Giacomo Giorgi, Carlo Cantalini

Abstract:

Despite their potential in gas sensing applications, the major drawback of 2D exfoliated metal dichalcogenides (MDs) is that they suffer from spontaneous oxidation in air, showing poor chemical stability under dry/wet conditions even at room temperature, limiting their practical exploitation. The aim of this work is to validate a synthesis strategy allowing microstructural and electrical stabilization of the oxides that inevitably form on the surface of 2D dichalcogenides. Taking advantage of spontaneous oxidation of MDs in air, we report on liquid phase exfoliated 2D-SnSe2 flakes annealed in static air at a temperature below the crystallization temperature of the native a-SnO2 oxide. This process yields a new class of 2D Layered Amorphous Metal Oxides Sensors (LAMOS), specifically few-layered amorphous a-SnO2, showing excellent gas sensing properties. Sensing tests were carried out at low operating temperature (i.e. 100°C) by exposing a-SnO2 to both oxidizing and reducing gases (i.e. NO2, H2S and H2) and different relative humidities ranging from 40% to 80% RH. The formation of stable nanosheets of amorphous a-SnO2 guarantees excellent reproducibility and stability of the response over one year. These results pave the way to new interesting research perspectives out considering the opportunity to synthesize homogeneous amorphous textures with no grain boundaries, no grains, no crystalline planes with different orientations, etc., following gas sensing mechanisms that likely differ from that of traditional crystalline metal oxide sensors. Moreover, the controlled annealing process could likely be extended to a large variety of Transition Metal Dichalcogenides (TMDs) and Metal Chalcogenides (MCs), where sulfur, selenium, or tellurium atoms can be easily displaced by O2 atoms (ΔG < 0), enabling the synthesis of a new family of amorphous interfaces.

Keywords: layered 2D materials, exfoliation, lamos, amorphous metal oxide sensors

Procedia PDF Downloads 104
9983 Effect of Transition Metal (Fe, Mn) Ion Doping on TiO2 Nano Particles

Authors: Kirit Siddhapara, Dimple Shah

Abstract:

In this research, we have studied the doping behaviors of two transition metal ion dopants on the crystal phase, particle sizes, XRD patterns, EDAX spectra, and photoreactivity of TiO2 nanoparticles. The crystalline size of TiO2 is close to 4 nm Calculated from (1 0 1) peak by using FWHM method in Scherrer’s equation. Test metal ion concentrations ranged from 1% to 4 at.%, we report the growth of [Fe, Mn]xTiO2 nanocrystals prepared by Sol-Gel technique, followed by freeze-drying treatment at -30°C temperature for 12hrs. The obtained Gel was thermally treated at different temperature like 200°C, 400°C, 600°C, 800°C. Thermal gravimetric analysis (TGA) shows that dopant concentration affects thermal decomposition. The photoreactivities of transition metal ion-doped TiO2 nanoparticles under UV irradiation were quantified by the degradation of formaldehyde.

Keywords: growth from solution, sol-gel method, nanomaterials, oxides, magnetic materials, titanium compounds

Procedia PDF Downloads 417
9982 Climate Change Impact on Mortality from Cardiovascular Diseases: Case Study of Bucharest, Romania

Authors: Zenaida Chitu, Roxana Bojariu, Liliana Velea, Roxana Burcea

Abstract:

A number of studies show that extreme air temperature affects mortality related to cardiovascular diseases, particularly among elderly people. In Romania, the summer thermal discomfort expressed by Universal Thermal Climate Index (UTCI) is highest in the Southern part of the country, where Bucharest, the largest Romanian urban agglomeration, is also located. The urban characteristics such as high building density and reduced green areas enhance the increase of the air temperature during summer. In Bucharest, as in many other large cities, the effect of heat urban island is present and determines an increase of air temperature compared to surrounding areas. This increase is particularly important during heat wave periods in summer. In this context, the researchers performed a temperature-mortality analysis based on daily deaths related to cardiovascular diseases, recorded between 2010 and 2019 in Bucharest. The temperature-mortality relationship was modeled by applying distributed lag non-linear model (DLNM) that includes a bi-dimensional cross-basis function and flexible natural cubic spline functions with three internal knots in the 10th, 75th and 90th percentiles of the temperature distribution, for modelling both exposure-response and lagged-response dimensions. Firstly, this study applied this analysis for the present climate. Extrapolation of the exposure-response associations beyond the observed data allowed us to estimate future effects on mortality due to temperature changes under climate change scenarios and specific assumptions. We used future projections of air temperature from five numerical experiments with regional climate models included in the EURO-CORDEX initiative under the relatively moderate (RCP 4.5) and pessimistic (RCP 8.5) concentration scenarios. The results of this analysis show for RCP 8.5 an ensemble-averaged increase with 6.1% of heat-attributable mortality fraction in future in comparison with present climate (2090-2100 vs. 2010-219), corresponding to an increase of 640 deaths/year, while mortality fraction due to the cold conditions will be reduced by 2.76%, corresponding to a decrease by 288 deaths/year. When mortality data is stratified according to the age, the ensemble-averaged increase of heat-attributable mortality fraction for elderly people (> 75 years) in the future is even higher (6.5 %). These findings reveal the necessity to carefully plan urban development in Bucharest to face the public health challenges raised by the climate change. Paper Details: This work is financed by the project URCLIM which is part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by Ministry of Environment, Romania with co-funding by the European Union (Grant 690462). A part of this work performed by one of the authors has received funding from the European Union’s Horizon 2020 research and innovation programme from the project EXHAUSTION under grant agreement No 820655.

Keywords: cardiovascular diseases, climate change, extreme air temperature, mortality

Procedia PDF Downloads 110
9981 Ideology and Lexicogrammar: Discourse Against the Power in Lyrical Texts (XIII, XVII and XX Centuries)

Authors: Ulisses Tadeu Vaz de Oliveira

Abstract:

The development of multifunctional studies in the theoretical-methodological perspective of the Systemic-Functional Grammar (SFG) and the increasing number of critical literary studies have introduced new opportunities for the study of ideologies and societies, but also brought up new challenges across and within many areas. In this regard, the Critical Linguistics researches allow a form of pairing a textual linguistic analysis method (micro level) with a social language theory in political and ideological processes (macro level), presented in the literature. This presentation will report on strategies to criticize power holders in literary productions from three distinct eras, namely: (a) Satirical Galego-Portuguese chants of Gil Pérez Conde (thirteenth century), (b) Poems of Gregorio de Matos Guerra (seventeenth century), and (c) Songs of Chico Buarque de Holanda (twentieth century). The analysis of these productions is based on the SFG proposals, which considers the clause as a social event. Therefore, the structure serves to realize three concurrent meanings (metafunctions): Ideational, Interpersonal and Textual. The presenter aims to shed light on the core issues relevant to the successes of the authors to criticize authorities in repressive times while caring about face-threatening and politeness. The effective and meaningful critical discourse was a way of moving the society`s chains towards new ideologies reflected in the lexicogrammatical choices made and the rhetorical functions of the persuasive structures used by the authors.

Keywords: ideology, literature, persuasion, systemic-functional grammar

Procedia PDF Downloads 399
9980 Synthesis, Characterization and Gas Sensing Applications of Perovskite CaZrO3 Nanoparticles

Authors: B. M. Patil

Abstract:

Calcium Zirconate (CaZrO3) has high protonic conductivities at elevated temperature in water or hydrogen atmosphere. Undoped calcium zirconate acts as a p-type semiconductor in air. In this paper, we reported synthesis of CaZrO3 nanoparticles via modified molecular precursor method. The precursor calcium zirconium oxalate (CZO) was synthesized by exchange reaction between freshly generated aqueous solution of sodium zirconyl oxalate and calcium acetate at room temperature. The controlled pyrolysis of CZO in air at 700°C for one hour resulted in the formation nanocrystalline CaZrO3 powder. CaZrO3 obtained by the present method was characterized by Simultaneous thermogravimetry and differential thermogravimetry (TG-DTA), X-ray diffraction (XRD), infra-red spectroscopy and transmission electron microscopy (TEM). The pellets of synthesized CaZrO3 fabricated, sintered at 1000°C for 5 hr and tested as sensors for NO2 and NH3 gases.

Keywords: CaZrO3, CZO, NO2, NH3

Procedia PDF Downloads 152
9979 Production of Ultra-Low Temperature by the Vapor Compression Refrigeration Cycles with Environment Friendly Working Fluids

Authors: Sameh Frikha, Mohamed Salah Abid

Abstract:

We investigate the performance of an integrated cascade (IC) refrigeration system which uses environment friendly zeotropic mixtures. Computational calculation has been carried out by varying pressure level at the evaporator and the condenser of the system. Effects of mass flow rate of the refrigerant on the coefficient of performance (COP) are presented. We show that the integrated cascade system produces ultra-low temperatures in the evaporator by using environment friendly zeotropic mixture.

Keywords: coefficient of performance, environment friendly zeotropic mixture, integrated cascade, ultra low temperature, vapor compression refrigeration cycles

Procedia PDF Downloads 245
9978 Application of Thermal Dimensioning Tools to Consider Different Strategies for the Disposal of High-Heat-Generating Waste

Authors: David Holton, Michelle Dickinson, Giovanni Carta

Abstract:

The principle of geological disposal is to isolate higher-activity radioactive wastes deep inside a suitable rock formation to ensure that no harmful quantities of radioactivity reach the surface environment. To achieve this, wastes will be placed in an engineered underground containment facility – the geological disposal facility (GDF) – which will be designed so that natural and man-made barriers work together to minimise the escape of radioactivity. Internationally, various multi-barrier concepts have been developed for the disposal of higher-activity radioactive wastes. High-heat-generating wastes (HLW, spent fuel and Pu) provide a number of different technical challenges to those associated with the disposal of low-heat-generating waste. Thermal management of the disposal system must be taken into consideration in GDF design; temperature constraints might apply to the wasteform, container, buffer and host rock. Of these, the temperature limit placed on the buffer component of the engineered barrier system (EBS) can be the most constraining factor. The heat must therefore be managed such that the properties of the buffer are not compromised to the extent that it cannot deliver the required level of safety. The maximum temperature of a buffer surrounding a container at the centre of a fixed array of heat-generating sources, arises due to heat diffusing from neighbouring heat-generating wastes, incrementally contributing to the temperature of the EBS. A range of strategies can be employed for managing heat in a GDF, including the spatial arrangements or patterns of those containers; different geometrical configurations can influence the overall thermal density in a disposal facility (or area within a facility) and therefore the maximum buffer temperature. A semi-analytical thermal dimensioning tool and methodology have been applied at a generic stage to explore a range of strategies to manage the disposal of high-heat-generating waste. A number of examples, including different geometrical layouts and chequer-boarding, have been illustrated to demonstrate how these tools can be used to consider safety margins and inform strategic disposal options when faced with uncertainty, at a generic stage of the development of a GDF.

Keywords: buffer, geological disposal facility, high-heat-generating waste, spent fuel

Procedia PDF Downloads 263
9977 Identifying Principle Components Affecting Competitiveness of Thai Automotive Parts Industry

Authors: Thanatip Lerttanaporn, Tuanjai Somboonwiwat, Charoenchai Khompatraporn

Abstract:

The automotive parts industry is one of the vital sectors in Thai economy and now is facing a greater competition from ASEAN Economic Community (AEC). This article identifies important factors that impact the competitiveness of Thai automotive parts industry. There are eight groups of factors with a total of 58 factors. Due to a variety of factors, the Exploratory Factor Analysis and Principle Component Analysis have been applied to classify factors into groups or principle components. The results show that there are 15 groups and four of them are critical, covering 80% of important value. These four critical groups are then used to formulate strategies to improve the competitiveness of the Thai automotive parts industry.

Keywords: factor analysis, Thai automotive parts, principle components, exploratory factor, ASEAN economic community

Procedia PDF Downloads 236
9976 Effect of Co Substitution on Structural, Magnetocaloric, Magnetic, and Electrical Properties of Sm0.6Sr0.4CoxMn1-xO3 Synthesized by Sol-gel Method

Authors: A. A. Azab

Abstract:

In this work, Sm0.6Sr0.4CoxMn1-xO3 (x=0, 0.1, 0.2 and 0.3) was synthesized by sol-gel method for magnetocaloric effect (MCE) applications. XRD analysis confirmed formation of the required orthorhombic phase of perovskite, and there is crystallographic phase transition as a result of substitution. Maxwell-Wagner interfacial polarisation and Koops phenomenological theory were used to investigate and analyze the temperature and frequency dependency of the dielectric permittivity. The phase transition from the ferromagnetic to the paramagnetic state was demonstrated to be second order. Based on the isothermal magnetization curves obtained at various temperatures, the magnetic entropy change was calculated. A magnetocaloric effect (MCE) over a wide temperature range was studied by determining DSM and the relative cooling power (RCP).

Keywords: magnetocaloric effect, pperovskite, magnetic phase transition, dielectric permittivity

Procedia PDF Downloads 52
9975 Production of Premium Quality Cinnamon Bark Powder Using Cryogenic Grinding

Authors: Monika R. Bhoi, R. F. Sutar, Bhaumik B. Patel

Abstract:

The objective of this research paper is to obtain the premium quality of cinnamon bark powder through cryogenic grinding technology. The effect of grinding temperature (0, -20, -40, -60, -80 and -100˚C), feed rate (8, 9 and 10 kg/h), and sieve size (0.8, 1.0 and 1.5 mm) were evaluated with respect to grinding time, volatile oil content, particle size, energy consumption, and liquid nitrogen consumption. Cryogenic grinding process parameters were optimized to obtain premium quality cinnamon bark powder was carried out using three factorial completely randomized design. The optimization revealed that grinding of cinnamon bark at -80⁰C temperature using 0.8 mm sieve size and 10 kg/h feed rate resulted in premium quality cinnamon bark powder containing volatile oil 3.01%. In addition, volatile oil retention in cryogenically ground powder was 88.23%, whereas control (ambient grinding) had 33.11%. Storage study of premium quality cryogenically ground powder was carried out under accelerated storage conditions (38˚C & 90% R.H). Accelerated storage of cryoground powder was found to be advantageous over the conventional ground for extended storage of the ground cinnamon powder with retention of its nutritional quality. Hence, grinding of spices at optimally low cryogenic temperature is a promising technology for the production of its premium quality powder economically.

Keywords: cinnamon bark, cryogenic grinding, feed rate, volatile oil

Procedia PDF Downloads 149
9974 Torrefaction of Biomass Pellets: Modeling of the Process in a Fixed Bed Reactor

Authors: Ekaterina Artiukhina, Panagiotis Grammelis

Abstract:

Torrefaction of biomass pellets is considered as a useful pretreatment technology in order to convert them into a high quality solid biofuel that is more suitable for pyrolysis, gasification, combustion and co-firing applications. In the course of torrefaction the temperature varies across the pellet, and therefore chemical reactions proceed unevenly within the pellet. However, the uniformity of the thermal distribution along the pellet is generally assumed. The torrefaction process of a single cylindrical pellet is modeled here, accounting for heat transfer coupled with chemical kinetics. The drying sub-model was also introduced. The non-stationary process of wood pellet decomposition is described by the system of non-linear partial differential equations over the temperature and mass. The model captures well the main features of the experimental data.

Keywords: torrefaction, biomass pellets, model, heat, mass transfer

Procedia PDF Downloads 466
9973 Improved Operating Strategies for the Optimization of Proton Exchange Membrane Fuel Cell System Performance

Authors: Guillaume Soubeyran, Fabrice Micoud, Benoit Morin, Jean-Philippe Poirot-Crouvezier, Magali Reytier

Abstract:

Proton Exchange Membrane Fuel Cell (PEMFC) technology is considered as a solution for the reduction of CO2 emissions. However, this technology still meets several challenges for high-scale industrialization. In this context, the increase of durability remains a critical aspect for competitiveness of this technology. Fortunately, performance degradations in nominal operating conditions is partially reversible, meaning that if specific conditions are applied, a partial recovery of fuel cell performance can be achieved, while irreversible degradations can only be mitigated. Thus, it is worth studying the optimal conditions to rejuvenate these reversible degradations and assessing the long-term impact of such procedures on the performance of the cell. Reversible degradations consist mainly of anode Pt active sites poisoning by carbon monoxide at the anode, heterogeneities in water management during use, and oxidation/deactivation of Pt active sites at the cathode. The latter is identified as a major source of reversible performance loss caused by the presence oxygen, high temperature and high cathode potential that favor platinum oxidation, especially in high efficiency operating points. Hence, we studied here a recovery procedure aiming at reducing the platinum oxides by decreasing cathode potential during operation. Indeed, the application of short air starvation phase leads to a drop of cathode potential. Cell performances are temporarily increased afterwards. Nevertheless, local temperature and current heterogeneities within the cells are favored and shall be minimized. The consumption of fuel during the recovery phase shall also be considered to evaluate the global efficiency. Consequently, the purpose of this work is to find an optimal compromise between the recovery of reversible degradations by air starvation, the increase of global cell efficiency and the mitigation of irreversible degradations effects. Different operating parameters have first been studied such as cell voltage, temperature and humidity in single cell set-up. Considering the global PEMFC system efficiency, tests showed that reducing duration of recovery phase and reducing cell voltage was the key to ensure an efficient recovery. Recovery phase frequency was a major factor as well. A specific method was established to find the optimal frequency depending on the duration and voltage of the recovery phase. Then, long-term degradations have also been studied by applying FC-DLC cycles based on NEDC cycles on a 4-cell short stack by alternating test sequences with and without recovery phases. Depending on recovery phase timing, cell efficiency during the cycle was increased up to 2% thanks to a mean voltage increase of 10 mV during test sequences with recovery phases. However, cyclic voltammetry tests results suggest that the implementation of recovery phases causes an acceleration of the decrease of platinum active areas that could be due to the high potential variations applied to the cathode electrode during operation.

Keywords: durability, PEMFC, recovery procedure, reversible degradation

Procedia PDF Downloads 116
9972 Smart Polymeric Nanoparticles Loaded with Vincristine Sulfate for Applications in Breast Cancer Drug Delivery in MDA-MB 231 and MCF7 Cell Lines

Authors: Reynaldo Esquivel, Pedro Hernandez, Aaron Martinez-Higareda, Sergio Tena-Cano, Enrique Alvarez-Ramos, Armando Lucero-Acuna

Abstract:

Stimuli-responsive nanomaterials play an essential role in loading, transporting and well-distribution of anti-cancer compounds in the cellular surroundings. The outstanding properties as the Lower Critical Solution Temperature (LCST), hydrolytic cleavage and protonation/deprotonation cycle, govern the release and delivery mechanisms of payloads. In this contribution, we experimentally determine the load efficiency and release of antineoplastic Vincristine Sulfate into PNIPAM-Interpenetrated-Chitosan (PIntC) nanoparticles. Structural analysis was performed by Fourier Transform Infrared Spectroscopy (FT-IR) and Proton Nuclear Magnetic Resonance (1HNMR). ζ-Potential (ζ) and Hydrodynamic diameter (DH) measurements were monitored by Electrophoretic Mobility (EM) and Dynamic Light scattering (DLS) respectively. Mathematical analysis of the release pharmacokinetics reveals a three-phase model above LCST, while a monophasic of Vincristine release model was observed at 32 °C. Cytotoxic essays reveal a noticeable enhancement of Vincristine effectiveness at low drug concentration on HeLa cervix cancer and MDA-MB-231 breast cancer.

Keywords: nanoparticles, vincristine, drug delivery, PNIPAM

Procedia PDF Downloads 140
9971 Language and Power Relations in Selected Political Crisis Speeches in Nigeria: A Critical Discourse Analysis

Authors: Isaiah Ifeanyichukwu Agbo

Abstract:

Human speech is capable of serving many purposes. Power and control are not always exercised overtly by linguistic acts, but maybe enacted and exercised in the myriad of taken-for-granted actions of everyday life. Domination, power control, discrimination and mind control exist in human speech and may lead to asymmetrical power relations. In discourse, there are persuasive and manipulative linguistic acts that serve to establish solidarity and identification with the 'we group' and polarize with the 'they group'. Political discourse is crafted to defend and promote the problematic narrative of outright controversial events in a nation’s history thereby sustaining domination, marginalization, manipulation, inequalities and injustices, often without the dominated and marginalized group being aware of them. They are designed and positioned to serve the political and social needs of the producers. Political crisis speeches in Nigeria, just like in other countries concentrate on positive self-image, de-legitimization of political opponents, reframing accusation to one’s advantage, redefining problematic terms and adopting reversal strategy. In most cases, the people are ignorant of the hidden ideological positions encoded in the text. Few researches have been conducted adopting the frameworks of critical discourse analysis and systemic functional linguistics to investigate this situation in the political crisis speeches in Nigeria. In this paper, we focus attention on the analyses of the linguistic, semantic, and ideological elements in selected political crisis speeches in Nigeria to investigate if they create and sustain unequal power relations and manipulative tendencies from the perspectives of Critical Discourse Analysis (CDA) and Systemic Functional Linguistics (SFL). Critical Discourse Analysis unpacks both opaque and transparent structural relationships of power dominance, power relations and control as manifested in language. Critical discourse analysis emerged from a critical theory of language study which sees the use of language as a form of social practice where social relations are reproduced or contested and different interests are served. Systemic function linguistics relates the structure of texts to their function. Fairclough’s model of CDA and Halliday’s systemic functional approach to language study are adopted in this paper. This paper probes into language use that perpetuates inequalities. This study demystifies the hidden implicature of the selected political crisis speeches and reveals the existence of information that is not made explicit in what the political actors actually say. The analysis further reveals the ideological configurations present in the texts. These ideological standpoints are the basis for naturalizing implicit ideologies and hegemonic influence in the texts. The analyses of the texts further uncovered the linguistic and discursive strategies deployed by text producers to manipulate the unsuspecting members of the public both mentally and conceptually in order to enact, sustain and maintain unhealthy power relations at crisis times in the Nigerian political history.

Keywords: critical discourse analysis, language, political crisis, power relations, systemic functional linguistics

Procedia PDF Downloads 321
9970 Effect of Plastic Deformation on the Carbide-Free Bainite Transformation in Medium C-Si Steel

Authors: Mufath Zorgani, Carlos Garcia-Mateo, Mohammad Jahazi

Abstract:

In this study, the influence of pre-strained austenite on the extent of isothermal bainite transformation in medium-carbon, high-silicon steel was investigated. Different amounts of deformations were applied at 600°C on the austenite right before quenching to the region, where isothermal bainitic transformation is activated. Four different temperatures of 325, 350, 375, and 400°C considering similar holding time 1800s at each temperature, were selected to investigate the extent of isothermal bainitic transformation. The results showed that the deformation-free austenite transforms to the higher volume fraction of CFB bainite when the isothermal transformation temperature reduced from 400 to 325°C, the introduction of plastic deformation in austenite prior to the formation of bainite invariably involves a delay of the same or identical isothermal treatment. On the other side, when the isothermal transformation temperature and deformation increases, the volume fraction and the plate thickness of bainite decreases and the amount of retained austenite increases. The shape of retained austenite is mostly representing blocky-shape one due to the less amount of transformed bainite. Moreover, the plate-like shape bainite cannot be resolved when the deformation amount reached 30%, and the isothermal transformation temperatures are of 375 and 400°C. The amount of retained austenite and the percentage of its transformation to martensite during the final cooling stage play a significant role in the variation of hardness level for different thermomechanical regimes.

Keywords: ausforming, carbide free bainite, dilatometry, microstructure

Procedia PDF Downloads 109
9969 Crystallization Fouling from Potable Water in Heat Exchangers and Evaporators

Authors: Amthal Al-Gailani, Olujide Sanni, Thibaut Charpentier, Anne Neville

Abstract:

Formation of inorganic scale on heat transfer surfaces is a serious problem encountered in industrial, commercial, and domestic heat exchangers and systems. Several industries use potable/groundwater sources such as rivers, lakes, and oceans to use water as a working fluid in heat exchangers and steamers. As potable/surface water contains diverse salt ionic species, the scaling kinetics and deposit morphology are expected to be different from those found in artificially hardened solutions. In this work, scale formation on the heat transfer surfaces from potable water has been studied using a once-through open flow cell under atmospheric pressure. The surface scaling mechanism and deposit morphology are investigated at high surface temperature. Thus the water evaporation process has to be considered. The effect of surface temperature, flow rate, and inhibitor deployment on the thermal resistance and morphology of the scale have been investigated. The study findings show how an increase in surface temperature enhances the crystallization reaction kinetics on the surface. There is an increase in the amount of scale and the resistance to heat transfer. The fluid flow rate also increases the fouling resistance and the thickness of the scale layer.

Keywords: fouling, heat exchanger, thermal resistance, crystallization, potable water

Procedia PDF Downloads 138