Search results for: CBSD (component based software development)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 41728

Search results for: CBSD (component based software development)

24868 Three-dimensional Steady Flow in Thin Annular Pools of Silicon Melt under a Magnetic Field

Authors: Brahim Mahfoud

Abstract:

A three-dimensional (3D) numerical technique is used to investigate the possibility of reducing the price of manufacturing some silicon-based devices, particularly those in which minor temperature gradients can significantly reduce performance. The silicon melt under the magnetic field produces Lorentz force, which can effectively suppress the flow which is caused by temperature gradients. This might allow some silicon-based products, such as solar cells, to be manufactured using a less pure, and hence less expensive. The thermocapillary effect of the silicon melt flow in thin annular pools subjected to an externally induced magnetic field was observed. The results reveal that with a strong enough magnetic field, isothermal lines change form and become concentric circles. As the amplitude of the magnetic field (Ha) grows, the azimuthal velocity and temperature at the free surface reduce, and the asymmetric 3D flow becomes axisymmetric steady when Ha surpasses a threshold value.

Keywords: magnetic field, manufacturing, silicon melt, thermocapillary

Procedia PDF Downloads 82
24867 Room Temperature Ionic Liquids Filled Mixed Matrix Membranes for CO2 Separation

Authors: Asim Laeeq Khan, Mazhar Amjad Gilani, Tayub Raza

Abstract:

The use of fossil fuels for energy generation leads to the emission of greenhouse gases particularly CO2 into the atmosphere. To date, several techniques have been proposed for the efficient removal of CO2 from flue gas mixtures. Membrane technology is a promising choice due to its several inherent advantages such as low capital cost, high energy efficiency, and low ecological footprint. One of the goals in the development of membranes is to achieve high permeability and selectivity. Mixed matrix membranes comprising of inorganic fillers embedded in polymer matrix are a class of membranes that have showed improved separation properties. One of the biggest challenges in the commercialization if mixed matrix membranes are the removal of non-selective voids existing at the polymer-filler interface. In this work, mixed matrix membranes were prepared using polysulfone as polymer matrix and ordered mesoporous MCM-41 as filler materials. A new approach to removing the interfacial voids was developed by introducing room temperature ionic (RTIL) at the polymer-filler interface. The results showed that the imidazolium based RTIL not only provided wettability characteristics but also helped in further improving the separation properties. The removal of interfacial voids and good contact between polymer and filler was verified by SEM measurement. The synthesized membranes were tested in a custom built gas permeation set-up for the measurement of gas permeability and ideal gas selectivity. The results showed that the mixed matrix membranes showed significantly higher CO2 permeability in comparison to the pristine membrane. In order to have further insight into the role of fillers, diffusion and solubility measurements were carried out. The results showed that the presence of highly porous fillers resulted in increasing the diffusion coefficient while the solubility showed a slight drop. The RTIL filled membranes showed higher CO2/CH4 and CO2/N2 selectivity than unfilled membranes while the permeability dropped slightly. The increase in selectivity was due to the highly selective RTIL used in this work. The study revealed that RTIL filled mixed matrix membranes are an interesting candidate for gas separation membranes.

Keywords: ionic liquids, CO2 separation, membranes, mixed matrix membranes

Procedia PDF Downloads 479
24866 How to Use E-Learning to Increase Job Satisfaction in Large Commercial Bank in Bangkok

Authors: Teerada Apibunyopas, Nithinant Thammakoranonta

Abstract:

Many organizations bring e-Learning to use as a tool in their training and human development department. It is getting more popular because it is easy to access to get knowledge all the time and also it provides a rich content, which can develop the employees skill efficiently. This study focused on the factors that affect using e-Learning efficiently, so it will make job satisfaction increased. The questionnaires were sent to employees in large commercial banks, which use e-Learning located in Bangkok, the results from multiple linear regression analysis showed that employee’s characteristics, characteristics of e-Learning, learning and growth have influence on job satisfaction.

Keywords: e-Learning, job satisfaction, learning and growth, Bangkok

Procedia PDF Downloads 489
24865 Short Life Cycle Time Series Forecasting

Authors: Shalaka Kadam, Dinesh Apte, Sagar Mainkar

Abstract:

The life cycle of products is becoming shorter and shorter due to increased competition in market, shorter product development time and increased product diversity. Short life cycles are normal in retail industry, style business, entertainment media, and telecom and semiconductor industry. The subject of accurate forecasting for demand of short lifecycle products is of special enthusiasm for many researchers and organizations. Due to short life cycle of products the amount of historical data that is available for forecasting is very minimal or even absent when new or modified products are launched in market. The companies dealing with such products want to increase the accuracy in demand forecasting so that they can utilize the full potential of the market at the same time do not oversupply. This provides the challenge to develop a forecasting model that can forecast accurately while handling large variations in data and consider the complex relationships between various parameters of data. Many statistical models have been proposed in literature for forecasting time series data. Traditional time series forecasting models do not work well for short life cycles due to lack of historical data. Also artificial neural networks (ANN) models are very time consuming to perform forecasting. We have studied the existing models that are used for forecasting and their limitations. This work proposes an effective and powerful forecasting approach for short life cycle time series forecasting. We have proposed an approach which takes into consideration different scenarios related to data availability for short lifecycle products. We then suggest a methodology which combines statistical analysis with structured judgement. Also the defined approach can be applied across domains. We then describe the method of creating a profile from analogous products. This profile can then be used for forecasting products with historical data of analogous products. We have designed an application which combines data, analytics and domain knowledge using point-and-click technology. The forecasting results generated are compared using MAPE, MSE and RMSE error scores. Conclusion: Based on the results it is observed that no one approach is sufficient for short life-cycle forecasting and we need to combine two or more approaches for achieving the desired accuracy.

Keywords: forecast, short life cycle product, structured judgement, time series

Procedia PDF Downloads 358
24864 Commercialization of Innovative Technologies: Strategic Licensing in Patent Infringement Cases

Authors: Amaliny Yoganathan-Hasselbeck

Abstract:

Based on the assumption, that strategic licensing is more valuable and sustainable for the economy than a legal dispute and action for an injunction, the strategy of licensing in patent infringement cases was studied. A theoretical framework was developed based on the transaction costs approach, describing the major variables within the process of licensing to an alleged patent infringer. An exploratory case study analysis was conducted on the basis of expert interviews with patent licensing agencies, patent attorneys, licensing departments of companies and research institutions. Key findings define the major criteria in each step of the licensing process and include the factors determining the intensity of patent tracking e.g. patent policies, the decision criteria when dealing with patent infringement cases, e.g. market position and reputation, and the transaction itself starting with the initiation of the contact with the alleged patent infringer, negotiating the licensing contract and monitoring the license agreement.

Keywords: innovation, licensing, patent, patent infringement, strategy, technology

Procedia PDF Downloads 474
24863 SAP-Reduce: Staleness-Aware P-Reduce with Weight Generator

Authors: Lizhi Ma, Chengcheng Hu, Fuxian Wong

Abstract:

Partial reduce (P-Reduce) has set a state-of-the-art performance on distributed machine learning in the heterogeneous environment over the All-Reduce architecture. The dynamic P-Reduce based on the exponential moving average (EMA) approach predicts all the intermediate model parameters, which raises unreliability. It is noticed that the approximation trick leads the wrong way to obtaining model parameters in all the nodes. In this paper, SAP-Reduce is proposed, which is a variant of the All-Reduce distributed training model with staleness-aware dynamic P-Reduce. SAP-Reduce directly utilizes the EMA-like algorithm to generate the normalized weights. To demonstrate the effectiveness of the algorithm, the experiments are set based on a number of deep learning models, comparing the single-step training acceleration ratio and convergence time. It is found that SAP-Reduce simplifying dynamic P-Reduce outperforms the intermediate approximation one. The empirical results show SAP-Reduce is 1.3× −2.1× faster than existing baselines.

Keywords: collective communication, decentralized distributed training, machine learning, P-Reduce

Procedia PDF Downloads 31
24862 PET/CT Patient Dosage Assay

Authors: Gulten Yilmaz, A. Beril Tugrul, Mustafa Demir, Dogan Yasar, Bayram Demir, Bulent Buyuk

Abstract:

A Positron Emission Tomography (PET) is a radioisotope imaging technique that illustrates the organs and the metabolisms of the human body. This technique is based on the simultaneous detection of 511 keV annihilation photons, annihilated as a result of electrons annihilating positrons that radiate from positron-emitting radioisotopes that enter biological active molecules in the body. This study was conducted on ten patients in an effort to conduct patient-related experimental studies. Dosage monitoring for the bladder, which was the organ that received the highest dose during PET applications, was conducted for 24 hours. Assessment based on measuring urination activities after injecting patients was also a part of this study. The MIRD method was used to conduct dosage calculations for results obtained from experimental studies. Results obtained experimentally and theoretically were assessed comparatively.

Keywords: PET/CT, TLD, MIRD, dose measurement, patient doses

Procedia PDF Downloads 519
24861 Data Analysis for Taxonomy Prediction and Annotation of 16S rRNA Gene Sequences from Metagenome Data

Authors: Suchithra V., Shreedhanya, Kavya Menon, Vidya Niranjan

Abstract:

Skin metagenomics has a wide range of applications with direct relevance to the health of the organism. It gives us insight to the diverse community of microorganisms (the microbiome) harbored on the skin. In the recent years, it has become increasingly apparent that the interaction between skin microbiome and the human body plays a prominent role in immune system development, cancer development, disease pathology, and many other biological implications. Next Generation Sequencing has led to faster and better understanding of environmental organisms and their mutual interactions. This project is studying the human skin microbiome of different individuals having varied skin conditions. Bacterial 16S rRNA data of skin microbiome is downloaded from SRA toolkit provided by NCBI to perform metagenomics analysis. Twelve samples are selected with two controls, and 3 different categories, i.e., sex (male/female), skin type (moist/intermittently moist/sebaceous) and occlusion (occluded/intermittently occluded/exposed). Quality of the data is increased using Cutadapt, and its analysis is done using FastQC. USearch, a tool used to analyze an NGS data, provides a suitable platform to obtain taxonomy classification and abundance of bacteria from the metagenome data. The statistical tool used for analyzing the USearch result is METAGENassist. The results revealed that the top three abundant organisms found were: Prevotella, Corynebacterium, and Anaerococcus. Prevotella is known to be an infectious bacterium found on wound, tooth cavity, etc. Corynebacterium and Anaerococcus are opportunist bacteria responsible for skin odor. This result infers that Prevotella thrives easily in sebaceous skin conditions. Therefore it is better to undergo intermittently occluded treatment such as applying ointments, creams, etc. to treat wound for sebaceous skin type. Exposing the wound should be avoided as it leads to an increase in Prevotella abundance. Moist skin type individuals can opt for occluded or intermittently occluded treatment as they have shown to decrease the abundance of bacteria during treatment.

Keywords: bacterial 16S rRNA , next generation sequencing, skin metagenomics, skin microbiome, taxonomy

Procedia PDF Downloads 170
24860 Effects of Microbiological and Physicochemical Processes on the Quality of Complementary Foods Based on Maize (Zea mays) Fortification with Bambara Groundnut (Vigna subterranea)

Authors: T. I. Mbata, M. J. Ikenebomeh

Abstract:

Background: The study was aim at formulating a complementary foods based on maize and bambara groundnut with a view of reducing malnutrition in low income families. Protein-energy malnutrition is a major health challenge attributed to the inappropriate complementary feeding practices, low nutritional quality of traditional complementary foods and high cost of quality protein-based complementary foods. Methods: The blends 70% maize, 30% bambara groundnut were evaluated for proximate analyses, minerals, amino acids profile, and antinutritional factors, using proprietary formula (‘Nutrend’) as standard. Antinutritional factors, amino acids, microbiological properties and sensory attributes were determined using standard methods. Results; For Protein, the results were 15.0% for roasted bambara groundnut maize germinated flour (RBMGF), 13.80% for cooked bambara groundnut maize germinated flour (CBMGF), 15.18% for soaked bambara groundnut maize germinated flour (SBMGF); values for maize flour and nutrend had 10.4% and 23.21% respectively. With respect to energy value, RBMGF, CBMGF, SBMGF, maize flour and nutrend had 494.9, 327.58, 356.49, 366.8 and 467.2 kcal respectively. The percentages of total essential amino acids in the composition of the blends were 36.9%, 40.7% and 38.9% for CBMGF, SBMGF and RBMGF, respectively, non-essential amino acids contents were 63.1%, 59.3% and 61.1% for CBMGF, SBMGF and RBMGF respectively. The mineral content, that is, calcium, potassium, magnesium and sodium, of formulated samples were higher than those obtained for maize flour and Nutrend. The antinutrient composition of RBMGF and CBMGF were lower than of SBMGF. The rats fed with the control diet exhibited better growth performance such as feed intake (1527 g) and body weight gain (93.8 g). For the microbial status, microflora gradually changed from gram negative enteric bacteria, molds, lactic acid bacteria and yeast to be dominated by gram positive lactic acid bacteria (LAB) and yeasts. Yeasts and LAB growth counts in the complementary food varied between 4.44 and 7.36 log cfu/ml. LAB number increased from 5.40 to 7.36 log cfu/ml during fermentation. Yeasts increased from 4.44 to 5.60 log cfu/ml. Organoleptic evaluation revealed that the foods were well accepted. Conclusion: Based on the findings the application of bambara groundnut fortification to traditional foods can promote the nutritional quality of African maize - based traditional foods with acceptable rheological and cooking qualities.

Keywords: bambara groundnut, maize, fortification, complementary food

Procedia PDF Downloads 355
24859 Cytotoxic Drugs: Handling Practices and Clinical Manifestations among Hospital Staff

Authors: Boularas El-Alia, Arbi Raja, Bachir Bouiadjra Sara, Rezk-Kallah Haciba, Rezkkallah Baghdad

Abstract:

Objectives : To determine the handling practices of cytotoxic drugs and to describe clinical manifestations expressed by hospital personnel of Sidi Bel Abbes during the year 2014. Methods: Sectional descriptive study conducted in 3 center university hospital units (Hematology, Oncology and Urology) and Gynecology of EHS Sidi Bel Abbes. A questionnaire was administered to hospital workers regulary exposed to cytotoxic drugs. A work-place visit was performed to have an overview about working conditions. The Cytotoxic Contact Index (CCI) was calculated for each nurse on a period of 15 working days. Treatment of the results was done using SPSS software. Results: The survey reveals that 22 men and 58 women are exposed to cytotoxic drugs for an average of 7 years. Many symptoms such as ocular irritation (38,75%), throat irritation (56,25%), headache (68,75%), dizziness (43,75%), nausea (37,5%), metallic taste (30%), were reported with high frequency. Are noted in the offspring, 3 congenital anomalies,2 diaphragmatic hernia and a cleft palate. The Cytotoxic Contact Index (CCI) was higher than 3 among Oncology nurses and higher than 1 for most of the nurses of Hematology and Gynecology service. The wearing of personal protective clothing was not respected by all workers: (22/23) wear gloves and (20/23) wear a mask,(5/23) wear a cap, (2/23) wear glasses. Only 3 nurses have benefited from continuous training on handling cytotoxic drugs. Conclusion: This study shows a high occupational exposure risk to cytotoxic drugs among persons handling these drugs and the necessity to apply rigorously all measures related to personal protection awareness and training of personnel to minimize these exposure.

Keywords: cytotoxic drugs, handling, clinical manifestations, hospital staff

Procedia PDF Downloads 441
24858 Frequency Recognition Models for Steady State Visual Evoked Potential Based Brain Computer Interfaces (BCIs)

Authors: Zeki Oralhan, Mahmut Tokmakçı

Abstract:

SSVEP based brain computer interface (BCI) systems have been preferred, because of high information transfer rate (ITR) and practical use. ITR is the parameter of BCI overall performance. For high ITR value, one of specification BCI system is that has high accuracy. In this study, we investigated to recognize SSVEP with shorter time and lower error rate. In the experiment, there were 8 flickers on light crystal display (LCD). Participants gazed to flicker which had 12 Hz frequency and 50% duty cycle ratio on the LCD during 10 seconds. During the experiment, EEG signals were acquired via EEG device. The EEG data was filtered in preprocessing session. After that Canonical Correlation Analysis (CCA), Multiset CCA (MsetCCA), phase constrained CCA (PCCA), and Multiway CCA (MwayCCA) methods were applied on data. The highest average accuracy value was reached when MsetCCA was applied.

Keywords: brain computer interface, canonical correlation analysis, human computer interaction, SSVEP

Procedia PDF Downloads 265
24857 Fault Diagnosis in Induction Motors Using the Discrete Wavelet Transform

Authors: Khaled Yahia

Abstract:

This paper deals with the problem of stator faults diagnosis in induction motors. Using the discrete wavelet transform (DWT) for the current Park’s vector modulus (CPVM) analysis, the inter-turn short-circuit faults diagnosis can be achieved. This method is based on the decomposition of the CPVM signal, where wavelet approximation and detail coefficients of this signal have been extracted. The energy evaluation of a known bandwidth detail permits to define a fault severity factor (FSF). This method has been tested through the simulation of an induction motor using a mathematical model based on the winding-function approach. Simulation, as well as experimental, results show the effectiveness of the used method.

Keywords: induction motors (IMs), inter-turn short-circuits diagnosis, discrete wavelet transform (DWT), current park’s vector modulus (CPVM)

Procedia PDF Downloads 567
24856 Developing Sustainable Rammed Earth Material Using Pulp Mill Fly Ash as Cement Replacement

Authors: Amin Ajabi, Chinchu Cherian, Sumi Siddiqua

Abstract:

Rammed earth (RE) is a traditional soil-based building material made by compressing a mixture of natural earth and binder ingredients such as chalk or lime, in temporary formworks. However, the modern RE uses 5 to 10% cement as a binder in order to meet the strength and durability requirements as per the standard specifications and guidelines. RE construction is considered to be an energy-efficient and environmental-friendly approach when compared to conventional concrete systems, which use 20 to 30% cement. The present study aimed to develop RE mix designs by utilizing non-hazardous wood-based fly ash generated by pulp and paper mills as a partial replacement for cement. The pulp mill fly ash (PPFA)-stabilized RE is considered to be a sustainable approach keeping in view of the massive carbon footprints associated with cement production as well as the adverse environmental impacts due to disposal of PPFA in landfills. For the experimental study, as-received PPFA, as well as PPFA-based geopolymer (synthesized by alkaline activation method), were incorporated as cement substitutes in the RE mixtures. Initially, local soil was collected and characterized by index and engineering properties. The PPFA was procured from a pulp manufacturing mill, and its physicochemical, mineralogical and morphological characterization, as well as environmental impact assessment, was conducted. Further, the various mix designs of RE material incorporating local soil and different proportions of cement, PPFA, and alkaline activator (a mixture of sodium silicate and sodium hydroxide solutions) were developed. The compacted RE specimens were cured and tested for 7-day and 28-day unconfined compressive strength (UCS) variations. Based on UCS results, the optimum mix design was identified corresponding to maximum strength improvement. Further, the cured RE specimens were subjected to freeze-thaw cycle testing for evaluating its performance and durability as a sustainable construction technique under extreme climatic conditions.

Keywords: sustainability, rammed earth, stabilization, pulp mill fly ash, geopolymer, alkaline activation, strength, durability

Procedia PDF Downloads 98
24855 How Natural Environments Are Being Used by Teachers to Improve Student Learning and Wellbeing in Australia

Authors: Jade Fersterer, Tristan Snell, Mark Rickinson

Abstract:

This paper is designed to provide a review of the literature concerning the impact of natural environments on student learning and wellbeing in Australia. Specific areas of interest include how child-led and teacher-led pedagogies differ in outdoor learning settings, and the impact of each approach on children’s well-being, behavior, relationships with others as well as educational outcomes. The review will include links to possibilities for future research, including a Ph.D. currently being undertaken in Australia, which aims to fulfill a considerable gap in psychological, educational and outdoor learning research, regarding how natural environments are being used by teachers to improve learning and wellbeing among primary school students. The proposed study aims to understand if children’s experience of learning, 1. in a natural environment, and 2. in a child-led way, can support and strengthen their skills across several areas of development, including those required for positive educational outcomes. Data will be collected from a sample of primary school students and teachers via both quantitative and qualitative methods, including a pre- and post-questionnaire, direct observation, and semi-structured interviews. The study will have valuable implications for the provision of quality education as well as the promotion of good health and wellbeing. The implications of the research will be useful not only for teachers and parents but also for Psychologists working with children and young people in both a school and clinical setting. Understanding the impacts and implications of child-led learning and exposure to natural environments provides the opportunity to build on the current school curriculum. The inclusion of child-led experiences in nature may provide a simple way to build enthusiasm for school and learning, cultivating skills for life and relationships as well as meeting current curriculum requirements and building capacity for ongoing academic pursuits. In addition, understanding the impact of learning in a natural environment on wellbeing will assist in the development and dissemination of an educational model that could help mitigate the negative health outcomes associated with reduced physical activity and decreasing contact with nature among children.

Keywords: child-led learning, educational outcomes, natural environments, wellbeing

Procedia PDF Downloads 123
24854 Smartphone Video Source Identification Based on Sensor Pattern Noise

Authors: Raquel Ramos López, Anissa El-Khattabi, Ana Lucila Sandoval Orozco, Luis Javier García Villalba

Abstract:

An increasing number of mobile devices with integrated cameras has meant that most digital video comes from these devices. These digital videos can be made anytime, anywhere and for different purposes. They can also be shared on the Internet in a short period of time and may sometimes contain recordings of illegal acts. The need to reliably trace the origin becomes evident when these videos are used for forensic purposes. This work proposes an algorithm to identify the brand and model of mobile device which generated the video. Its procedure is as follows: after obtaining the relevant video information, a classification algorithm based on sensor noise and Wavelet Transform performs the aforementioned identification process. We also present experimental results that support the validity of the techniques used and show promising results.

Keywords: digital video, forensics analysis, key frame, mobile device, PRNU, sensor noise, source identification

Procedia PDF Downloads 427
24853 Edge Detection and Morphological Image for Estimating Gestational Age Based on Fetus Length Automatically

Authors: Retno Supriyanti, Ahmad Chuzaeri, Yogi Ramadhani, A. Haris Budi Widodo

Abstract:

The use of ultrasonography in the medical world has been very popular including the diagnosis of pregnancy. In determining pregnancy, ultrasonography has many roles, such as to check the position of the fetus, abnormal pregnancy, fetal age and others. Unfortunately, all these things still need to analyze the role of the obstetrician in the sense of image raised by ultrasonography. One of the most striking is the determination of gestational age. Usually, it is done by measuring the length of the fetus manually by obstetricians. In this study, we developed a computer-aided diagnosis for the determination of gestational age by measuring the length of the fetus automatically using edge detection method and image morphology. Results showed that the system is sufficiently accurate in determining the gestational age based image processing.

Keywords: computer aided diagnosis, gestational age, and diameter of uterus, length of fetus, edge detection method, morphology image

Procedia PDF Downloads 293
24852 In-situ Acoustic Emission Analysis of a Polymer Electrolyte Membrane Water Electrolyser

Authors: M. Maier, I. Dedigama, J. Majasan, Y. Wu, Q. Meyer, L. Castanheira, G. Hinds, P. R. Shearing, D. J. L. Brett

Abstract:

Increasing the efficiency of electrolyser technology is commonly seen as one of the main challenges on the way to the Hydrogen Economy. There is a significant lack of understanding of the different states of operation of polymer electrolyte membrane water electrolysers (PEMWE) and how these influence the overall efficiency. This in particular means the two-phase flow through the membrane, gas diffusion layers (GDL) and flow channels. In order to increase the efficiency of PEMWE and facilitate their spread as commercial hydrogen production technology, new analytic approaches have to be found. Acoustic emission (AE) offers the possibility to analyse the processes within a PEMWE in a non-destructive, fast and cheap in-situ way. This work describes the generation and analysis of AE data coming from a PEM water electrolyser, for, to the best of our knowledge, the first time in literature. Different experiments are carried out. Each experiment is designed so that only specific physical processes occur and AE solely related to one process can be measured. Therefore, a range of experimental conditions is used to induce different flow regimes within flow channels and GDL. The resulting AE data is first separated into different events, which are defined by exceeding the noise threshold. Each acoustic event consists of a number of consequent peaks and ends when the wave diminishes under the noise threshold. For all these acoustic events the following key attributes are extracted: maximum peak amplitude, duration, number of peaks, peaks before the maximum, average intensity of a peak and time till the maximum is reached. Each event is then expressed as a vector containing the normalized values for all criteria. Principal Component Analysis is performed on the resulting data, which orders the criteria by the eigenvalues of their covariance matrix. This can be used as an easy way of determining which criteria convey the most information on the acoustic data. In the following, the data is ordered in the two- or three-dimensional space formed by the most relevant criteria axes. By finding spaces in the two- or three-dimensional space only occupied by acoustic events originating from one of the three experiments it is possible to relate physical processes to certain acoustic patterns. Due to the complex nature of the AE data modern machine learning techniques are needed to recognize these patterns in-situ. Using the AE data produced before allows to train a self-learning algorithm and develop an analytical tool to diagnose different operational states in a PEMWE. Combining this technique with the measurement of polarization curves and electrochemical impedance spectroscopy allows for in-situ optimization and recognition of suboptimal states of operation.

Keywords: acoustic emission, gas diffusion layers, in-situ diagnosis, PEM water electrolyser

Procedia PDF Downloads 155
24851 Geographic Information System Based Multi-Criteria Subsea Pipeline Route Optimisation

Authors: James Brown, Stella Kortekaas, Ian Finnie, George Zhang, Christine Devine, Neil Healy

Abstract:

The use of GIS as an analysis tool for engineering decision making is now best practice in the offshore industry. GIS enables multidisciplinary data integration, analysis and visualisation which allows the presentation of large and intricate datasets in a simple map-interface accessible to all project stakeholders. Presenting integrated geoscience and geotechnical data in GIS enables decision makers to be well-informed. This paper is a successful case study of how GIS spatial analysis techniques were applied to help select the most favourable pipeline route. Routing a pipeline through any natural environment has numerous obstacles, whether they be topographical, geological, engineering or financial. Where the pipeline is subjected to external hydrostatic water pressure and is carrying pressurised hydrocarbons, the requirement to safely route the pipeline through hazardous terrain becomes absolutely paramount. This study illustrates how the application of modern, GIS-based pipeline routing techniques enabled the identification of a single most-favourable pipeline route crossing of a challenging seabed terrain. Conventional approaches to pipeline route determination focus on manual avoidance of primary constraints whilst endeavouring to minimise route length. Such an approach is qualitative, subjective and is liable to bias towards the discipline and expertise that is involved in the routing process. For very short routes traversing benign seabed topography in shallow water this approach may be sufficient, but for deepwater geohazardous sites, the need for an automated, multi-criteria, and quantitative approach is essential. This study combined multiple routing constraints using modern least-cost-routing algorithms deployed in GIS, hitherto unachievable with conventional approaches. The least-cost-routing procedure begins with the assignment of geocost across the study area. Geocost is defined as a numerical penalty score representing hazard posed by each routing constraint (e.g. slope angle, rugosity, vulnerability to debris flows) to the pipeline. All geocosted routing constraints are combined to generate a composite geocost map that is used to compute the least geocost route between two defined terminals. The analyses were applied to select the most favourable pipeline route for a potential gas development in deep water. The study area is geologically complex with a series of incised, potentially active, canyons carved into a steep escarpment, with evidence of extensive debris flows. A similar debris flow in the future could cause significant damage to a poorly-placed pipeline. Protruding inter-canyon spurs offer lower-gradient options for ascending an escarpment but the vulnerability of periodic failure of these spurs is not well understood. Close collaboration between geoscientists, pipeline engineers, geotechnical engineers and of course the gas export pipeline operator guided the analyses and assignment of geocosts. Shorter route length, less severe slope angles, and geohazard avoidance were the primary drivers in identifying the most favourable route.

Keywords: geocost, geohazard, pipeline route determination, pipeline route optimisation, spatial analysis

Procedia PDF Downloads 405
24850 Protection of the Object of the Critical Infrastructure in the Czech Republic

Authors: Michaela Vašková

Abstract:

With the increasing dependence of countries on the critical infrastructure, it increases their vulnerability. Big threat is primarily in the human factor (personnel of the critical infrastructure) and in terrorist attacks. It emphasizes the development of methodology for searching of weak points and their subsequent elimination. This article discusses methods for the analysis of safety in the objects of critical infrastructure. It also contains proposal for methodology for training employees of security services in the objects of the critical infrastructure and developing scenarios of attacks on selected objects of the critical infrastructure.

Keywords: critical infrastructure, object of critical infrastructure, protection, safety, security, security audit

Procedia PDF Downloads 342
24849 A Topological Study of an Urban Street Network and Its Use in Heritage Areas

Authors: Jose L. Oliver, Taras Agryzkov, Leandro Tortosa, Jose F. Vicent, Javier Santacruz

Abstract:

This paper aims to demonstrate how a topological study of an urban street network can be used as a tool to be applied to some heritage conservation areas in a city. In the last decades, we find different kinds of approaches in the discipline of Architecture and Urbanism based in the so-called Sciences of Complexity. In this context, this paper uses mathematics from the Network Theory. Hence, it proposes a methodology based in obtaining information from a graph, which is created from a network of urban streets. Then, it is used an algorithm that establishes a ranking of importance of the nodes of that network, from its topological point of view. The results are applied to a heritage area in a particular city, confronting the data obtained from the mathematical model, with the ones from the field work in the case study. As a result of this process, we may conclude the necessity of implementing some actions in the area, and where those actions would be more effective for the whole heritage site.

Keywords: graphs, heritage cities, spatial analysis, urban networks

Procedia PDF Downloads 395
24848 Data Quality as a Pillar of Data-Driven Organizations: Exploring the Benefits of Data Mesh

Authors: Marc Bachelet, Abhijit Kumar Chatterjee, José Manuel Avila

Abstract:

Data quality is a key component of any data-driven organization. Without data quality, organizations cannot effectively make data-driven decisions, which often leads to poor business performance. Therefore, it is important for an organization to ensure that the data they use is of high quality. This is where the concept of data mesh comes in. Data mesh is an organizational and architectural decentralized approach to data management that can help organizations improve the quality of data. The concept of data mesh was first introduced in 2020. Its purpose is to decentralize data ownership, making it easier for domain experts to manage the data. This can help organizations improve data quality by reducing the reliance on centralized data teams and allowing domain experts to take charge of their data. This paper intends to discuss how a set of elements, including data mesh, are tools capable of increasing data quality. One of the key benefits of data mesh is improved metadata management. In a traditional data architecture, metadata management is typically centralized, which can lead to data silos and poor data quality. With data mesh, metadata is managed in a decentralized manner, ensuring accurate and up-to-date metadata, thereby improving data quality. Another benefit of data mesh is the clarification of roles and responsibilities. In a traditional data architecture, data teams are responsible for managing all aspects of data, which can lead to confusion and ambiguity in responsibilities. With data mesh, domain experts are responsible for managing their own data, which can help provide clarity in roles and responsibilities and improve data quality. Additionally, data mesh can also contribute to a new form of organization that is more agile and adaptable. By decentralizing data ownership, organizations can respond more quickly to changes in their business environment, which in turn can help improve overall performance by allowing better insights into business as an effect of better reports and visualization tools. Monitoring and analytics are also important aspects of data quality. With data mesh, monitoring, and analytics are decentralized, allowing domain experts to monitor and analyze their own data. This will help in identifying and addressing data quality problems in quick time, leading to improved data quality. Data culture is another major aspect of data quality. With data mesh, domain experts are encouraged to take ownership of their data, which can help create a data-driven culture within the organization. This can lead to improved data quality and better business outcomes. Finally, the paper explores the contribution of AI in the coming years. AI can help enhance data quality by automating many data-related tasks, like data cleaning and data validation. By integrating AI into data mesh, organizations can further enhance the quality of their data. The concepts mentioned above are illustrated by AEKIDEN experience feedback. AEKIDEN is an international data-driven consultancy that has successfully implemented a data mesh approach. By sharing their experience, AEKIDEN can help other organizations understand the benefits and challenges of implementing data mesh and improving data quality.

Keywords: data culture, data-driven organization, data mesh, data quality for business success

Procedia PDF Downloads 133
24847 Speech Detection Model Based on Deep Neural Networks Classifier for Speech Emotions Recognition

Authors: Aisultan Shoiynbek, Darkhan Kuanyshbay, Paulo Menezes, Akbayan Bekarystankyzy, Assylbek Mukhametzhanov, Temirlan Shoiynbek

Abstract:

Speech emotion recognition (SER) has received increasing research interest in recent years. It is a common practice to utilize emotional speech collected under controlled conditions recorded by actors imitating and artificially producing emotions in front of a microphone. There are four issues related to that approach: emotions are not natural, meaning that machines are learning to recognize fake emotions; emotions are very limited in quantity and poor in variety of speaking; there is some language dependency in SER; consequently, each time researchers want to start work with SER, they need to find a good emotional database in their language. This paper proposes an approach to create an automatic tool for speech emotion extraction based on facial emotion recognition and describes the sequence of actions involved in the proposed approach. One of the first objectives in the sequence of actions is the speech detection issue. The paper provides a detailed description of the speech detection model based on a fully connected deep neural network for Kazakh and Russian. Despite the high results in speech detection for Kazakh and Russian, the described process is suitable for any language. To investigate the working capacity of the developed model, an analysis of speech detection and extraction from real tasks has been performed.

Keywords: deep neural networks, speech detection, speech emotion recognition, Mel-frequency cepstrum coefficients, collecting speech emotion corpus, collecting speech emotion dataset, Kazakh speech dataset

Procedia PDF Downloads 24
24846 Detecting Characters as Objects Towards Character Recognition on Licence Plates

Authors: Alden Boby, Dane Brown, James Connan

Abstract:

Character recognition is a well-researched topic across disciplines. Regardless, creating a solution that can cater to multiple situations is still challenging. Vehicle licence plates lack an international standard, meaning that different countries and regions have their own licence plate format. A problem that arises from this is that the typefaces and designs from different regions make it difficult to create a solution that can cater to a wide range of licence plates. The main issue concerning detection is the character recognition stage. This paper aims to create an object detection-based character recognition model trained on a custom dataset that consists of typefaces of licence plates from various regions. Given that characters have featured consistently maintained across an array of fonts, YOLO can be trained to recognise characters based on these features, which may provide better performance than OCR methods such as Tesseract OCR.

Keywords: computer vision, character recognition, licence plate recognition, object detection

Procedia PDF Downloads 120
24845 Rapid Strategic Consensus Building in Land Readjustment in Kabul

Authors: Nangialai Yousufzai, Eysosiyas Etana, Ikuo Sugiyama

Abstract:

Kabul population has been growing continually since 2001 and reaching six million in 2025 due to the rapid inflow from the neighboring countries. As a result of the population growth, lack of living facilities supported by infrastructure services is becoming serious in social and economic aspects. However, about 70% of the city is still occupied illegally and the government has little information on the infrastructure demands. To improve this situation, land readjustment is one of the powerful development tools, because land readjustment does not need a high governmental budget of itself. Instead, the method needs cooperation between stakeholders such as landowners, developers and a local government. So it is becoming crucial for both government and citizens to implement land readjustment for providing tidy urban areas with enough public services to realize more livable city as a whole. On the contrary, the traditional land readjustment tends to spend a long time until now to get consensus on the new plan between stakeholders. One of the reasons is that individual land area (land parcel) is decreased due to the contribution to public such as roads/parks/squares for improving the urban environment. The second reason is that the new plan is difficult for dwellers to imagine new life after the readjustment. Because the paper-based plan is made by an authority not for dwellers but for specialists to precede the project. This paper aims to shorten the time to realize quick consensus between stakeholders. The first improvement is utilizing questionnaire(s) to assess the demand and preference of the landowners. The second one is utilizing 3D model for dwellers to visualize the new environment easily after the readjustment. In additions, the 3D model is reflecting the demand and preference of the resident so that they could select a land parcel according to their sense value of life. The above-mentioned two improvements are carried out after evaluating total land prices of the new plans to select for maximizing the project value. The land price forecasting formula is derived from the current market ones in Kabul. Finally, it is stressed that the rapid consensus-building of land readjustment utilizing ICT and open data analysis is essential to redevelop slums and illegal occupied areas in Kabul.

Keywords: land readjustment, consensus building, land price formula, 3D simulation

Procedia PDF Downloads 332
24844 A Comprehensive Procedure of Spatial Panel Modelling with R, A Study of Agricultural Productivity Growth of the 38 East Java’s Regencies/Municipalities

Authors: Rahma Fitriani, Zerlita Fahdha Pusdiktasari, Herman Cahyo Diartho

Abstract:

Spatial panel model is commonly used to specify more complicated behavior of economic agent distributed in space at an individual-spatial unit level. There are several spatial panel models which can be adapted based on certain assumptions. A package called splm in R has several functions, ranging from the estimation procedure, specification tests, and model selection tests. In the absence of prior assumptions, a comprehensive procedure which utilizes the available functions in splm must be formed, which is the objective of this study. In this way, the best specification and model can be fitted based on data. The implementation of the procedure works well. It specifies SARAR-FE as the best model for agricultural productivity growth of the 38 East Java’s Regencies/Municipalities.

Keywords: spatial panel, specification, splm, agricultural productivity growth

Procedia PDF Downloads 169
24843 The Nexus between Social Entrepreneurship and Youth Empowerment

Authors: Aaron G. Laylo

Abstract:

This paper mainly assumes that social entrepreneurship contributes significantly to youth empowerment i.e., work and community engagement. Two questions are thus raised in order to establish this hypothesis: 1) First, how does social entrepreneurship contribute to youth empowerment?; and 2) secondly, why is social entrpreneurship significantly incremental to youth empowerment? This research aims a) to investigate on the social aspect of entrepreneurship; b) to explore challenges in youth empowerment particularly in respect to work and community engagement; and c) to inquire into whether social enterprises have truly served as a catalyst for, thus an effective response to, youth empowerment. It must be emphasized that young people, which comprise 1.8 billion in a world of seven billion are an asset; Apparently, how to maximize that potential is crucial. By utilizing exploratory research design, the paper endeavors to generate new ideas in regards to both components, develop tentative theories on social entrepreneurship, and refine certain issues that are under observation and seek scholarly attention— a rather emerging phenomenon vis a vis the challenge to empower a significant cluster of the society. Case studies will be utilized as an approach in order to comparatively analyze youth-driven social enterprises in the Philippines that have been widely recognized as successful insofar as social impact is concerned. As most scholars attested, social entrepreneurship is still at its infancy stage. Youth empowerment, meanwhile, is yet a vast area to explore insofar as academic research is concerned. Programs and projects that advocate the pursuit of these components abound. However, academic research is yet to be undertaken to see and understand their social and economic relevance. This research is also an opportunity for scholars to explore, understand, and make sense of the promise that lies in social entrepreneurship research and how it can serve as a catalyst for youth empowerment. Youth-driven social enterprises can be an influential tool in sustaining development across the globe as they intend to provide opportunities for optimal economic productivity that recognizes social inclusion. Ultimately, this study should be able to contribute to both research and development-in-practice communities for the greater good of the society. By establishing the nexus between these two components, the research may contribute to fostering greater exploration of the benefits that both may yield to human progress as well as the gaps that have to be filled in by various policy stakeholders relevant to these units.

Keywords: social entpreneurship, youth, empowerment, social inclusion

Procedia PDF Downloads 304
24842 Ancient Port Towns of Western Coastal Plain in Kerala, India: From Manuscripts to Material Remains

Authors: Saravanan R.

Abstract:

The landscape of Kerala was paved way for the growth of maritime contacts with foreigners. Pepper was the important exported item from here because this region only having pepper production on the West Coast of India. The paper is attempting to analysis the available references of ancient port town in Kerala. It is merely preliminary investigation about Early Historic urban centres with the available literary evidences and excavations reports that would help us to understand the ancient port town in Kerala coast. There were number of ancient port towns mentioned in classical Greek and Sangam literatures. For instance, Naura, Tyndis, Nelcynda, Bacare and Muziris were the major sites of Kerala which represented only in the text but not able to locate these sites on the ground so far. There are lot of studies on site based as well as state based regarding the various aspects of ancient port towns. But, it is mainly focussed on factual narration and theoretical interpretation.

Keywords: urban centre, amphora, Muziris, port town, Sangam text and trade

Procedia PDF Downloads 70
24841 Synthesis of Highly Valuable Fuel Fractions from Waste Date Seeds Oil

Authors: Farrukh Jamil, Ala'A H. Al-Muhtaseb, Lamya Al-Haj, Mohab A. Al-Hinai

Abstract:

Environmental problems and the security of energy supply have motivated the attention in the expansion of alternatives for fossil based fuels. Biomass has been recognized as a capable resource because it is plentifully available and in principle carbon dioxide neutral. Present study focuses on utilization date seeds oil for synthesizing high value fuels formulations such as green diesel and jet fuel. The hydrodeoxygenation of date seeds oil occurred to be highly efficient at following operating conditions temperature 300°C pressure 10bar with continuous stirring at 500 rpm. Products characterization revealed the efficiency of hydrodeoxygenation by formation of linear hydrocarbons (paraffin) in larger fraction. Based on the type of components in product oil it was calculated that maximum fraction lies within the range of green diesel 72.78 % then jet fuel 28.25 % by using Pt/C catalyst. It can be concluded that waste date seeds oil has potential to be used for obtaining high value products.

Keywords: date seeds, hydrodeoxygenation, paraffin, deoxygenation

Procedia PDF Downloads 263
24840 An ANOVA-based Sequential Forward Channel Selection Framework for Brain-Computer Interface Application based on EEG Signals Driven by Motor Imagery

Authors: Forouzan Salehi Fergeni

Abstract:

Converting the movement intents of a person into commands for action employing brain signals like electroencephalogram signals is a brain-computer interface (BCI) system. When left or right-hand motions are imagined, different patterns of brain activity appear, which can be employed as BCI signals for control. To make better the brain-computer interface (BCI) structures, effective and accurate techniques for increasing the classifying precision of motor imagery (MI) based on electroencephalography (EEG) are greatly needed. Subject dependency and non-stationary are two features of EEG signals. So, EEG signals must be effectively processed before being used in BCI applications. In the present study, after applying an 8 to 30 band-pass filter, a car spatial filter is rendered for the purpose of denoising, and then, a method of analysis of variance is used to select more appropriate and informative channels from a category of a large number of different channels. After ordering channels based on their efficiencies, a sequential forward channel selection is employed to choose just a few reliable ones. Features from two domains of time and wavelet are extracted and shortlisted with the help of a statistical technique, namely the t-test. Finally, the selected features are classified with different machine learning and neural network classifiers being k-nearest neighbor, Probabilistic neural network, support-vector-machine, Extreme learning machine, decision tree, Multi-layer perceptron, and linear discriminant analysis with the purpose of comparing their performance in this application. Utilizing a ten-fold cross-validation approach, tests are performed on a motor imagery dataset found in the BCI competition III. Outcomes demonstrated that the SVM classifier got the greatest classification precision of 97% when compared to the other available approaches. The entire investigative findings confirm that the suggested framework is reliable and computationally effective for the construction of BCI systems and surpasses the existing methods.

Keywords: brain-computer interface, channel selection, motor imagery, support-vector-machine

Procedia PDF Downloads 47
24839 The Influence of Family of Origin on Children: A Comprehensive Model and Implications for Positive Psychology and Psychotherapy

Authors: Meichen He, Xuan Yang

Abstract:

Background: In the field of psychotherapy, the role of the family of origin is of utmost importance. Over the past few decades, both individual-oriented and family-oriented approaches to child therapy have shown moderate success in reducing children's psychological and behavioral issues. Objective: However, in exploring how the family of origin influences individuals, it has been noted that there is a lack of comprehensive measurement indicators and an absence of an exact model to assess the impact of the family of origin on individual development. Therefore, this study aims to develop a model based on a literature review regarding the influence of the family of origin on children. Specifically, it will examine the effects of factors such as education level, economic status, maternal age, family integration, family violence, marital conflict, parental substance abuse, and alcohol consumption on children's self-confidence and life satisfaction. Through this research, we aim to further investigate the impact of the family of origin on children and provide directions for future research in positive psychology and psychotherapy. Methods: This study will employ a literature review methodology to gather and analyze relevant research articles on the influence of the family of origin on children. Subsequently, we will conduct quantitative analyses to establish a comprehensive model explaining how family of origin factors affect children's psychological and behavioral outcomes. Findings: the research has revealed that family of origin factors, including education level, economic status, maternal age, family integration, family violence, marital conflict, parental drug and alcohol consumption, have an impact on children's self-confidence and life satisfaction. These factors can affect children's psychological well-being and happiness through various pathways. Implications: The results of this study will contribute to a better understanding of the influence of the family of origin on children and provide valuable directions for future research in positive psychology and psychotherapy. This research will enhance awareness of children's psychological well-being and lay the foundation for improving psychotherapeutic methods.

Keywords: family of origion, positive psychology, developmental psychology, family education, social psychology, educational psychology

Procedia PDF Downloads 162