Search results for: mechanical properties of hardened SCC
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10412

Search results for: mechanical properties of hardened SCC

8762 Self-Healing Hydrogel Triggered by Magnetic Microspheres to Control Glutathione Release for Cartilage Repair

Authors: I-Yun Cheng, Min-Yu Chiang, Shwu-Jen Chang, San-Yuan Chen

Abstract:

Osteoarthritis (OA) is among the most challenging joint diseases, and as far as we know, there is currently no exact and effective cure for it because it has low self-repair ability due to lack of blood vessels and low cell density in articular cartilage. So far, there have been several methods developed to treat cartilage disorder. The most common method is to treat the high molecular weight of hyaluronic acid (HA) injection, but it will degrade after a period of time, so the patients need to inject HA repeatedly. In recent years, self-healing hydrogel has drawn considerable attention because it can recover its initial mechanical properties after damaged and further increase the lifetime of the hydrogel. Here, we aim to develop a self-healable composite hydrogel combined with magnetic microspheres to trigger glutathione(GSH) release for promoting cartilage repair. We use HA-cyclodextrin (CD) as host polymer and poly(acrylic acid)-ferrocene (pAA-Fc) as guest polymer to form the self-healable HA-pAA hydrogel by host and guest interaction where various graft amount of pAA-Fc (pAA:Fc= 1:2, 1:1.5, 1:1, 2:1, 4:1) was conducted to develop different mechanical strength hydrogel. The rheology analysis showed that the 4:1 of pAA-Fc has higher mechanical strength than other formulations. On the other hand, iron oxide nanoparticle, poly(lactic-co-glycolic acid) (PLGA) and polyethyleneimine (PEI) were used to synthesize porous magnetic microspheres via double emulsification water-in-oil-in-water (W/O/W) to increase GSH loading which acted as a reductant to control the hydrogel crosslink density and promote hydrogel self-healing. The results show that the porous magnetic microspheres can be loaded with 70% of GSH and sustained release about 50% of GSH after 24 hours. More importantly, the HA-pAA composite hydrogel can self-heal rapidly within 24 hours when suffering external force destruction by releasing GSH from the magnetic microspheres. Therefore, the developed the HA-pAA composite hydrogel combined with GSH-loaded magnetic microspheres can be in-vivo guided to damaged OA surface for inducing the cartilage repair by controlling the crosslinking of self-healing hydrogel via GSH release.

Keywords: articular cartilage, magnetic microsphere, osteoarthritis, self-healing hydrogel

Procedia PDF Downloads 121
8761 Fluorescence Quenching as an Efficient Tool for Sensing Application: Study on the Fluorescence Quenching of Naphthalimide Dye by Graphene Oxide

Authors: Sanaz Seraj, Shohre Rouhani

Abstract:

Recently, graphene has gained much attention because of its unique optical, mechanical, electrical, and thermal properties. Graphene has been used as a key material in the technological applications in various areas such as sensors, drug delivery, super capacitors, transparent conductor, and solar cell. It has a superior quenching efficiency for various fluorophores. Based on these unique properties, the optical sensors with graphene materials as the energy acceptors have demonstrated great success in recent years. During quenching, the emission of a fluorophore is perturbed by a quencher which can be a substrate or biomolecule, and due to this phenomenon, fluorophore-quencher has been used for selective detection of target molecules. Among fluorescence dyes, 1,8-naphthalimide is well known for its typical intramolecular charge transfer (ICT) and photo-induced charge transfer (PET) fluorophore, strong absorption and emission in the visible region, high photo stability, and large Stokes shift. Derivatives of 1,8-naphthalimides have found applications in some areas, especially fluorescence sensors. Herein, the fluorescence quenching of graphene oxide has been carried out on a naphthalimide dye as a fluorescent probe model. The quenching ability of graphene oxide on naphthalimide dye was studied by UV-VIS and fluorescence spectroscopy. This study showed that graphene is an efficient quencher for fluorescent dyes. Therefore, it can be used as a suitable candidate sensing platform. To the best of our knowledge, studies on the quenching and absorption of naphthalimide dyes by graphene oxide are rare.

Keywords: fluorescence, graphene oxide, naphthalimide dye, quenching

Procedia PDF Downloads 579
8760 Biocellulose as Platform for the Development of Multifunctional Materials

Authors: Junkal Gutierrez, Hernane S. Barud, Sidney J. L. Ribeiro, Agnieszka Tercjak

Abstract:

Nowadays the interest on green nanocomposites and on the development of more environmental friendly products has been increased. Bacterial cellulose has been recently investigated as an attractive environmentally friendly material for the preparation of low-cost nanocomposites. The formation of cellulose by laboratory bacterial cultures is an interesting and attractive biomimetic access to obtain pure cellulose with excellent properties. Additionally, properties as molar mass, molar mass distribution, and the supramolecular structure could be control using different bacterial strain, culture mediums and conditions, including the incorporation of different additives. This kind of cellulose is a natural nanomaterial, and therefore, it has a high surface-to-volume ratio which is highly advantageous in composites production. Such property combined with good biocompatibility, high tensile strength, and high crystallinity makes bacterial cellulose a potential material for applications in different fields. The aim of this investigation work was the fabrication of novel hybrid inorganic-organic composites based on bacterial cellulose, cultivated in our laboratory, as a template. This kind of biohybrid nanocomposites gathers together excellent properties of bacterial cellulose with the ones displayed by typical inorganic nanoparticles like optical, magnetic and electrical properties, luminescence, ionic conductivity and selectivity, as well as chemical or biochemical activity. In addition, the functionalization of cellulose with inorganic materials opens new pathways for the fabrication of novel multifunctional hybrid materials with promising properties for a wide range of applications namely electronic paper, flexible displays, solar cells, sensors, among others. In this work, different pathways for fabrication of multifunctional biohybrid nanopapers with tunable properties based on BC modified with amphiphilic poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (EPE) block copolymer, sol-gel synthesized nanoparticles (titanium, vanadium and a mixture of both oxides) and functionalized iron oxide nanoparticles will be presented. In situ (biosynthesized) and ex situ (at post-production level) approaches were successfully used to modify BC membranes. Bacterial cellulose based biocomposites modified with different EPE block copolymer contents were developed by in situ technique. Thus, BC growth conditions were manipulated to fabricate EPE/BC nanocomposite during the biosynthesis. Additionally, hybrid inorganic/organic nanocomposites based on BC membranes and inorganic nanoparticles were designed via ex-situ method, by immersion of never-dried BC membranes into different nanoparticle solutions. On the one hand, sol-gel synthesized nanoparticles (titanium, vanadium and a mixture of both oxides) and on the other hand superparamagnetic iron oxide nanoparticles (SPION), Fe2O3-PEO solution. The morphology of designed novel bionanocomposites hybrid materials was investigated by atomic force microscopy (AFM) and scanning electron microscopy (SEM). In order to characterized obtained materials from the point of view of future applications different techniques were employed. On the one hand, optical properties were analyzed by UV-vis spectroscopy and spectrofluorimetry and on the other hand electrical properties were studied at nano and macroscale using electric force microscopy (EFM), tunneling atomic force microscopy (TUNA) and Keithley semiconductor analyzer, respectively. Magnetic properties were measured by means of magnetic force microscopy (MFM). Additionally, mechanical properties were also analyzed.

Keywords: bacterial cellulose, block copolymer, advanced characterization techniques, nanoparticles

Procedia PDF Downloads 219
8759 Effect of Manganese Doping on Ferrroelectric Properties of (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 Lead-Free Piezoceramic

Authors: Chongtham Jiten, Radhapiyari Laishram, K. Chandramani Singh

Abstract:

Alkaline niobate (Na0.5K0.5)NbO3 ceramic system has attracted major attention in view of its potential for replacing the highly toxic but superior lead zirconate titanate (PZT) system for piezoelectric applications. Recently, a more detailed study of this system reveals that the ferroelectric and piezoelectric properties are optimized in the Li- and V-modified system having the composition (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3. In the present work, we further study the pyroelectric behaviour of this composition along with another doped with Mn4+. So, (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 + x MnO2 (x = 0, and 0.01 wt. %) ceramic compositions were synthesized by conventional ceramic processing route. X-ray diffraction study reveals that both the undoped and Mn4+-doped ceramic samples prepared crystallize into a perovskite structure having orthorhombic symmetry. Dielectric study indicates that Mn4+ doping has little effect on both the Curie temperature (Tc) and tetragonal-orthorhombic phase transition temperature (Tot). The bulk density, room-temperature dielectric constant (εRT), and room-c The room-temperature coercive field (Ec) is observed to be lower in Mn4+ doped sample. The detailed analysis of the P-E hysteresis loops over the range of temperature from about room temperature to Tot points out that enhanced ferroelectric properties exist in this temperature range with better thermal stability for the Mn4+ doped ceramic. The study reveals that small traces of Mn4+ can modify (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 system so as to improve its ferroelectric properties with good thermal stability over a wide range of temperature.

Keywords: ceramics, dielectric properties, ferroelectric properties, lead-free, sintering, thermal stability

Procedia PDF Downloads 230
8758 Early-Age Cracking of Low Carbon Concrete Incorporating Ferronickel Slag as Supplementary Cementitious Material

Authors: Mohammad Khan, Arnaud Castel

Abstract:

Concrete viscoelastic properties such as shrinkage, creep, and associated relaxation are important in assessing the risk of cracking during the first few days after placement. This paper investigates the early-age mechanical and viscoelastic properties, restrained shrinkage-induced cracking and time to cracking of concrete incorporating ferronickel slag (FNS) as supplementary cementitious material. Compressive strength, indirect tensile strength and elastic modulus were measured. Tensile creep and drying shrinkage was measured on dog-bone shaped specimens. Restrained shrinkage induced stresses and concrete cracking age were assessed by using the ring test. Results revealed that early-age strength development of FNS blended concrete is lower than that of the corresponding ordinary Portland cement (OPC) concrete. FNS blended concrete showed significantly higher tensile creep. The risk of early-age cracking for the restrained specimens depends on the development of concrete tensile stress considering both restrained shrinkage and tensile creep and the development of the tensile strength. FNS blended concrete showed only 20% reduction in time to cracking compared to reference OPC concrete, and this reduction is significantly lower compared to fly ash and ground granulated blast furnace slag blended concretes at similar replacement level.

Keywords: ferronickel slag, restraint shrinkage, tensile creep, time to cracking

Procedia PDF Downloads 175
8757 Carbon Fiber Manufacturing Conditions to Improve Interfacial Adhesion

Authors: Filip Stojcevski, Tim Hilditch, Luke Henderson

Abstract:

Although carbon fibre composites are becoming ever more prominent in the engineering industry, interfacial failure still remains one of the most common limitations to material performance. Carbon fiber surface treatments have played a major role in advancing composite properties however research into the influence of manufacturing variables on a fiber manufacturing line is lacking. This project investigates the impact of altering carbon fiber manufacturing conditions on a production line (specifically electrochemical oxidization and sizing variables) to assess fiber-matrix adhesion. Pristine virgin fibers were manufactured and interfacial adhesion systematically assessed from a microscale (single fiber) to a mesoscale (12k tow), and ultimately a macroscale (laminate). Correlations between interfacial shear strength (IFSS) at each level is explored as a function of known interfacial bonding mechanisms; namely mechanical interlocking, chemical adhesion and fiber wetting. Impact of these bonding mechanisms is assessed through extensive mechanical, topological and chemical characterisation. They are correlated to performance as a function of IFSS. Ultimately this study provides a bottoms up approach to improving composite laminates. By understanding the scaling effects from a singular fiber to a composite laminate and linking this knowledge to specific bonding mechanisms, material scientists can make an informed decision on the manufacturing conditions most beneficial for interfacial adhesion.

Keywords: carbon fibers, interfacial adhesion, surface treatment, sizing

Procedia PDF Downloads 256
8756 Thermodynamic Study of Homo-Pairs in Molten Cd-Me, (Me=Ga,in) Binary Systems

Authors: Yisau Adelaja Odusote, Olakanmi Felix Akinto

Abstract:

The associative tendency between like atoms in molten Cd-Ga and Cd-In alloy systems has been studied by using the Quasi-Chemical Approximation Model (QCAM). The concentration dependence of the microscopic functions (the concentration-concentration fluctuations in the long-wavelength limits, Scc(0), the chemical short-range order (CSRO) parameter α1 as well as the chemical diffusion) and the mixing properties as the free energy of mixing, GM, enthalpy of mixing and entropy of mixing of the two molten alloys have been determined. Thermodynamic properties of both systems deviate positively from Raoult's law, while the systems are characterized by positive interaction energy. The role of atomic size ratio on the alloying properties was discussed.

Keywords: homo-pairs, interchange energy, enthalpy, entropy, Cd-Ga, Cd-In

Procedia PDF Downloads 425
8755 Calibration of Discrete Element Method Parameters for Modelling DRI Pellets Flow

Authors: A. Hossein Madadi-Najafabadi, Masoud Nasiri

Abstract:

The discrete element method is a powerful technique for numerical modeling the flow of granular materials such as direct reduced iron. It would enable us to study processes and equipment related to the production and handling of the material. However, the characteristics and properties of the granules have to be adjusted precisely to achieve reliable results in a DEM simulation. The main properties for DEM simulation are size distribution, density, Young's modulus, Poisson's ratio and the contact coefficients of restitution, rolling friction and sliding friction. In the present paper, the mentioned properties are determined for DEM simulation of DRI pellets. A reliable DEM simulation would contribute to optimizing the handling system of DRIs in an iron-making plant. Among the mentioned properties, Young's modulus is the most important parameter, which is usually hard to get for particulate solids. Here, an especial method is utilized to precisely determine this parameter for DRI.

Keywords: discrete element method, direct reduced iron, simulation parameters, granular material

Procedia PDF Downloads 169
8754 A Survey on Linear Time Invariant Multivariable Positive Real Systems

Authors: Mojtaba Hakimi-Moghaddam

Abstract:

Positive realness as the most important property of driving point impedance of passive electrical networks appears in the control systems stability theory in 1960’s. There are three important subsets of positive real (PR) systems are introduced by researchers, that is, loos-less positive real (LLPR) systems, weakly strictly positive real (WSPR) systems and strictly positive real (SPR) systems. In this paper, definitions, properties, lemmas, and theorems related to family of positive real systems are summarized. Properties in both frequency domain and state space representation of system are explained. Also, several illustrative examples are presented.

Keywords: real rational matrix transfer functions, positive realness property, strictly positive realness property, Hermitian form asymptotic property, pole-zero properties

Procedia PDF Downloads 262
8753 Effect of Thermal Pretreatment on Functional Properties of Chicken Protein Hydrolysate

Authors: Nutnicha Wongpadungkiat, Suwit Siriwatanayotin, Aluck Thipayarat, Punchira Vongsawasdi, Chotika Viriyarattanasak

Abstract:

Chicken products are major export product of Thailand. With a dramatically increasing consumption of chicken product in the world, there are abundant wastes from chicken meat processing industry. Recently, much research in the development of value-added products from chicken meat industry has focused on the production of protein hydrolysate, utilized as food ingredients for human diet and animal feed. The present study aimed to determine the effect of thermal pre-treatment on functional properties of chicken protein hydrolysate. Chicken breasts were heated at 40, 60, 80 and 100ºC prior to hydrolysis by Alcalase at 60ºC, pH 8 for 4 hr. The hydrolysate was freeze-dried, and subsequently used for assessment of its functional properties molecular weight by gel electrophoresis (SDS-PAGE). The obtained results show that increasing the pre-treatment temperature increased oil holding capacity and emulsion stability while decreasing antioxidant activity and water holding capacity. The SDS-PAGE analysis showed the evidence of protein aggregation in the hydrolysate treated at the higher pre-treatment temperature. These results suggest the connection between molecular weight of the hydrolysate and its functional properties.

Keywords: chicken protein hydrolysate, enzymatic hydrolysis, thermal pretreatment, functional properties

Procedia PDF Downloads 256
8752 Transient Response of Rheological Properties of a CI-Water Based Magnetorheological Fluid under Different Operating Modes

Authors: Chandra Shekhar Maurya, Chiranjit Sarkar

Abstract:

The transient response of rheological properties of a carbonyl iron (CI)-water-based magnetorheological fluid (MRF) was studied under shear rate, shear stress, and shear strain working mode subjected to step-change in an applied magnetic field. MR fluid is a kind of smart material whose rheological properties change under an applied magnetic field. We prepared an MR fluid comprising of CI 65 weight %, water 35 weight %, and OPTIGEL WX used as an additive by changing the weight %. It was found that the MR effect of the CI/water suspension was enhanced by using an additive. A transient shear stress response was observed by switched on and switched off of the magnetic field to see the stability, relaxation behavior, and resulting change in rheological properties. When the magnetic field is on, a sudden increase in the shear stress was observed due to the fast motion of magnetic structures that describe the transition from the liquidlike state to the solid-like state due to an increase in dipole-dipole interaction of magnetic particles. Simultaneously, the complete reverse transition occurs due to instantaneous breakage of the chain structure once the magnetic field is switched off.

Keywords: magnetorheological fluid, rheological properties, shears stress, shears strain, viscosity

Procedia PDF Downloads 166
8751 Mechanical and Microstructural Properties of Rotary-Swaged Wire of Commercial-Purity Titanium

Authors: Michal Duchek, Jan Palán, Tomas Kubina

Abstract:

Bars made of titanium grade 2 and grade 4 were subjected to rotary forging with up to 2.2 true strain reduction in the cross-section from 10 to 3.81 mm. During progressive deformation, grain refinement in the transverse direction took place. In the longitudinal direction, ultrafine microstructure has not developed. It has been demonstrated that titanium grade 2 strengthens more than grade 4. The ultimate tensile strength increased from 650 MPa to 1040 MPa in titanium grade 4. Hardness profiles on the cross section in both materials show an increase in the centre of the wire.

Keywords: commercial-purity titanium, wire, rotary swaging, tensile test, hardness, modulus of elasticity, microstructure

Procedia PDF Downloads 227
8750 The Effect on Rolling Mill of Waviness in Hot Rolled Steel

Authors: Sunthorn Sittisakuljaroen

Abstract:

The edge waviness in hot rolled steel is a common defect. Variables that effect for such defect include as raw material and machine. These variables are necessary to consider. This research studied the defect of edge waviness for SS 400 of metal sheet manufacture. Defect of metal sheets divided into two groups. The specimens were investigated on chemical composition and mechanical properties to find the difference. The results of investigate showed that not different to a standard significantly. Therefore the roll milled machine for sample need to adjustable rollers for press on metal sheet which was more appropriate to adjustable at both ends.

Keywords: edge waviness, hot rolling steel, metal sheet defect, SS 400, roll leveller

Procedia PDF Downloads 401
8749 The Effect of Action Potential Duration and Conduction Velocity on Cardiac Pumping Efficacy: Simulation Study

Authors: Ana Rahma Yuniarti, Ki Moo Lim

Abstract:

Slowed myocardial conduction velocity (CV) and shortened action potential duration (APD) due to some reason are associated with an increased risk of re-entrant excitation, predisposing to cardiac arrhythmia. That is because both of CV reduction and APD shortening induces shortening of wavelength. In this study, we investigated quantitatively the cardiac mechanical responses under various CV and APD using multi-scale computational model of the heart. The model consisted of electrical model coupled with the mechanical contraction model together with a lumped model of the circulatory system. The electrical model consisted of 149.344 numbers of nodes and 183.993 numbers of elements of tetrahedral mesh, whereas the mechanical model consisted of 356 numbers of nodes and 172 numbers of elements of hexahedral mesh with hermite basis. We performed the electrical simulation with two scenarios: 1) by varying the CV values with constant APD and 2) by varying the APD values with constant CV. Then, we compared the electrical and mechanical responses for both scenarios. Our simulation showed that faster CV and longer APD induced largest resultants wavelength and generated better cardiac pumping efficacy by increasing the cardiac output and consuming less energy. This is due to the long wave propagation and faster conduction generated more synchronous contraction of whole ventricle.

Keywords: conduction velocity, action potential duration, mechanical contraction model, circulatory model

Procedia PDF Downloads 193
8748 Relation between Chronic Mechanical Low Back Pain and Hip Rotation

Authors: Mohamed M. Diab, Koura G. Mohamed, A. Balbaa, Radwan Sh. Ahamed

Abstract:

Background: Chronic mechanical low back pain (CMLBP) is the most common complaint of the working-age population. Mechanical low back pain is often a chronic, dull, aching pain of varying intensity that affects the lower spine. In the current proposal the hip rotation-CMLBP relationship is based on that limited hip motion will be compensated by motion in the lumbopelvic region and this increase force translates to the lumbar spine. The purpose of this study was to investigate if there a relationship between chronic mechanical low back pain (CMLBP) and hip medial and lateral rotation (peak torque and Range of motion (ROM) in patients with CMLBP. Methods: Sixty patients with CMLBP diagnosed by an orthopedist participated in the current study after signing a consent form. Their mean of age was (23.76±2.39) years, mean of weight (71.8±12.7) (Kg), mean of height (169.65±7.49) (Cm) and mean of BMI (25.5±3.86) (Kg/m2). Visual Analogue Scale (VAS) was used to assess pain. Fluid Filled Inclinometer was used to measure Hip rotation ROM (medial and lateral). Isokinetic Dynamometer was used to measure peak torque of hip rotators muscles (medial and lateral), concentric peak torque with tow Isokinetic speeds (60ᵒ/sec and 180ᵒ/sec) was selected to measure peak torque. Results: The results of this study demonstrated that there is poor relationship between pain and hip external rotation ROM, also there is poor relation between pain and hip internal rotation ROM. There is poor relation between pain and hip internal rotators peak torque and hip external rotators peak torque in both speeds. Conclusion: Depending on the current study it is not recommended to give an importance to hip rotation in treating Chronic Mechanical Low Back Pain.

Keywords: hip rotation ROM, hip rotators strength, low back pain, chronic mechanical

Procedia PDF Downloads 297
8747 Preliminary Geotechnical Properties of Uncemented Sandstone Kati Formation

Authors: Nursyafiqah Abdul Kahar, Niraku Rosmawati Ahmad, Hisham Mohamad, Siti Nuruljannah Mohd Marzuki

Abstract:

Assessment of geotechnical properties of the subsoil is necessary for generating relevant input for the design and construction of a foundation. It is significant for the future development in the area. The focus of this research is to investigate the preliminary geotechnical properties of the uncemented sandstone from Kati formation at Puncak Iskandar, Seri Iskandar. A series of basic soil tests, oedometer and direct shear box tests were carried out to obtain the soil parameters. The uncemented sandstone of Kati Formation was found to have well-graded and poorly graded sand distribution, depending on the location where the samples were obtained. The sand grains distribution was in a range of 82%-100% while, the specific gravity of the uncemented sandstone is in the range 2.65-2.86. The preconsolidation pressure for USB3 was 990 kPa indicating that the sandstone at USB3 sample had undergone 990 kPa of overburden pressure. The angle of friction for uncemented sandstone was ranging between 23.34°-32.92°.

Keywords: geotechnical properties, Kati formation, uncemented sandstone, oedometer test; shear box test

Procedia PDF Downloads 146
8746 Investigating Optical Properties of Unsaturated Polyurethane Matrix and Its Glass Fiber Composite Under Extreme Temperatures

Authors: Saad Ahmed, Sanjeev Khannaa

Abstract:

Glass fiber reinforced polymers are widely used in structural systems as load-bearing elements at both high and low temperatures. This investigation presents the evaluation of glass fiber reinforced unsaturated polyurethane under harsh conditions of changing temperature and moisture content. This study Explores how these parameters affect the optical properties of the polymer matrix and the composite. Using the hand layup method, the polyurethane resin was modified by E-glass fibers (15 vol. %) to manufacture fiber-reinforced composite. This work includes the preparation of glass-like polyurethane resin sheets and estimates all light transmittance properties at high and very low temperatures and wet conditions. All-optical properties were retested to evaluate the level of improvement or failure. The results found that when comprising reinforced composite fiber to the unreinforced specimens, the reinforced composite shows a fair optical property at high temperatures and good performance at low temperatures.

Keywords: unsaturated polyurethane, extreme temperatures, light transmittance, haze number

Procedia PDF Downloads 136
8745 The Influence of Reaction Parameters on Magnetic Properties of Synthesized Strontium Ferrite

Authors: M. Bahgat, F. M. Awan, H. A. Hanafy

Abstract:

The conventional ceramic route was utilized to prepare a hard magnetic powder (M-type strontium ferrite, SrFe12O19). The stoichiometric mixture of iron oxide and strontium carbonate were calcined at 1000°C and then fired at various temperatures. The influence of various reaction parameters such as mixing ratio, calcination temperature, firing temperature and firing time on the magnetic behaviors of the synthesized magnetic powder were investigated.The magnetic properties including Coercivity (Hc), Magnetic saturation (Ms), and Magnetic remnance (Mr) were measured by vibrating sample magnetometer. Morphologically the produced magnetic powder has a dense hexagonal grain shape structure.

Keywords: hard magnetic materials, ceramic route, strontium ferrite, magnetic properties

Procedia PDF Downloads 685
8744 Structural, Magnetic and Electrical Properties of Gd3+ Doped CoFe2O4 Nanoparticles Synthesized by Sonochemical Method

Authors: Raghvendra Singh Yadav, Ivo Kuřitka

Abstract:

In this report, we studied the impact of Gd3+ substitution on structural, magnetic and electrical properties of CoFe2O4 nanoparticles synthesized by sonochemical method. X-ray diffraction pattern confirmed the formation of cubic spinel structure at low concentration of Gd3+ ions, however, GdFeO3 additional phase was observed at higher concentration of Gd3+ ions. Raman and Fourier Transform Infrared spectroscopy study also confirmed cubic spinel structure of Gd3+ substituted CoFe2O4 nanoparticles. The field emission scanning electron microscopy study revealed that Gd3+ substituted CoFe2O4 nanoparticles were in the range of 5-20 nm. The magnetic properties of Gd3+ substituted CoFe2O4 nanoparticles were investigated by using vibrating sample magnetometer. The variation in saturation magnetization, coercivity and remanent magnetization with Gd3+ concentration in CoFe2O4 nanoparticles was observed. The variation of real and imaginary part of dielectric constant, tan δ, and AC conductivity were studied at room temperature.

Keywords: spinel ferrites, nanoparticles, sonochemical method, magnetic properties

Procedia PDF Downloads 285
8743 Computational Study on the Crystal Structure, Electronic and Optical Properties of Perovskites a2bx6 for Photovoltaic Applications

Authors: Harmel Meriem

Abstract:

The optoelectronic properties and high power conversion efficiency make lead halide perovskites ideal material for solar cell applications. However, the toxic nature of lead and the instability of organic cation are the two key challenges in the emerging perovskite solar cells. To overcome these challenges, we present our study about finding potential alternatives to lead in the form of A2BX6 perovskite using the first principles DFT-based calculations. The highly accurate modified Becke Johnson (mBJ) and hybrid functional (HSE06) have been used to investigate the Main Document Click here to view linked References to optoelectronic and thermoelectric properties of A2PdBr6 (A = K, Rb, and Cs) perovskite. The results indicate that different A-cations in A2PdBr6 can significantly alter their electronic and optical properties. Calculated band structures indicate semiconducting nature, with band gap values of 1.84, 1.53, and 1.54 eV for K2PdBr6, Rb2PdBr6, and Cs2PdBr6, respectively. We find strong optical absorption in the visible region with small effective masses for A2PdBr6. The ideal band gap and optimum light absorption suggest Rb2PdBr6 and Cs2PdBr6 potential candidates for the light absorption layer in perovskite solar cells. Additionally.

Keywords: soler cell, double perovskite, optoelectronic properties, ab-inotio study

Procedia PDF Downloads 113
8742 Foaming and Structuring Properties of Chickpea Cooking Water (Aquafaba): Effect of Ingredient Added and Their Particle Size

Authors: Carola Cappa

Abstract:

Chickpea cooking water (known as aquafaba, AF) is a “waste” product having interesting technological properties exploitable for sustainable plant-based food applications that can encounter a larger consumers demand. Different process conditions to obtain AF were defined; the addition of hydrocolloid (i.e., guar gum) and lactic acid to improve the techno-functionalities of aquafaba was explored, and the effects of these ingredients on the foaming properties and the quality of plant-based target confectionery products were investigated. Meringues having a solid foam structure and a simple formulation (i.e., foaming agent and sugar) and chocolate mousse were chosen as target foods. The effects of the sugar particle size reduction on the empirical and fundamental rheological properties of the foaming agent and of the mousse were evaluated. The treatment did not significantly change the viscosity of the system, while the overrun and foam stability were affected by sugar particle size, and mousse with coarse sugar was characterized by a higher consistency, confirming the importance of the particle size of the ingredients on the texture of the final product. This study proved that AF, a recycled “waste” product, possesses interesting techno-functionalities properties further enhanced by adding lactic acid and modulable according to ingredient particle size; these AF results are useable for plant-based food applications.

Keywords: foaming properties, foam stability, foam texture, particle size, acidification, aquafaba

Procedia PDF Downloads 58
8741 Properties of Cement Pastes with Different Particle Size Fractions of Metakaolin

Authors: M. Boháč, R. Novotný, F. Frajkorová, R. S. Yadav, T. Opravil, M. Palou

Abstract:

Properties of Portland cement mixtures with various fractions of metakaolin were studied. 10 % of Portland cement CEM I 42.5 R was replaced by different fractions of high reactivity metakaolin with defined chemical and mineralogical properties. Various fractions of metakaolin were prepared by jet mill classifying system. There is a clear trend between fineness of metakaolin and hydration heat development. Due to metakaolin presence in mixtures the compressive strength development of mortars is rather slower for coarser fractions but 28-day flexural strengths are improved for all fractions of metakaoline used in mixtures compared to reference sample of pure Portland cement. Yield point, plastic viscosity and adhesion of fresh pastes are considerably influenced by fineness of metakaolin used in cement pastes.

Keywords: calorimetry, cement, metakaolin fineness, rheology, strength

Procedia PDF Downloads 404
8740 Low-Temperature Luminescence Spectroscopy of Violet Sr-Al-O:Eu2+ Phosphor Particles

Authors: Keiji Komatsu, Hayato Maruyama, Ariyuki Kato, Atsushi Nakamura, Shigeo Ohshio, Hiroki Akasaka, Hidetoshi Saitoh

Abstract:

Violet Sr–Al–O:Eu2+ phosphor particles were synthesized from a metal–ethylenediaminetetraacetic acid (EDTA) solution of Sr, Al, Eu, and particulate alumina via spray drying and sintering in a reducing atmosphere. The crystal structures and emission properties at 85–300 K were investigated. The composition of the violet Sr–Al–O:Eu2+ phosphor particles was determined from various Sr–Al–O:Eu2+ phosphors by their emission properties’ dependence on temperature. The highly crystalline SrAl12O19:Eu2+ emission phases were confirmed by their crystallite sizes and the activation energies for the 4f5d–8S7/2 transition of the Eu2+ ion. These results showed that the material identification for the violet Sr–Al–O:Eu2+ phosphor was accomplished by the low-temperature luminescence measurements.

Keywords: low temperature luminescence spectroscopy, material identification, strontium aluminates phosphor, emission properties

Procedia PDF Downloads 439
8739 Nickel Electroplating in Post Supercritical CO2 Mixed Watts Bath under Different Agitations

Authors: Chun-Ying Lee, Kun-Hsien Lee, Bor-Wei Wang

Abstract:

The process of post-supercritical CO2 electroplating uses the electrolyte solution after being mixed with supercritical CO2 and released to atmospheric pressure. It utilizes the microbubbles that form when oversaturated CO2 in the electrolyte returns to gaseous state, which gives the similar effect of pulsed electroplating. Under atmospheric pressure, the CO2 bubbles gradually diffuse. Therefore, the introduction of ultrasound and/or other agitation can potentially excite the CO2 microbubbles to achieve an electroplated surface of even higher quality. In this study, during the electroplating process, three different modes of agitation: magnetic stirrer agitation, ultrasonic agitation and a combined mode (magnetic + ultrasonic) were applied, respectively, in order to obtain an optimal surface morphology and mechanical properties for the electroplated Ni coating. It is found that the combined agitation mode at a current density of 40 A/dm2 achieved the smallest grain size, lower surface roughness, and produced an electroplated Ni layer that achieved hardness of 320 HV, much higher when compared with conventional method, which were usually in the range of 160 to 300 HV. However, at the same time, the electroplating with combined agitation developed a higher internal stress of 320 MPa due to the lower current efficiency of the process and finer grain in the coating. Moreover, a new control methodology for tailoring the coating’s mechanical property through its thickness was demonstrated by the timely introduction of ultrasonic agitation during the electroplating process with post supercritical CO2 mixed electrolyte.

Keywords: nickel electroplating, micro-bubbles, supercritical carbon dioxide, ultrasonic agitation

Procedia PDF Downloads 267
8738 Novel Solid Lipid Nanoparticles for Oral Delivery of Oxyresveratrol: Effect of the Formulation Parameters on the Physicochemical Properties and in vitro Release

Authors: Yaowaporn Sangsen, Kittisak Likhitwitayawuid, Boonchoo Sritularak, Kamonthip Wiwattanawongsa, Ruedeekorn Wiwattanapatapee

Abstract:

Novel solid lipid nanoparticles (SLNs) were developed to improve oral bioavailability of oxyresveratrol (OXY). The SLNs were prepared by a high speed homogenization technique, at an effective speed and time, using Compritol® 888 ATO (5% w/w) as the solid lipid. The appropriate weight proportions (0.3% w/w) of OXY affected the physicochemical properties of blank SLNs. The effects of surfactant types on the properties of the formulations such as particle size and entrapment efficacy were also investigated. Conclusively, Tween 80 combined with soy lecithin was the most appropriate surfactant to stabilize OXY-loaded SLNs. The mean particle size of the optimized formulation was 134.40 ± 0.57 nm. In vitro drug release study, the selected S2 formulation showed a retarded release profile for OXY with no initial burst release compared to OXY suspension in the simulated gastrointestinal fluids. Therefore, these SLNs could provide a suitable system to develop for the oral OXY delivery.

Keywords: solid lipid nanoparticles, physicochemical properties, in vitro drug release, oxyresveratrol

Procedia PDF Downloads 390
8737 Optical Properties of a One Dimensional Graded Photonic Structure Based on Material Length Redistribution

Authors: Danny Manuel Calvo Velasco, Robert Sanchez Cano

Abstract:

By using the transference matrix formalism, in this work, it is presented the study of the optical properties of the 1D graded structure, constructed by multiple bi-layers of dielectric and air, considering a redistribution of the material lengths following an arithmetic progression as a function of two parameters. It is presented a factorization for the transference matrices for the graded structure, which allows the interpretation of their optical properties in terms of the properties of simpler structures. It is shown that the graded structure presents new transmission peaks, which can be controlled by the parameter values located in frequencies for which a periodic system has a photonic bandgap. This result is extended to the case of a photonic crystal for which the unitary cell is the proposed graded structure, showing new transmission bands which are due to the multiple new sub-structures present in the system. Also, for the TE polarization, it is observed transmission bands' low frequencies which present low variation of its width and position with the incidence angle. It is expected that these results could guide a route in the design of new photonic devices.

Keywords: graded, material redistribution, photonic system, transference matrix

Procedia PDF Downloads 123
8736 Advances in Axonal Biomechanics and Mechanobiology: A Nanotechnology-Based Approach to the Study of Mechanotransduction of Axonal Growth

Authors: Alessandro Falconieri, Sara De Vincentiis, Vittoria Raffa

Abstract:

Mechanical force regulates axonal growth, elongation and maturation processes. This force is opening new frontiers in the field, contributing to a general understanding of the mechanisms of axon growth that, in the past, was thought to be governed exclusively by the growth cone and its ability to influence axonal growth in response to chemical signals. A method recently developed in our laboratory allows, through the labeling of neurons with magnetic nanoparticles (MNPs) and the use of permanent magnets, to apply extremely low mechanical forces, similar to those generated endogenously by the growth cone or by the increase of body mass during the organism growth. We found that these extremely low forces strongly enhance the spontaneous axonal elongation rate as well as neuronal sprouting. Data obtained don’t exclude that local phenomena, such as local transport and local translation, may be involved. These new advances could shed new light on what happens when the cell is subjected to external mechanical forces, opening new interesting scenarios in the field of mechanobiology.

Keywords: axon, external mechanical forces, magnetic nanoparticles, mechanotransduction

Procedia PDF Downloads 112
8735 The Behavior of Self-Compacting Light Weight Concrete Produced by Magnetic Water

Authors: Moosa Mazloom, Hojjat Hatami

Abstract:

The aim of this article is to access the optimal mix design of self-compacting light weight concrete. The effects of magnetic water, superplasticizer based on polycarboxylic-ether, and silica fume on characteristics of this type of concrete are studied. The workability of fresh concrete and the compressive strength of hardened concrete are considered here. For this purpose, nine mix designs were studied. The percentages of superplasticizer were 0.5, 1, and 2% of the weight of cement, and the percentages of silica fume were 0, 6, and 10% of the weight of cement. The water to cementitious ratios were 0.28, 0.32, and 0.36. The workability of concrete samples was analyzed by the devices such as slump flow, V-funnel, L box, U box, and Urimet with J ring. Then, the compressive strengths of the mixes at the ages of 3, 7, 28, and 90 days were obtained. The results show that by using magnetic water, the compressive strengths are improved at all the ages. In the concrete samples with ordinary water, more superplasticizer dosages were needed. Moreover, the combination of superplasticizer and magnetic water had positive effects on the mixes containing silica fume and they could flow easily.

Keywords: magnetic water, self-compacting light weight concrete, silica fume, superplasticizer

Procedia PDF Downloads 358
8734 Estimation of Subgrade Resilient Modulus from Soil Index Properties

Authors: Magdi M. E. Zumrawi, Mohamed Awad

Abstract:

Determination of Resilient Modulus (MR) is quite important for characterizing materials in pavement design and evaluation. The main focus of this study is to develop a correlation that predict the resilient modulus of subgrade soils from simple and easy measured soil index properties. To achieve this objective, three subgrade soils representing typical Khartoum soils were selected and tested in the laboratory for measuring resilient modulus. Other basic laboratory tests were conducted on the soils to determine their physical properties. Several soil samples were prepared and compacted at different moisture contents and dry densities and then tested using resilient modulus testing machine. Based on experimental results, linear relationship of MR with the consistency factor ‘Fc’ which is a combination of dry density, void ratio and consistency index had been developed. The results revealed that very good linear relationship found between the MR and the consistency factor with a coefficient of linearity (R2) more than 0.9. The consistency factor could be used for the prediction of the MR of compacted subgrade soils with precise and reliable results.

Keywords: Consistency factor, resilient modulus, subgrade soil, properties

Procedia PDF Downloads 181
8733 Influencing Factors on Stability of Shale with Silt Layers at Slopes

Authors: A. K. M. Badrul Alam, Yoshiaki Fujii, Nahid Hasan Dipu, Shakil Ahmed Razo

Abstract:

Shale rockmasses often include silt layers, impacting slope stability in construction and mining. Analyzing their interaction is crucial for long-term stability. A study used an elastoplastic model, incorporating the stress transfer method and Coulomb's criterion, to assess a shale rock mass with silt layers. It computed stress distribution, assessed failure potential, and identified vulnerable regions where nodal forces were calculated for a comprehensive analysis. A shale rock mass ranging from 14.75 to 16.75 meters thick, with silt layers varying from 0.36 to 0.5 meters, was considered in the model. It examined four silt layer conditions: horizontal (SiHL), vertical (SiVL), inclined against slope (SiIincAGS), and along slope (SilincALO). Mechanical parameters like uniaxial compressive strength (UCS), tensile strength (TS), Young’s modulus (E), Poisson’s ratio, and density were adjusted for varied scenarios: UCS (0.5 to 5 MPa), TS (0.1 to 1 MPa), and E (6 to 60 MPa). In elastic analysis of shale rock masses, stress distributions vary based on layer properties. When shale and silt layers have the same elasticity modulus (E), stress concentrates at corners. If the silt layer has a lower E than shale, marginal changes in maximum stress (σmax) occur for SilHL. A decrease in σmax is evident at SilVL. Slight variations in σmax are observed for SilincAGS and SilincALO. In the elastoplastic analysis, the overall decrease of 20%, 40%, 60%, 80%, and 90% was considered. For SilHL:(i) Same E, UCS, and TS for silt layer and shale, UCS/TS ratio 5: strength decrease led to shear (S), tension then shear (T then S) failure; noticeable failure at 60% decrease, significant at 80%, collapse at 90%. (ii) Lower E for silt layer, same strength as shale: No significant differences. (iii) Lower E and UCS, silt layer strength 1/10: No significant differences. For SilVL: (i) Same E, UCS, and TS for silt layer and shale, UCS/TS ratio 5: Similar effects as SilHL. (ii) Lower E for silt layer, same strength as shale: Slip occurred. (iii) Lower E and UCS, silt layer strength 1/10: Bitension failure also observed with larger slip. For SilincAGS: (i) Same E, UCS, and TS for silt layer and shale, UCS/TS ratio 5: Effects similar to SilHL. (ii) Lower E for silt layer, same strength as shale: Slip occurred. (iii) Lower E and UCS, silt layer strength 1/10: Tension failure also observed with larger slip. For SilincALO: (i) Same E, UCS, and TS for silt layer and shale, UCS/TS ratio 5: Similar to SilHL with tension failure. (ii) Lower E for silt layer, same strength as shale: No significant differences; failure diverged. (iii) Lower E and UCS, silt layer strength 1/10: Bitension failure also observed with larger slip; failure diverged. Toppling failure was observed for lower E cases of SilVL and SilincAGS. The presence of silt interlayers in shale greatly impacts slope stability. Designing slopes requires careful consideration of both the silt and shale's mechanical properties. The temporal degradation of strength in these layers is a major concern. Thus, slope design must comprehensively analyze the immediate and long-term mechanical behavior of interlayer silt and shale to effectively mitigate instability.

Keywords: shale rock masses, silt layers, slope stability, elasto-plastic model, temporal degradation

Procedia PDF Downloads 45