Search results for: legal artificial intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4182

Search results for: legal artificial intelligence

2532 Algorithmic Obligations: Proactive Liability for AI-Generated Content and Copyright Compliance

Authors: Aleksandra Czubek

Abstract:

As AI systems increasingly shape content creation, existing copyright frameworks face significant challenges in determining liability for AI-generated outputs. Current legal discussions largely focus on who bears responsibility for infringing works, be it developers, users, or entities benefiting from AI outputs. This paper introduces a novel concept of algorithmic obligations, proposing that AI developers be subject to proactive duties that ensure their models prevent copyright infringement before it occurs. Building on principles of obligations law traditionally applied to human actors, the paper suggests a shift from reactive enforcement to proactive legal requirements. AI developers would be legally mandated to incorporate copyright-aware mechanisms within their systems, turning optional safeguards into enforceable standards. These obligations could vary in implementation across international, EU, UK, and U.S. legal frameworks, creating a multi-jurisdictional approach to copyright compliance. This paper explores how the EU’s existing copyright framework, exemplified by the Copyright Directive (2019/790), could evolve to impose a duty of foresight on AI developers, compelling them to embed mechanisms that prevent infringing outputs. By drawing parallels to GDPR’s “data protection by design,” a similar principle could be applied to copyright law, where AI models are designed to minimize copyright risks. In the UK, post-Brexit text and data mining exemptions are seen as pro-innovation but pose risks to copyright protections. This paper proposes a balanced approach, introducing algorithmic obligations to complement these exemptions. AI systems benefiting from text and data mining provisions should integrate safeguards that flag potential copyright violations in real time, ensuring both innovation and protection. In the U.S., where copyright law focuses on human-centric works, this paper suggests an evolution toward algorithmic due diligence. AI developers would have a duty similar to product liability, ensuring that their systems do not produce infringing outputs, even if the outputs themselves cannot be copyrighted. This framework introduces a shift from post-infringement remedies to preventive legal structures, where developers actively mitigate risks. The paper also breaks new ground by addressing obligations surrounding the training data of large language models (LLMs). Currently, training data is often treated under exceptions such as the EU’s text and data mining provisions or U.S. fair use. However, this paper proposes a proactive framework where developers are obligated to verify and document the legal status of their training data, ensuring it is licensed or otherwise cleared for use. In conclusion, this paper advocates for an obligations-centered model that shifts AI-related copyright law from reactive litigation to proactive design. By holding AI developers to a heightened standard of care, this approach aims to prevent infringement at its source, addressing both the outputs of AI systems and the training processes that underlie them.

Keywords: ip, technology, copyright, data, infringement, comparative analysis

Procedia PDF Downloads 20
2531 Europe's War on Refugees: The Increased Need for International Protection and Promotion of Migrant Rights

Authors: Rai Friedman

Abstract:

The recent migrant crisis has revealed an unmet demand for increased international protection and promotion of migrant rights. Europe has found itself at the centre of the migration crisis, being the recipient to the largest number of asylum-seekers since the conclusion of the second World War. Rather than impart a unified humanitarian lens of offering legal protections, the Schengen territory is devising new, preventative measures to confront the influx of asylum-seekers. This paper will focus on the refugee crisis in Europe as it relates to the Central Mediterranean route. To do so, it will outline the increased need for international protection for migrant rights through analyzing historic human rights treaties and conventions; the formation of the current composition of the Schengen area; the evolutionary changes in policies and legal landscapes throughout Europe and the Central Mediterranean route; the vernacular transformation surrounding refugees, migrants, and asylum-seekers; and expose the gaps in international protection. It will also discuss Europe’s critical position, both geographically and conceptually, critiquing the notion of European victimization. Lastly, it will discuss the increased harm of preventative border measures and argue for tangible sustainability solutions through economic programming models in highly vulnerable countries. To do so, this paper will observe a case study in Algeria that has conceded to an economic programming model for forced migrants. In 2017 amid worker shortages, Algeria announced it would grant African migrants’ legal status to become agriculturalists and construction workers. Algeria is one of the few countries along the Central Mediterranean route that has adopted a law to govern foreign nationals’ conditions of entry, stay and circulation. Thereafter, it will provide recommendations for solutions for forced migration along the Central Mediterranean route and advocate for strengthened protections under international law.

Keywords: refugees, migrants, human rights, middle east, Africa, mediterranean, international humanitarian law, policy

Procedia PDF Downloads 110
2530 Developing Primal Teachers beyond the Classroom: The Quadrant Intelligence (Q-I) Model

Authors: Alexander K. Edwards

Abstract:

Introduction: The moral dimension of teacher education globally has assumed a new paradigm of thinking based on the public gain (return-on-investments), value-creation (quality), professionalism (practice), and business strategies (innovations). Abundant literature reveals an interesting revolutionary trend in complimenting the raising of teachers and academic performances. Because of the global competition in the knowledge-creation and service areas, the C21st teacher at all levels is expected to be resourceful, strategic thinker, socially intelligent, relationship aptitude, and entrepreneur astute. This study is a significant contribution to practice and innovations to raise exemplary or primal teachers. In this study, the qualities needed were considered as ‘Quadrant Intelligence (Q-i)’ model for a primal teacher leadership beyond the classroom. The researcher started by examining the issue of the majority of teachers in Ghana Education Services (GES) in need of this Q-i to be effective and efficient. The conceptual framing became determinants of such Q-i. This is significant for global employability and versatility in teacher education to create premium and primal teacher leadership, which are again gaining high attention in scholarship due to failing schools. The moral aspect of teachers failing learners is a highly important discussion. In GES, some schools score zero percent at the basic education certificate examination (BECE). The question is what will make any professional teacher highly productive, marketable, and an entrepreneur? What will give teachers the moral consciousness of doing the best to succeed? Method: This study set out to develop a model for primal teachers in GES as an innovative way to highlight a premium development for the C21st business-education acumen through desk reviews. The study is conceptually framed by examining certain skill sets such as strategic thinking, social intelligence, relational and emotional intelligence and entrepreneurship to answer three main burning questions and other hypotheses. Then the study applied the causal comparative methodology with a purposive sampling technique (N=500) from CoE, GES, NTVI, and other teachers associations. Participants responded to a 30-items, researcher-developed questionnaire. Data is analyzed on the quadrant constructs and reported as ex post facto analyses of multi-variances and regressions. Multiple associations were established for statistical significance (p=0.05). Causes and effects are postulated for scientific discussions. Findings: It was found out that these quadrants are very significant in teacher development. There were significant variations in the demographic groups. However, most teachers lack considerable skills in entrepreneurship, leadership in teaching and learning, and business thinking strategies. These have significant effect on practices and outcomes. Conclusion and Recommendations: It is quite conclusive therefore that in GES teachers may need further instructions in innovations and creativity to transform knowledge-creation into business venture. In service training (INSET) has to be comprehensive. Teacher education curricula at Colleges may have to be re-visited. Teachers have the potential to raise their social capital, to be entrepreneur, and to exhibit professionalism beyond their community services. Their primal leadership focus will benefit many clienteles including students and social circles. Recommendations examined the policy implications for curriculum design, practice, innovations and educational leadership.

Keywords: emotional intelligence, entrepreneurship, leadership, quadrant intelligence (q-i), primal teacher leadership, strategic thinking, social intelligence

Procedia PDF Downloads 315
2529 Maximising the Therapeutic Value of the Mental Capacity Act of Singapore for People Who Lack Legal Capacity

Authors: Kenji Gwee

Abstract:

The Mental Capacity Act is a new legislation that allows for lasting powers of attorney and court-appointed deputies, in respect of people who lack legal capacity. While the UK Act, after which the Singapore Act is modeled, has been shown to be therapeutic to donors, the Singapore Act differs from its UK counterpart and it is unclear if the Singapore Act can be beneficial to donors as purported. The purpose of this study was to determine what the perceptions of three groups of stakeholders (patients, caregivers and psychiatrists) are about the aspects of the Mental Capacity Act that are therapeutic to donors. In addition, ways to increase the therapeutic value of the Act to donors are sought. A qualitative methodology was used and the research was guided by two theoretical frameworks: therapeutic jurisprudence and an interpretive constructive framework. Interviews with 12 psychiatrists, and focus groups with twenty three patients and seven caregivers showed agreement that, allowing donors to nominate more than one decision- maker, and whistle-blowing mechanisms for recourse for abuse, were therapeutic to donors. To further increase the therapeutic value of the Act, 2 suggestions were made: the Act should provide for (i) advanced healthcare directives- allowing donors to make advance decisions to refuse treatment, or cease existing treatment, and (ii) independent advocacy services- to have a case worker to represent people who have no family or friends and are thus unable to find suitable donees.

Keywords: Mental Capacity Act, therapeutic jurisprudence, qualitative methodology, the UK Act

Procedia PDF Downloads 410
2528 Policy Initiatives That Increase Mass-Market Participation of Fuel Cell Electric Vehicles

Authors: Usman Asif, Klaus Schmidt

Abstract:

In recent years, the development of alternate fuel vehicles has helped to reduce carbon emissions worldwide. As the number of vehicles will continue to increase in the future, the energy demand will also increase. Therefore, we must consider automotive technologies that are efficient and less harmful to the environment in the long run. Battery Electric Vehicles (BEVs) have gained popularity in recent years because of their lower maintenance, lower fuel costs, and lower carbon emissions. Nevertheless, BEVs show several disadvantages, such as slow charging times and lower range than traditional combustion-powered vehicles. These factors keep many people from switching to BEVs. The authors of this research believe that these limitations can be overcome by using fuel cell technology. Fuel cell technology converts chemical energy into electrical energy from hydrogen power and therefore serves as fuel to power the motor and thus replacing heavy lithium batteries that are expensive and hard to recycle. Also, in contrast to battery-powered electric vehicle technology, Fuel Cell Electric Vehicles (FCEVs) offer higher ranges and lower fuel-up times and therefore are more competitive with electric vehicles. However, FCEVs have not gained the same popularity as electric vehicles due to stringent legal frameworks, underdeveloped infrastructure, high fuel transport, and storage costs plus the expense of fuel cell technology itself. This research will focus on the legal frameworks for hydrogen-powered vehicles, and how a change in these policies may affect and improve hydrogen fueling infrastructure and lower hydrogen transport and storage costs. These policies may also facilitate reductions in fuel cell technology costs. In order to attain a better framework, a number of countries have developed conceptual roadmaps. These roadmaps have set out a series of objectives to increase the access of FCEVs to their respective markets. This research will specifically focus on policies in Japan, Europe, and the USA in their attempt to shape the automotive industry of the future. The researchers also suggest additional policies that may help to accelerate the advancement of FCEVs to mass-markets. The approach was to provide a solid literature review using resources from around the globe. After a subsequent analysis and synthesis of this review, the authors concluded that in spite of existing legal challenges that have hindered the advancement of fuel-cell technology in the automobile industry in the past, new initiatives that enhance and advance the very same technology in the future are underway.

Keywords: fuel cell electric vehicles, fuel cell technology, legal frameworks, policies and regulations

Procedia PDF Downloads 118
2527 Shariah Perspective on Legal Framework and Practice of Margin Financing in Pakistan

Authors: Anees Tahir

Abstract:

Margin financing plays a significant role in Pakistan's stock market (PSX), offering investors the opportunity to maximize profits by borrowing funds from financiers to purchase marginable stocks. However, this financial practice raises several Shariah-related concerns. The study follows legal doctrinal research methodology. It explains and analyzes the law of margin financing prevailing in PSX and compares it with the principles of Shariah. It also examines and investigates the practices of margin financing from the perspective of Shariah. As part of the study, the researcher has conducted structured interviews with the Shariah advisors of the finance industry, academicians, market practitioners, and regulators. Thus, the study analyzes the findings of interviews. This article explores the legal framework and practice of margin financing in Pakistan from a Shariah perspective. The article investigates various issues relating to margin financing, including the fundamental concern of interest-based lending, which contravenes Islamic principles. It also highlights the problematic subject matter of margin financing, often involving non-Shariah compliant securities. Additionally, the article addresses the restriction on proprietary rights and the problematic element of speculation associated with margin financing. To provide a Shariah-compliant alternative, the Securities and Exchange Commission of Pakistan (SECP) introduced Murabahah Shares Financing (MSF) in 2019. However, the focus of the market is still on conventional margin financing. In the opinion of the researcher, the effective implementation of MSF is imperative because in the absence of such an alternative, the faith sensitive investor will remain deprived of a level playing field, and he is unable to get required financing opportunities through a halal and Shariah-compliant manner. This article argues that margin financing in its current form is incompatible with Shariah principles and should be discontinued. It is recommended that the SECP should gradually phase out the use of margin financing and increase reliance on MSF to provide faith-sensitive and committed investors with Shariah-compliant financing options.

Keywords: margin financing, marginable stocks, faith sensitive investor, Murabahah shares financing

Procedia PDF Downloads 72
2526 Technology and Transformation: Redefining Higher Education for Generations Z and Alpha

Authors: James O'Farrell, Carla Weaver

Abstract:

This paper examines the transformative impact of technology in higher education, particularly in the context of the post-pandemic era, focusing on the learning needs of Digital Natives (Generation Z and Generation Alpha who grew up in the digital age). The study explores how the Covid-19 pandemic accelerated the transition to online and blended learning, highlighting the challenges and opportunities this shift presented. It delves into various technological tools such as learning management systems, collaboration technologies, video platforms, game-based learning and gamification, digital libraries, and artificial intelligence, and their role in enhancing educational delivery and student engagement. The paper also addresses the need to support faculty, predominantly comprised of Digital Immigrants (people who grew up before the digital age) to integrate these technologies effectively into their teaching practices. The findings reveal that while technology has significantly improved the flexibility and accessibility of education, it also requires educators to adapt to the changing needs of Digital Natives and the evolving educational landscape. Moreover, the paper underscores the importance of safeguarding the mental health and well-being of both faculty and students, acknowledging the stress and anxiety brought about by the rapid shift in teaching and learning modalities. The study concludes with recommendations for educational institutions to create a balanced, inclusive, and supportive learning environment. This involves continuous faculty development, prioritizing mental health, and leveraging technology to bridge generational divides, thus paving the way for a resilient and innovative future in higher education.

Keywords: generation alpha, generation z, teaching strategies, technology

Procedia PDF Downloads 8
2525 Application of Artificial Neural Network in Initiating Cleaning Of Photovoltaic Solar Panels

Authors: Mohamed Mokhtar, Mostafa F. Shaaban

Abstract:

Among the challenges facing solar photovoltaic (PV) systems in the United Arab Emirates (UAE), dust accumulation on solar panels is considered the most severe problem that faces the growth of solar power plants. The accumulation of dust on the solar panels significantly degrades output from these panels. Hence, solar PV panels have to be cleaned manually or using costly automated cleaning methods. This paper focuses on initiating cleaning actions when required to reduce maintenance costs. The cleaning actions are triggered only when the dust level exceeds a threshold value. The amount of dust accumulated on the PV panels is estimated using an artificial neural network (ANN). Experiments are conducted to collect the required data, which are used in the training of the ANN model. Then, this ANN model will be fed by the output power from solar panels, ambient temperature, and solar irradiance, and thus, it will be able to estimate the amount of dust accumulated on solar panels at these conditions. The model was tested on different case studies to confirm the accuracy of the developed model.

Keywords: machine learning, dust, PV panels, renewable energy

Procedia PDF Downloads 145
2524 Spatial Abilities, Memory, and Intellect of Drivers with Different Professional Experience

Authors: Khon Natalya, Kim Alla, Mukhitdinova Tansulu

Abstract:

The aim of the research was to reveal the link between mental variables, such as spatial abilities, memory, intellect and professional experience of drivers. Participants were allocated within 4 groups: no experience, inexperienced, skilled and professionals (total 85 participants). Level of ability for spatial navigation and indicator of nonverbal memory grow along the process of accumulation of driving experience. At high levels of driving experience this tendency is especially noticeable. The professionals having personal achievements in driving (racing) differ from skilled drivers in better feeling of direction which is specific for them not just in a short-term situation of an experimental task, but in life-size perspective. The level of ability of mental rotation does not grow with growth of driving experience which confirms the multiple intelligence theory according to which spatial abilities represent specific, other than logical intelligence type of intellect. The link between spatial abilities, memory, intellect, and professional experience of drivers seems to be different relating spatial navigation or mental rotation as different kinds of spatial abilities.

Keywords: memory, spatial ability, intellect, drivers

Procedia PDF Downloads 626
2523 Managing Gender Based Violence in Nigeria: A Legal Conundrum

Authors: Foluke Dada

Abstract:

The Prevalence of gender-based violence in Nigeria is of such concern and magnitude that the government has intervened by ratifying international instruments such as the convention on the elimination of all forms of discrimination against women, the declaration on the elimination of violence against women; the protocol to the African charter on human and people’s rights on the rights of women, etc. By promulgating domestic laws that sought to prevent the perpetration of Gender-based violence and also protect victims from future occurrences. Nigeria principally has two legal codes creating criminal offenses and punishments for breach of those offenses, the Criminal Code Law, applying to most states in Southern Nigeria and the Penal Code applying to states in Northern Nigeria. Individual State laws such as the Ekiti State and Lagos State Gender-Based Violence laws are also discussed. This paper addresses Gender-Based Violence in Nigeria and exposes the inadequacies in the laws and their application. The paper postulates that there is a need for more workable public policy that strengthens the social structure fortified by the law in order to engender the necessary changes and provide the opportunity for government to embark on grassroots-based advocacy that engage the victims and sensitize them of their rights and how they can enjoy some of the protections afforded by the laws.

Keywords: gender, violence, human rights, law and policy

Procedia PDF Downloads 613
2522 Alternator Fault Detection Using Wigner-Ville Distribution

Authors: Amin Ranjbar, Amir Arsalan Jalili Zolfaghari, Amir Abolfazl Suratgar, Mehrdad Khajavi

Abstract:

This paper describes two stages of learning-based fault detection procedure in alternators. The procedure consists of three states of machine condition namely shortened brush, high impedance relay and maintaining a healthy condition in the alternator. The fault detection algorithm uses Wigner-Ville distribution as a feature extractor and also appropriate feature classifier. In this work, ANN (Artificial Neural Network) and also SVM (support vector machine) were compared to determine more suitable performance evaluated by the mean squared of errors criteria. Modules work together to detect possible faulty conditions of machines working. To test the method performance, a signal database is prepared by making different conditions on a laboratory setup. Therefore, it seems by implementing this method, satisfactory results are achieved.

Keywords: alternator, artificial neural network, support vector machine, time-frequency analysis, Wigner-Ville distribution

Procedia PDF Downloads 374
2521 Transformer Fault Diagnostic Predicting Model Using Support Vector Machine with Gradient Decent Optimization

Authors: R. O. Osaseri, A. R. Usiobaifo

Abstract:

The power transformer which is responsible for the voltage transformation is of great relevance in the power system and oil-immerse transformer is widely used all over the world. A prompt and proper maintenance of the transformer is of utmost importance. The dissolved gasses content in power transformer, oil is of enormous importance in detecting incipient fault of the transformer. There is a need for accurate prediction of the incipient fault in transformer oil in order to facilitate the prompt maintenance and reducing the cost and error minimization. Study on fault prediction and diagnostic has been the center of many researchers and many previous works have been reported on the use of artificial intelligence to predict incipient failure of transformer faults. In this study machine learning technique was employed by using gradient decent algorithms and Support Vector Machine (SVM) in predicting incipient fault diagnosis of transformer. The method focuses on creating a system that improves its performance on previous result and historical data. The system design approach is basically in two phases; training and testing phase. The gradient decent algorithm is trained with a training dataset while the learned algorithm is applied to a set of new data. This two dataset is used to prove the accuracy of the proposed model. In this study a transformer fault diagnostic model based on Support Vector Machine (SVM) and gradient decent algorithms has been presented with a satisfactory diagnostic capability with high percentage in predicting incipient failure of transformer faults than existing diagnostic methods.

Keywords: diagnostic model, gradient decent, machine learning, support vector machine (SVM), transformer fault

Procedia PDF Downloads 324
2520 Methods and Algorithms of Ensuring Data Privacy in AI-Based Healthcare Systems and Technologies

Authors: Omar Farshad Jeelani, Makaire Njie, Viktoriia M. Korzhuk

Abstract:

Recently, the application of AI-powered algorithms in healthcare continues to flourish. Particularly, access to healthcare information, including patient health history, diagnostic data, and PII (Personally Identifiable Information) is paramount in the delivery of efficient patient outcomes. However, as the exchange of healthcare information between patients and healthcare providers through AI-powered solutions increases, protecting a person’s information and their privacy has become even more important. Arguably, the increased adoption of healthcare AI has resulted in a significant concentration on the security risks and protection measures to the security and privacy of healthcare data, leading to escalated analyses and enforcement. Since these challenges are brought by the use of AI-based healthcare solutions to manage healthcare data, AI-based data protection measures are used to resolve the underlying problems. Consequently, this project proposes AI-powered safeguards and policies/laws to protect the privacy of healthcare data. The project presents the best-in-school techniques used to preserve the data privacy of AI-powered healthcare applications. Popular privacy-protecting methods like Federated learning, cryptographic techniques, differential privacy methods, and hybrid methods are discussed together with potential cyber threats, data security concerns, and prospects. Also, the project discusses some of the relevant data security acts/laws that govern the collection, storage, and processing of healthcare data to guarantee owners’ privacy is preserved. This inquiry discusses various gaps and uncertainties associated with healthcare AI data collection procedures and identifies potential correction/mitigation measures.

Keywords: data privacy, artificial intelligence (AI), healthcare AI, data sharing, healthcare organizations (HCOs)

Procedia PDF Downloads 96
2519 Data Augmentation for Early-Stage Lung Nodules Using Deep Image Prior and Pix2pix

Authors: Qasim Munye, Juned Islam, Haseeb Qureshi, Syed Jung

Abstract:

Lung nodules are commonly identified in computed tomography (CT) scans by experienced radiologists at a relatively late stage. Early diagnosis can greatly increase survival. We propose using a pix2pix conditional generative adversarial network to generate realistic images simulating early-stage lung nodule growth. We have applied deep images prior to 2341 slices from 895 computed tomography (CT) scans from the Lung Image Database Consortium (LIDC) dataset to generate pseudo-healthy medical images. From these images, 819 were chosen to train a pix2pix network. We observed that for most of the images, the pix2pix network was able to generate images where the nodule increased in size and intensity across epochs. To evaluate the images, 400 generated images were chosen at random and shown to a medical student beside their corresponding original image. Of these 400 generated images, 384 were defined as satisfactory - meaning they resembled a nodule and were visually similar to the corresponding image. We believe that this generated dataset could be used as training data for neural networks to detect lung nodules at an early stage or to improve the accuracy of such networks. This is particularly significant as datasets containing the growth of early-stage nodules are scarce. This project shows that the combination of deep image prior and generative models could potentially open the door to creating larger datasets than currently possible and has the potential to increase the accuracy of medical classification tasks.

Keywords: medical technology, artificial intelligence, radiology, lung cancer

Procedia PDF Downloads 72
2518 DLtrace: Toward Understanding and Testing Deep Learning Information Flow in Deep Learning-Based Android Apps

Authors: Jie Zhang, Qianyu Guo, Tieyi Zhang, Zhiyong Feng, Xiaohong Li

Abstract:

With the widespread popularity of mobile devices and the development of artificial intelligence (AI), deep learning (DL) has been extensively applied in Android apps. Compared with traditional Android apps (traditional apps), deep learning based Android apps (DL-based apps) need to use more third-party application programming interfaces (APIs) to complete complex DL inference tasks. However, existing methods (e.g., FlowDroid) for detecting sensitive information leakage in Android apps cannot be directly used to detect DL-based apps as they are difficult to detect third-party APIs. To solve this problem, we design DLtrace; a new static information flow analysis tool that can effectively recognize third-party APIs. With our proposed trace and detection algorithms, DLtrace can also efficiently detect privacy leaks caused by sensitive APIs in DL-based apps. Moreover, using DLtrace, we summarize the non-sequential characteristics of DL inference tasks in DL-based apps and the specific functionalities provided by DL models for such apps. We propose two formal definitions to deal with the common polymorphism and anonymous inner-class problems in the Android static analyzer. We conducted an empirical assessment with DLtrace on 208 popular DL-based apps in the wild and found that 26.0% of the apps suffered from sensitive information leakage. Furthermore, DLtrace has a more robust performance than FlowDroid in detecting and identifying third-party APIs. The experimental results demonstrate that DLtrace expands FlowDroid in understanding DL-based apps and detecting security issues therein.

Keywords: mobile computing, deep learning apps, sensitive information, static analysis

Procedia PDF Downloads 180
2517 Geovisualisation for Defense Based on a Deep Learning Monocular Depth Reconstruction Approach

Authors: Daniel R. dos Santos, Mateus S. Maldonado, Estevão J. R. Batista

Abstract:

The military commanders increasingly dependent on spatial awareness, as knowing where enemy are, understanding how war battle scenarios change over time, and visualizing these trends in ways that offer insights for decision-making. Thanks to advancements in geospatial technologies and artificial intelligence algorithms, the commanders are now able to modernize military operations on a universal scale. Thus, geovisualisation has become an essential asset in the defense sector. It has become indispensable for better decisionmaking in dynamic/temporal scenarios, operation planning and management for the war field, situational awareness, effective planning, monitoring, and others. For example, a 3D visualization of war field data contributes to intelligence analysis, evaluation of postmission outcomes, and creation of predictive models to enhance decision-making and strategic planning capabilities. However, old-school visualization methods are slow, expensive, and unscalable. Despite modern technologies in generating 3D point clouds, such as LIDAR and stereo sensors, monocular depth values based on deep learning can offer a faster and more detailed view of the environment, transforming single images into visual information for valuable insights. We propose a dedicated monocular depth reconstruction approach via deep learning techniques for 3D geovisualisation of satellite images. It introduces scalability in terrain reconstruction and data visualization. First, a dataset with more than 7,000 satellite images and associated digital elevation model (DEM) is created. It is based on high resolution optical and radar imageries collected from Planet and Copernicus, on which we fuse highresolution topographic data obtained using technologies such as LiDAR and the associated geographic coordinates. Second, we developed an imagery-DEM fusion strategy that combine feature maps from two encoder-decoder networks. One network is trained with radar and optical bands, while the other is trained with DEM features to compute dense 3D depth. Finally, we constructed a benchmark with sparse depth annotations to facilitate future research. To demonstrate the proposed method's versatility, we evaluated its performance on no annotated satellite images and implemented an enclosed environment useful for Geovisualisation applications. The algorithms were developed in Python 3.0, employing open-source computing libraries, i.e., Open3D, TensorFlow, and Pythorch3D. The proposed method provides fast and accurate decision-making with GIS for localization of troops, position of the enemy, terrain and climate conditions. This analysis enhances situational consciousness, enabling commanders to fine-tune the strategies and distribute the resources proficiently.

Keywords: depth, deep learning, geovisualisation, satellite images

Procedia PDF Downloads 13
2516 Personality Moderates the Relation Between Mother´s Emotional Intelligence and Young Children´s Emotion Situation Knowledge

Authors: Natalia Alonso-Alberca, Ana I. Vergara

Abstract:

From the very first years of their life, children are confronted with situations in which they need to deal with emotions. The family provides the first emotional experiences, and it is in the family context that children usually take their first steps towards acquiring emotion knowledge. Parents play a key role in this important task, helping their children develop emotional skills that they will need in challenging situations throughout their lives. Specifically, mothers are models imitated by their children. They create specific spatial and temporal contexts in which children learn about emotions, their causes, consequences, and complexity. This occurs not only through what mothers say or do directly to the child. Rather, it occurs, to a large extent, through the example that they set using their own emotional skills. The aim of the current study was to analyze how maternal abilities to perceive and to manage emotions influence children’s emotion knowledge, specifically, their emotion situation knowledge, taking into account the role played by the mother’s personality, the time spent together, and controlling the effect of age, sex and the child’s verbal abilities. Participants were 153 children from 4 schools in Spain, and their mothers. Children (41.8% girls)age range was 35 - 72 months. Mothers (N = 140) age (M = 38.7; R = 27-49). Twelve mothers had more than one child participating in the study. Main variables were the child´s emotion situation knowledge (ESK), measured by the Emotion Matching Task (EMT), and receptive language, using the Picture Vocabulary Test. Also, their mothers´ Emotional Intelligence (EI), through the Mayer, Salovey, Caruso Emotional Intelligence Test (MSCEIT) and personality, with The Big Five Inventory were analyzed. The results showed that the predictive power of maternal emotional skills on ESK was moderated by the mother’s personality, affecting both the direction and size of the relationships detected: low neuroticism and low openness to experience lead to a positive influence of maternal EI on children’s ESK, while high levels in these personality dimensions resulted in a negative influence on child´s ESK. The time that the mother and the child spend together was revealed as a positive predictor of this EK, while it did not moderate the influence of the mother's EI on child’s ESK. In light of the results, we can infer that maternal EI is linked to children’s emotional skills, though high level of maternal EI does not necessarily predict a greater degree of emotionknowledge in children, which seems rather to depend on specific personality profiles. The results of the current study indicate that a good level of maternal EI does not guarantee that children will learn the emotional skills that foster prosocial adaptation. Rather, EI must be accompanied by certain psychological characteristics (personality traits in this case).

Keywords: emotional intelligence, emotion situation knowledge, mothers, personality, young children

Procedia PDF Downloads 135
2515 Emotional Intelligence as a Correlate of Conflict Management Styles among Managers and Supervisors in Work Organizations in Nigeria

Authors: Solomon Ojo

Abstract:

The study investigated emotional intelligence as a correlate of conflict management styles among managers and supervisors in work organization. The study was a survey and Ex-post facto design was employed. A total of 407 participants took part in the study, and the participants were selected across different work organizations in the six (6) existing Geo-political zones in Nigeria, namely South-West, South East, South-South, North-East, North-West and North-Central. Questionnaire format was used for data collection in the study. Collected data were analyzed by both the Descriptive and Inferential Statistics, specifically using the Statistical Package for Social Sciences (SPSS) version 21.0. The findings revealed that considerate leadership style was significantly and positively related to the use of collaborating conflict management style, [r(405) = .50**, P < .01]; Considerate leadership style was significantly and positively related to the use of compromising conflict management style, [r(405) = .3**, P < .01]; Considerate leadership style was significantly and positively related to accommodation conflict management style, [r(405) = .64**, P < .01]; Considerate leadership style was not significantly related to competing conflict management style, [r(405) = .07, P > .05]; Considerate leadership style was significantly and negatively related to avoiding conflict management style, [r(405) = -.38**, P < .01]. Further, initiating structural leadership style was significantly and positively related to competing conflict management style, [r(405) = .33**, P < .01], avoiding conflict management style, [r(405) = .41**, P < .01]; collaborating conflict management style [r(405) = 51**, P < .01]. However, the findings showed that initiating structural leadership style was significantly and negatively related to compromising style, [r(405) = -.57**, P < .01] and accommodating style, [r(405) = -.13**, P < .01]. The findings were extensively discussed in relation to the existing body of literature. Moreover, it was concluded that leadership styles of managers and supervisors play a crucial role in the choice and use of conflict management styles in work organizations in Nigeria.

Keywords: conflict management style, emotional, intelligence, leadership style, consideration, initiating structure, work organizations

Procedia PDF Downloads 266
2514 The Impact of Corporate Governance Regulation in the Nigerian Banking Sector

Authors: Simisola I. Akintoye, Sunday K. Iyaniwura

Abstract:

Recent global corporate failures have called for increase in the need to regulate corporate governance across the world. In Nigeria, the impact of corporate governance regulation in the banking sector has reached epidemic levels contributing to the country’s economic depression. This study critically evaluates Nigeria’s corporate governance regime and explores how weak regulation has impacted on the banking sector. By adopting a socio legal methodology, the study analyses both theoretical and empirical works from a socio-scientific point of view to examine the role of Nigeria’s legal, cultural and social arrangements in corporate governance regulation. The study reveals that Nigeria’s institutional arrangement has contributed to its weak system of corporate governance regulation with adverse effects on the banking sector. The research mainly impacts on current global corporate governance literature in sub-Saharan Africa by contributing to knowledge of the peculiarities of corporate governance regulation in different institutional jurisdictions. The particular focus on emerging economies such as Nigeria expands on the need for countries to develop a bespoke system of corporate governance regulation that takes into consideration the peculiarities of individual countries devoid of external influence.

Keywords: banks, corporate governance, emerging economies, Nigeria

Procedia PDF Downloads 325
2513 Nonlinear Aerodynamic Parameter Estimation of a Supersonic Air to Air Missile by Using Artificial Neural Networks

Authors: Tugba Bayoglu

Abstract:

Aerodynamic parameter estimation is very crucial in missile design phase, since accurate high fidelity aerodynamic model is required for designing high performance and robust control system, developing high fidelity flight simulations and verification of computational and wind tunnel test results. However, in literature, there is not enough missile aerodynamic parameter identification study for three main reasons: (1) most air to air missiles cannot fly with constant speed, (2) missile flight test number and flight duration are much less than that of fixed wing aircraft, (3) variation of the missile aerodynamic parameters with respect to Mach number is higher than that of fixed wing aircraft. In addition to these challenges, identification of aerodynamic parameters for high wind angles by using classical estimation techniques brings another difficulty in the estimation process. The reason for this, most of the estimation techniques require employing polynomials or splines to model the behavior of the aerodynamics. However, for the missiles with a large variation of aerodynamic parameters with respect to flight variables, the order of the proposed model increases, which brings computational burden and complexity. Therefore, in this study, it is aimed to solve nonlinear aerodynamic parameter identification problem for a supersonic air to air missile by using Artificial Neural Networks. The method proposed will be tested by using simulated data which will be generated with a six degree of freedom missile model, involving a nonlinear aerodynamic database. The data will be corrupted by adding noise to the measurement model. Then, by using the flight variables and measurements, the parameters will be estimated. Finally, the prediction accuracy will be investigated.

Keywords: air to air missile, artificial neural networks, open loop simulation, parameter identification

Procedia PDF Downloads 281
2512 The Effect of Artificial Intelligence on Civil Engineering Outputs and Designs

Authors: Mina Youssef Makram Ibrahim

Abstract:

Engineering identity contributes to the professional and academic sustainability of female engineers. Recognizability is an important factor that shapes an engineer's identity. People who are deprived of real recognition often fail to create a positive identity. This study draws on Hornet’s recognition theory to identify factors that influence female civil engineers' sense of recognition. Over the past decade, a survey was created and distributed to 330 graduate students in the Department of Civil, Civil and Environmental Engineering at Iowa State University. Survey items include demographics, perceptions of a civil engineer's identity, and factors that influence recognition of a civil engineer's identity, such as B. Opinions about society and family. Descriptive analysis of survey responses revealed that perceptions of civil engineering varied significantly. The definitions of civil engineering provided by participants included the terms structure, design and infrastructure. Almost half of the participants said the main reason for studying Civil Engineering was their interest in the subject, and the majority said they were proud to be a civil engineer. Many study participants reported that their parents viewed them as civil engineers. Institutional and operational treatment was also found to have a significant impact on the recognition of women civil engineers. Almost half of the participants reported feeling isolated or ignored at work because of their gender. This research highlights the importance of recognition in developing the identity of women engineers.

Keywords: civil service, hiring, merit, policing civil engineering, construction, surveying, mapping, pile civil service, Kazakhstan, modernization, a national model of civil service, civil service reforms, bureaucracy civil engineering, gender, identity, recognition

Procedia PDF Downloads 64
2511 Artificial Neural Network-Based Prediction of Effluent Quality of Wastewater Treatment Plant Employing Data Preprocessing Approaches

Authors: Vahid Nourani, Atefeh Ashrafi

Abstract:

Prediction of treated wastewater quality is a matter of growing importance in water treatment procedure. In this way artificial neural network (ANN), as a robust data-driven approach, has been widely used for forecasting the effluent quality of wastewater treatment. However, developing ANN model based on appropriate input variables is a major concern due to the numerous parameters which are collected from treatment process and the number of them are increasing in the light of electronic sensors development. Various studies have been conducted, using different clustering methods, in order to classify most related and effective input variables. This issue has been overlooked in the selecting dominant input variables among wastewater treatment parameters which could effectively lead to more accurate prediction of water quality. In the presented study two ANN models were developed with the aim of forecasting effluent quality of Tabriz city’s wastewater treatment plant. Biochemical oxygen demand (BOD) was utilized to determine water quality as a target parameter. Model A used Principal Component Analysis (PCA) for input selection as a linear variance-based clustering method. Model B used those variables identified by the mutual information (MI) measure. Therefore, the optimal ANN structure when the result of model B compared with model A showed up to 15% percent increment in Determination Coefficient (DC). Thus, this study highlights the advantage of PCA method in selecting dominant input variables for ANN modeling of wastewater plant efficiency performance.

Keywords: Artificial Neural Networks, biochemical oxygen demand, principal component analysis, mutual information, Tabriz wastewater treatment plant, wastewater treatment plant

Procedia PDF Downloads 130
2510 [Keynote Speech]: Determination of Naturally Occurring and Artificial Radionuclide Activity Concentrations in Marine Sediments in Western Marmara, Turkey

Authors: Erol Kam, Z. U. Yümün

Abstract:

Natural and artificial radionuclides cause radioactive contamination in environments, just as the other non-biodegradable pollutants (heavy metals, etc.) sink to the sea floor and accumulate in sediments. Especially the habitat of benthic foraminifera living on the surface of sediments or in sediments at the seafloor are affected by radioactive pollution in the marine environment. Thus, it is important for pollution analysis to determine the radionuclides. Radioactive pollution accumulates in the lowest level of the food chain and reaches humans at the highest level. The more the accumulation, the more the environment is endangered. This study used gamma spectrometry to investigate the natural and artificial radionuclide distribution of sediment samples taken from living benthic foraminifera habitats in the Western Marmara Sea. The radionuclides, K-40, Cs-137, Ra-226, Mn 54, Zr-95+ and Th-232, were identified in the sediment samples. For this purpose, 18 core samples were taken from depths of about 25-30 meters in the Marmara Sea in 2016. The locations of the core samples were specifically selected exclusively from discharge points for domestic and industrial areas, port locations, and so forth to represent pollution in the study area. Gamma spectrometric analysis was used to determine the radioactive properties of sediments. The radionuclide concentration activity values in the sediment samples obtained were Cs-137=0.9-9.4 Bq/kg, Th-232=18.9-86 Bq/kg, Ra-226=10-50 Bq/kg, K-40=24.4–670 Bq/kg, Mn 54=0.71–0.9 Bq/kg and Zr-95+=0.18–0.19 Bq/kg. These values were compared with the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) data, and an environmental analysis was carried out. The Ra-226 series, the Th-232 series, and the K-40 radionuclides accumulate naturally and are increasing every day due to anthropogenic pollution. Although the Ra-226 values obtained in the study areas remained within normal limits according to the UNSCEAR values, the K-40, and Th-232 series values were found to be high in almost all the locations.

Keywords: Ra-226, Th-232, K-40, Cs-137, Mn 54, Zr-95+, radionuclides, Western Marmara Sea

Procedia PDF Downloads 421
2509 Application of Artificial Neural Network for Prediction of Retention Times of Some Secoestrane Derivatives

Authors: Nataša Kalajdžija, Strahinja Kovačević, Davor Lončar, Sanja Podunavac Kuzmanović, Lidija Jevrić

Abstract:

In order to investigate the relationship between retention and structure, a quantitative Structure Retention Relationships (QSRRs) study was applied for the prediction of retention times of a set of 23 secoestrane derivatives in a reversed-phase thin-layer chromatography. After the calculation of molecular descriptors, a suitable set of molecular descriptors was selected by using step-wise multiple linear regressions. Artificial Neural Network (ANN) method was employed to model the nonlinear structure-activity relationships. The ANN technique resulted in 5-6-1 ANN model with the correlation coefficient of 0.98. We found that the following descriptors: Critical pressure, total energy, protease inhibition, distribution coefficient (LogD) and parameter of lipophilicity (miLogP) have a significant effect on the retention times. The prediction results are in very good agreement with the experimental ones. This approach provided a new and effective method for predicting the chromatographic retention index for the secoestrane derivatives investigated.

Keywords: lipophilicity, QSRR, RP TLC retention, secoestranes

Procedia PDF Downloads 460
2508 Evaluation of the Conditions of Managed Aquifer Recharge in the West African Basement Area

Authors: Palingba Aimé Marie Doilkom, Mahamadou Koïta, Jean-michel Vouillamoz, Angelbert Biaou

Abstract:

Most African populations rely on groundwater in rural areas for their consumption. Indeed, in the face of climate change and strong demographic growth, groundwater, particularly in the basement, is increasingly in demand. The question of the sustainability of water resources in this type of environment is therefore becoming a major issue. Groundwater recharge can be natural or artificial. Unlike natural recharge, which often results from the natural infiltration of surface water (e.g. a share of rainfall), artificial recharge consists of causing water infiltration through appropriate developments to artificially replenish the water stock of an aquifer. Artificial recharge is, therefore, one of the measures that can be implemented to secure water supply, combat the effects of climate change, and, more generally, contribute to improving the quantitative status of groundwater bodies. It is in this context that the present research is conducted with the aim of developing artificial recharge in order to contribute to the sustainability of basement aquifers in a context of climatic variability and constantly increasing water needs of populations. In order to achieve the expected results, it is therefore important to determine the characteristics of the infiltration basins and to identify the areas suitable for their implementation. The geometry of the aquifer was reproduced, and the hydraulic properties of the aquifer were collected and characterized, including boundary conditions, hydraulic conductivity, effective porosity, recharge, Van Genuchten parameters, and saturation indices. The aquifer of the Sanon experimental site is made up of three layers, namely the saprolite, the fissured horizon, and the healthy basement. Indeed, the saprolite and the fissured medium were considered for the simulations. The first results with FEFLOW model show that the water table reacts continuously for the first 100 days before stabilizing. The hydraulic charge increases by an average of 1 m. The further away from the basin, the less the water table reacts. However, if a variable hydraulic head is imposed on the basins, it can be seen that the response of the water table is not uniform over time. The lower the basin hydraulic head, the less it affects the water table. These simulations must be continued by improving the characteristics of the basins in order to obtain the appropriate characteristics for a good recharge.

Keywords: basement area, FEFLOW, infiltration basin, MAR

Procedia PDF Downloads 76
2507 Determinants of Standard Audit File for Tax Purposes Accounting Legal Obligation Compliance Costs: Empirical Study for Portuguese SMEs of Leiria District

Authors: Isa Raquel Alves Soeiro, Cristina Isabel Branco de Sá

Abstract:

In Portugal, since 2008, there has been a requirement to export the Standard Audit File for Tax Purposes (SAF-T) standard file (in XML format). This file thus gathers tax-relevant information from a company relating to a specific period of taxation. There are two types of SAF-T files that serve different purposes: the SAF-T of revenues and the SAF-T of accounting, which requires taxpayers and accounting firms to invest in order to adapt the accounting programs to the legal requirements. The implementation of the SAF-T accounting file aims to facilitate the collection of relevant tax data by tax inspectors as support of taxpayers' tax returns for the analysis of accounting records or other information with tax relevance (Portaria No. 321-A/2007 of March 26 and Portaria No. 302/2016 of December 2). The main objective of this research project is to verify, through quantitative analysis, what is the cost of compliance of Small and Medium Enterprises (SME) in the district of Leiria in the introduction and implementation of the tax obligation of SAF-T - Standard Audit File for Tax Purposes of accounting. The information was collected through a questionnaire sent to a population of companies selected through the SABI Bureau Van Dijk database in 2020. Based on the responses obtained to the questionnaire, the companies were divided into two groups: Group 1 -companies who are self-employed and whose main activity is accounting services; and Group 2 -companies that do not belong to the accounting sector. In general terms, the conclusion is that there are no statistically significant differences in the costs of complying with the accounting SAF-T between the companies in Group 1 and Group 2 and that, on average, the internal costs of both groups represent the largest component of the total cost of compliance with the accounting SAF-T. The results obtained show that, in both groups, the total costs of complying with the SAF-T of accounting are regressive, which appears to be similar to international studies, although these are related to different tax obligations. Additionally, we verified that the variables volume of business, software used, number of employees, and legal form explain the differences in the costs of complying with accounting SAF-T in the Leiria district SME.

Keywords: compliance costs, SAF-T accounting, SME, Portugal

Procedia PDF Downloads 78
2506 Disclosing a Patriarchal Society: A Socio-Legal Study on the Indigenous Women's Involvement in Natural Resources Management in Kasepuhan Cirompang

Authors: Irena Lucy Ishimora, Eva Maria Putri Salsabila

Abstract:

The constellation on Indonesian Legal System that varies shows a structural injustice – as a result of patriarchy – exists from the biggest range as a country to the smallest such as a family. Women in their lives, carry out excessive responsibilities in the community. However, the unequal positions between men and women in the society restrain women to fulfill their constructed role. Therefore, increasing the chance for women to become the victim of structural injustice. The lack of authority given to women and its effects can be seen through a case study of the Cirompang Indigenous Women’s involvement in natural resources management. The decision to make the Mount Halimun-Salak as a National Park and the expansion itself did not involve nor consider the existence of indigenous people (Kasepuhan Ciromopang) – especially the women’s experience regarding natural resources management – has been significantly impacting the fulfillment of the indigenous women’s rights. Moreover, the adat law that still reflects patriarchy, made matters worse because women are restricted from expressing their opinion. The writers explored the experience of Cirompang indigenous women through in-depth interviews with them and analyzed it with several theories such as ecofeminism, woman’s access to land and legal pluralism. This paper is important to show how the decision and expansion of the National Park reduced the rights of access to land, natural resources, expressing an opinion, and participating in development. Reflecting on the Cirompang Indigenous Women’s conditions on natural resources management, this paper aims to present the implications of the regulations that do not acknowledge Indigenous women’s experience and the proposed solutions. First, there should be an integration between the law regarding indigenous people and traditional rights in a regulation to align the understanding of indigenous people and their rights. Secondly, Indonesia as a country that’s rich with diversity should ratify the ILO Convention no 169 to reaffirm the protection of Indigenous people’s rights. Last, considering the position of indigenous women that still experienced unjustness in the community, the government and NGOs must collaborate to provide adequate assistance for them.

Keywords: Cirompang indigenous women, indigenous women’s rights, structural injustice, women access to land

Procedia PDF Downloads 215
2505 Nurturing of Children with Results from Their Nature (DNA) Using DNA-MILE

Authors: Tan Lay Cheng (Cheryl), Low Huiqi

Abstract:

Background: All children learn at different pace. Individualized learning is an approach that tailors to the individual learning needs of each child. When implementing this approach, educators have to base their lessons on the understanding that all students learn differently and that what works for one student may not work for another. In the current early childhood environment, individualized learning is for children with diverse needs. However, a typical developing child is also able to benefit from individualized learning. This research abstract explores the concept of utilizing DNA-MILE, a patented (in Singapore) DNA-based assessment tool that can be used to measure a variety of factors that can impact learning. The assessment report includes the dominant intelligence of the user or, in this case, the child. From the result, a personalized learning plan that is tailored to each individual student's needs. Methods: A study will be conducted to investigate the effectiveness of DNA-MILE in supporting individualized learning. The study will involve a group of 20 preschoolers who were randomly assigned to either a DNA-MILE-assessed group (experimental group) or a control group. 10 children in each group. The experimental group will receive DNA Mile assessments and personalized learning plans, while the control group will not. The children in the experimental group will be taught using the dominant intelligence (as shown in the DNA-MILE report) to enhance their learning in other domains. The children in the control group will be taught using the curriculum and lesson plan set by their teacher for the whole class. Parents’ and teachers’ interviews will be conducted to provide information about the children before the study and after the study. Results: The results of the study will show the difference in the outcome of the learning, which received DNA Mile assessments and personalized learning plans, significantly outperformed the control group on a variety of measures, including standardized tests, grades, and motivation. Conclusion: The results of this study suggest that DNA Mile can be an effective tool for supporting individualized learning. By providing personalized learning plans, DNA Mile can help to improve learning outcomes for all students.

Keywords: individualized, DNA-MILE, learning, preschool, DNA, multiple intelligence

Procedia PDF Downloads 119
2504 Ethical 'Spaces': A Critical Analysis of the Medical, Ethical and Legal Complexities in the Treatment and Care of Unidentified and Critically Incapacitated Victims Following a Disaster

Authors: D. Osborn, L. Easthope

Abstract:

The increasing threat of ‘marauding terror,' utilising improvised explosive devices and firearms, has focused the attention of policy makers and emergency responders once again on the treatment of the critically injured patient in a highly volatile scenario. Whilst there have been significant improvements made in the response and lessons learned from recent disasters in the international disaster community there still remain areas of uncertainty and a lack of clarity in the care of the critically injured. This innovative, longitudinal study has at its heart the aim of using ethnographic methods to ‘slow down’ the journey such patients will take and make visible the ethical complexities that 2017 technologies, expectations and over a decade of improved combat medicine techniques have brought. The primary researcher, previously employed in the hospital emergency management environment, has closely followed responders as they managed casualties with life-threatening injuries. Ethnographic observation of Exercise Unified Response in March 2016, exposed the ethical and legal 'vacuums' within a mass casualty and fatality setting, specifically the extrication, treatment and care of critically injured patients from crushed and overturned train carriages. This article highlights a gap in the debate, evaluation, planning and response to an incident of this nature specifically the incapacitated, unidentified patients and the ethics of submitting them to the invasive ‘Disaster Victim Identification’ process. Using a qualitative ethnographic analysis, triangulating observation, interviews and documentation, this analysis explores the gaps and highlights the next stages in the researcher’s pathway as she continues to explore with emergency practitioners some of this century’s most difficult questions in relation to the medico-legal and ethical challenges faced by emergency services in the wake of new and emerging threats and medical treatment expectations.

Keywords: ethics, disaster, Disaster Victim Identification (DVI), legality, unidentified

Procedia PDF Downloads 192
2503 IoT and Deep Learning approach for Growth Stage Segregation and Harvest Time Prediction of Aquaponic and Vermiponic Swiss Chards

Authors: Praveen Chandramenon, Andrew Gascoyne, Fideline Tchuenbou-Magaia

Abstract:

Aquaponics offers a simple conclusive solution to the food and environmental crisis of the world. This approach combines the idea of Aquaculture (growing fish) to Hydroponics (growing vegetables and plants in a soilless method). Smart Aquaponics explores the use of smart technology including artificial intelligence and IoT, to assist farmers with better decision making and online monitoring and control of the system. Identification of different growth stages of Swiss Chard plants and predicting its harvest time is found to be important in Aquaponic yield management. This paper brings out the comparative analysis of a standard Aquaponics with a Vermiponics (Aquaponics with worms), which was grown in the controlled environment, by implementing IoT and deep learning-based growth stage segregation and harvest time prediction of Swiss Chards before and after applying an optimal freshwater replenishment. Data collection, Growth stage classification and Harvest Time prediction has been performed with and without water replenishment. The paper discusses the experimental design, IoT and sensor communication with architecture, data collection process, image segmentation, various regression and classification models and error estimation used in the project. The paper concludes with the results comparison, including best models that performs growth stage segregation and harvest time prediction of the Aquaponic and Vermiponic testbed with and without freshwater replenishment.

Keywords: aquaponics, deep learning, internet of things, vermiponics

Procedia PDF Downloads 72